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Synthetic band-structure engineering in polariton
crystals with non-Hermitian topological phases
L. Pickup 1,4, H. Sigurdsson 1,2,4, J. Ruostekoski 3 & P. G. Lagoudakis 1,2✉

Synthetic crystal lattices provide ideal environments for simulating and exploring the band

structure of solid-state materials in clean and controlled experimental settings. Physical

realisations have, so far, dominantly focused on implementing irreversible patterning of the

system, or interference techniques such as optical lattices of cold atoms. Here, we realise

reprogrammable synthetic band-structure engineering in an all optical exciton-polariton lat-

tice. We demonstrate polariton condensation into excited states of linear one-dimensional

lattices, periodic rings, dimerised non-trivial topological phases, and defect modes utilising

malleable optically imprinted non-Hermitian potential landscapes. The stable excited nature

of the condensate lattice with strong interactions between sites results in an actively tuneable

non-Hermitian analogue of the Su-Schrieffer-Heeger system.
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Particles subjected to potential landscapes with discrete
translational symmetries, whether natural or artificially
made, exhibit bands of allowed energies corresponding to

the quasimomentum of the crystal’s Bloch states1. For instance,
electronic band theory explains the difference between insulating
and conducting phases of materials, as well as their optical
properties. With advances in energy band synthesis in atomic
systems (optical lattices) or photonic crystals, complicated yet
meticulous lattice investigations are now possible including
superfluid-to-Mott insulator phase transitions2, networks of
Josephson junctions3, and solitonic excitations4,5. When the
symmetry of a periodic structure is broken and/or boundaries are
engineered in a desired way, there can arise defect states, surface
states, and bound states in the continuum that do not dissipate
energy into the surrounding environment. Advancements in
photonics have allowed for the design and study of nearly lossless
waveguides, filters, and splitters6, with applications in commu-
nications and biomedicine. Recent developments have led to the
study of topological states of matter in photonics7 and separately
in cold atoms8,9.

One-dimensional (1D) crystals provide the simplest platform
to study non-trivial topological phases, the prime example being
the Su–Schrieffer–Heeger (SSH) model10,11. Today, the Zak phase
(or the 1D topological winding number)12 has been measured in
a system of cold atoms13, followed by the demonstration of
adiabatic Thouless pumping14, and an electronic topological
superlattice15. Recently, non-Hermitian solid-state and photonic
systems have attracted a huge interest in the study of out-of-
equilibrium topological phases16–21, dissipative quantum phy-
sics22–24, and the advantageous effects of unbroken parity–time
symmetry25.

In the optical regime, a rapidly developing platform for the
study of the above-mentioned phenomena are exciton–polaritons
(from here on polaritons), realised in semiconductor micro-
cavities. These hybrid light–matter quasi-particles are formed by
the strong coupling of light confined in Fabry–Pérot microcavities
and electronic transitions in embedded semiconductor slabs26.
Their dissipative and out-of-equilibrium nature permits con-
densation into excited states27–29 that still presents a non-trivial
task for cold atoms in thermal equilibrium30.

In polaritonic systems, there are two processes available to
sculpt a crystal lattice. The most commonly applied process is
through periodically patterning of the cavity mode and/or the
intracavity quantum wells (QWs). This is typically achieved
through patterned metallic deposition on top of the sample27,29,
etch and overgrowth patterning techniques31, surface acoustic
waves32, or micro-structuring a sample into arrays of micro-
pillars33–35. Linear features such as Dirac cones and flat bands
have been demonstrated with polaritons utilising etched lattices
in Lieb34 and honeycomb36 geometries with topological transport
recently reported35,37, as well as non-linear dynamics of bright
gap solitons38,39. The other process utilises the matter component
of polaritons to produce periodic potentials through many-body
interactions. Similar to dipole moment-induced optical traps for
cold atoms40, or photorefractive crystals41, one can design an all-
optical potential landscape for polaritons by using non-resonant
optical excitation beams to create reservoirs of excitons, which
result in effective repulsive potentials due to polariton–exciton
interactions42–47.

In this article, we realise an all-optical, actively tunable band-
structure engineering platform harnessing reprogrammable non-
Hermitian potential landscapes that result from interparticle
interactions. The platform is actively tunable due to the use of a
spatial light modulator to spatially sculpt the non-resonant
excitation beam and the resulting potential. The sample used is a
non-patterned planar 2λ GaAs-based cavity containing eight

6-nm InGaAs QWs48 (for more details, please see ‘Methods’).
Utilising this platform, we demonstrate a variety of band struc-
ture features including polariton condensation into high-
symmetry points in arbitrarily excited energy bands of the
resulting Bloch states. By dimerising the potential landscape, we
experimentally realise an analogue of the topologically non-trivial
SSH system, resulting in the formation of split energy band states.
We determine through theoretical investigations that there is a π
change in the Zak phase (1D Berry phase) of the bands between
the two choices of inversion symmetry points in the dimerised
lattice. This confirms that our system experimentally provides a
platform for studying non-trivial topology in non-Hermitian
systems. Finally, by introducing local defects in the potentials
periodicity, we demonstrate controllable highly localised defect-
state condensation opening up possibilities to investigate analo-
gues of bright and dark solitonic gap modes in strongly non-
Hermitian lattices.

Results
Uniform 1D chains. We start by considering 1D chains of nar-
row non-resonant Gaussian pumps (full-width at half-max-
imum ≈ 2 μm) exciting co-localised polariton condensates, where
the inter-condensate separation is kept constant along the chain
(see Fig. 1). The band structure along the lattice can be char-
acterised via a single image of the dispersion (energy resolved k-
space) providing that the chain is parallel to the entrance slit of
the spectrometer. In Fig. 1, we show the experimental real-space
and k-space photoluminescence (PL) distributions along with the
corresponding dispersions for linear chains of eight polariton
condensates with a lattice constant (a) of approximately 13 μm
for Fig. 1b–d and 8.6 μm for Fig. 1e–g. It can be seen in Fig. 1d, g
that condensate chains exhibit clear band structure in the their
dispersions with dominant occupation at the high-symmetry
points of their reduced Brillouin zone and all the repeated zones
within the free polariton dispersion. These results evidence that
polaritons, generated at the pump spots, sense the periodic nature
of the potential, resulting in macroscopic coherent Bloch states
and thus qualifying the technique even for relatively few pump
cells. Furthermore, the energy band wherein the system con-
denses can be controlled by changing the separation between
neighbouring condensates as is demonstrated in Fig. 1d, g, where
we realise access to non-linear condensate dynamics in arbitrarily
excited states through all-optical control.

We note the intricate Talbot interference patterns observed
experimentally in the regions perpendicularly away from the
chains, e.g. in Fig. 1b. Such patterns were previously demon-
strated for polariton condensates using a chain of etched mesa
traps49 and demonstrate the ability of optically imprinted
condensates with the concomitant potentials to achieve effects
of etched/patterned systems. Moreover, polaritons condensing
into the high-symmetry points of the lattice, observed also in
refs. 27,29,31, can be intuitively understood from the fact that these
Bloch modes have the strongest overlap with the gain (pump)
region. The results are verified both through diagonalisation of
the non-Hermitian Bloch problem and by numerically solving the
driven-dissipative Gross–Pitaevskii equation describing a coher-
ent macroscopic field of polaritons under pumping and
dissipation (see Supplementary Notes 1 and 2).

Topologically non-trivial band gap opening in 1D chains.
Figure 2 shows the experimental dispersions in Fig. 2a–e and real-
space PL distributions in Fig. 2g–k for chains of eight con-
densates, demonstrating the splitting and periodic doubling of the
band as the difference between the long (al) and short separation
(as) is increased (panels a→ e and g→ l). For marginal
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differences in separation distance, δ= al− as, the band gap
formed is smaller than or comparable to the linewidths of the
condensate polaritons and thus not fully resolvable. Increasing δ
leads to an increased band splitting and the gaps become clearly
visible when they exceed the polariton linewidth. In Fig. 2, the
newly opened gap in the dominantly occupied energy band is
indicated by the red arrows. Eventually for large enough δ, the
band splitting becomes significant enough that adjacent energy
bands mix; see Fig. 2e. By increasing the number of unit cells in
the experimental crystal potential, the splitting approximates the
ideal infinite scenario (see the ‘Methods’ section for a discussion
around the limits of the current experimental set-up). As a result,

the finesse of the band structure features becomes enhanced; this
can be seen clearly in Fig. 2f, l, which show the dispersion and
real-space distribution, respectively, of the PL from a chain of 12
condensates with al= 10.2 μm and as= 9.2 μm. We point out
that in cold-atom systems topologically non-trivial band struc-
tures can be engineered by generating artificial gauge potentials
using laser beams, where the hopping amplitude between adjacent
lattice sites picks up a controllable phase factor (Peierls sub-
stitution) from the laser amplitudes50–52 or from periodic
modulation53,54. Here we have engineered an alternating pattern
of tunnelling amplitudes between neighbouring polariton con-
densates by utilising the variation of the condensate hopping
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Fig. 1 Experimental polariton condensate photoluminescence using eight non-resonant pump spots forming chains with uniform inter-condensate
separation distances. a Schematic representation of an experimental system where the blue beams represent the blue detuned non-resonant excitation
laser and the red beams represent the photoluminescence. In the schematic: SLM spatial light modulator, PH pinhole, HWP half waveplate, QWP quarter
waveplate, PBS polarising beam splitter, NPBS non-polarising beam splitter, DM dichroic mirror, obj microscope objective lens, cryo cold finger flow
cryostat, LP long pass filter and L1–L8 planoconvex lenses. The inset of the schematic (top right) shows a zoomed in region of the sample at the focus of
the sculpted non-resonant pump beam along with the resulting polariton distribution corresponding to b. b–g Logarithmic colourmaps showing the
polariton condensate (b, e) real-space and (c, f) k-space distributions, and (d, g) the corresponding dispersions. The lattice constant is approximately
13 μm in b–d and approximately 8.6 μm in e–g. The black lines on the bottom right of b, e represent 15 μm and in c, f represent 1 μm−1 scale bars. The red
vertical dashed lines in d, g symbolise the boundaries of the reduced Brillouin zone of the polariton crystal.
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Fig. 2 Experimental demonstration of a band gap opening as the difference between the long (al) and short (as) separation is increased. Experimental
dispersion (a–f) and corresponding real-space intensity distribution (g–l) of the PL from chains of eight polariton condensates with alternating separation
distances where al≈ 10.4 μm and a, g as≈ 10.4 μm, b, h as≈ 9.0 μm, c, i as≈ 8.9 μm, d, j as≈ 8.7 μm, and e, k as≈ 8.5 μm. f, l shows the PL dispersion and
real-space intensity distribution, respectively, for a chain of 12 condensates with al≈ 10.2 μm and as≈ 9.2 μm. The horizontal bars in the bottom right
corner of each real-space distribution correspond to 15 μm and the red arrows indicate the gap opening in the dominantly occupied band. a–e are plotted
using the logarithmic colour scales shown in e and g–k are plotted using the logarithmic colour scale shown in k.
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amplitude with the laser separation distance, such that inter-
ference of condensate polaritons between neighbouring sites is
staggered.

The gain-localised nature of the condensate polaritons at their
respective excitation spots permits description through discretised
set of coherent polariton equations of motion. In particular, if the
distances between adjacent condensates are weakly staggered the
hopping amplitudes follow suit due to both differences in
polariton travel times (i.e. the condensate envelope decays rapidly
outward from its respective pump spot) and interference coming
from their large outflow k-vector. The dimerised system,
characterised by two distinct complex hopping amplitudes J±,
for long and short distance between the condensates, respectively,
mimics a single-particle two-band problem representing a non-
Hermitian version of the SSH model10 (see ‘Methods’ and
Fig. 3b). The single polariton Hamiltonian describing the two-
sublattice chain in reciprocal space is written as,

HðqÞ ¼ Ω J� þ Jþe
iq

J� þ Jþe
�iq Ω

 !
; ð1Þ

where q is the crystal (Bloch) momentum and Ω is the on-site
energy of polaritons at their pump spots. We note that J± are
complex valued (see Eq. (6) in ‘Methods’), but their conjugate is
not taken in the lower off-diagonal element of the above
Hamiltonian. This is due to the non-Hermitian nature of our
system, which, in the context of topologically nontrivial phases,
has taken a surge of interest19–21,55–61. In a ring-shaped lattice
that forms periodic boundary conditions that we discuss later, the

Bloch waves are exact eigenstates and the description of the Zak
phase also becomes exact.

The Bloch eigenstates belonging to Eq. (1) are written

jbð± Þi ¼ ð± 1; eiϕðqÞÞT= ffiffiffi
2

p
, where (±) denotes the upper (conduc-

tion) and lower (valence) band of the system. The energies
belonging to these two bands are plotted as red curves in Fig. 3a
in the first Brillouin zone. The standard procedure to validate the
presence of topologically nontrivial phase transitions in 1D
lattices is through the definition of the Zak phase12, which can be
regarded as the 1D parameter space extension of the geometric
Berry phase,

Z ¼ i
Z
BZ
hb± j∂qjb± i dq ¼ � 1

2

Z
BZ

∂ϕðqÞ
∂q

dq: ð2Þ

The Zak phase can only take values 0 or π (modulo 2π) when
the origin is chosen at an inversion centre of the system. By
solving the eigenvalue problem posed by Eq. (1), the Zak phase
can be calculated straightforwardly by integration over the
Brillouin zone.

In Fig. 3, we present numerical results reproducing the
experimental gap opening shown in Fig. 2f. Figure 3a shows the
fitted gapped bulk dispersion from Eq. (1) (red curves) in the
lattice Brillouin zone. The curves are plotted on top of a black-
and-white colourmap showing the numerically time-resolved
single-particle dispersion based on a Monte Carlo technique (see
Supplementary Notes 1). Figure 3b shows a schematic of the
staggered lattice. In Fig. 3c, we plot ϕ(q) across the Brillouin zone
corresponding to the two distinct centres of inversion symmetry
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Fig. 3 Simulation of the band gap formation for a staggered lattice and demonstration of a π change in the Zak phase between the two choices of
inversion centre. a Greyscale colourmap showing the numerically time-resolved dispersion in a complex Gaussian potential lattice representing the
experiment in Fig. 2. Zero energy represents bottom of the lower polariton dispersion and 2d is the lattice vector length. Red curves are calculated energies
from Eq. (1). b A schematic illustrating the staggered lattice denoted by sublattice indices A and B and the two coupling strengths J±. c Calculated ϕ(q) with
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(see insets). f Spatial density of the defect wavefunction. Edge sites are connected to the bulk by J− hoppings. Parameters are given in the ‘Methods’
section.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18213-1

4 NATURE COMMUNICATIONS |         (2020) 11:4431 | https://doi.org/10.1038/s41467-020-18213-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


in the dimerised lattice, which is the same as interchanging the
values of J±. Integrating ϕ(q) across the Brillouin zone reveals a π
change in the Zak phase between the dimerisations, marking the
existence of two topologically distinct phases. The findings are
corroborated through first-principle calculations on the polariton
system Schrödinger equation (see Supplementary Notes 2). We
point out that our system is very different from that of hybridised
orbitals in micropillar chains33, where in the current case, the
opening of the gap arises from the staggered interference between
adjacent polariton condensate ‘antennas’ (see Eq. (6)). Experi-
mentally, the gap opening observed in Fig. 2 implies a topological
phase transition due to the localisation of polariton modes at each
pump spot. This is in analogy to deep periodic potentials where
the particles occupy a single mode at each site in the lowest band
(i.e. the wavefunction can be described as a superposition of
localised Wannier functions). The strong non-Hermitian nature
of our hybrid light–matter system instead opens new avenues
towards topological physics where the localisation of the particles
is not dictated by the potential minima of the lattice with
evanescent tunnelling.

Defect-state condensation. Moreover, by optically engineering a
defect state in the lattice, one can mimic the behaviour of solitons
in the polyacetylene polymers of the original SSH model10,11.
Such a defected system is depicted as …-B-A-B-A-B-A-A-B-A-B-
A-B-… where one site is adjacent to either two short-distance or
two long-distance neighbours. The generation of the SSH
dimerisation and defect states here is analogous to the engi-
neering of a controllable phase factor (Peierls substitution) for the
hopping amplitudes between adjacent sites in cold-atom systems
using laser-assisted tunnelling62. Solving the complex eigenener-
gies of a finite system (see Eq. (7)) including such a defect (e.g.
one site linked by two J+ couplings) one can observe in Fig. 3d–f
that a defect (midgap) state forms in the system, clearly dis-
tinguished from the bulk as it lies at zero energy.

Broken translational symmetry in a uniform chain also results
in gap (defect) states appearing. These manifest as dispersionless
states in the band structure (indicated by the blue arrows in
Figs. 4 and 5), showing strong spatial localisation around the
position of the defect in the pump geometry. Figure 4 shows the
experimental real-space PL distribution from a chain of 12
condensates with separation distances of a ≈ 10.2 μm except
between the central two pump spots where the separation is
reduced to ad ≈ 9.0 μm, creating a defect in the potentials
periodicity. A corresponding gap mode is visible in the dispersion
(indicated with the blue arrow in Fig. 4b) and the energy-resolved
strip of real space (Fig. 4c) demonstrates strong spatial
localisation of the condensate for the defect energy (Fig. 4e).
Such strongly localised states could permit investigation into
optically generated analogue of polariton bright gap solitons
observed previously for polariton condensates in photonic
lattices39. On the other hand, the delocalised band energetically
above the defect state suffers significant suppression in con-
densate occupation spatially around the defect, representing a
dark soliton-like mode (see Fig. 4d). This suppression is a
consequence of the bulk energy bands vanishing around the
defect and thus inhibiting energy flow between the left and the
right bulk region of the optical polariton crystal. We present
simulations on such defect states in Supplementary Notes 4.

Optically imprinting the potential landscape affords the ability
to finely tune the spectral position of the defect state, within the
gap, by only changing the defect length (ad) in the excitation
geometry. The PL dispersions for chains of 12 condensates
with a= 10 μm for five defect lengths between ad= 8.9 μm and
ad= 7.1 μm are shown in Fig. 5a–e. As the defect separation

distance is reduced, the gap mode (indicated by blue arrows)
blueshifts from the bottom of the gap to the top, at which point it
begins to mix with neighbouring energy bands. For all excitation
geometries shown in Fig. 5, the spatial distribution of the
condensate occupying the defect state, and the energy band above
it, have features comparable to those shown in Fig. 4d, e. We note
that there also exists a dispersionless state in the next lower
energy band gap that demonstrates the same blueshift behaviour
with reducing defect length.

Beyond finite 1D systems. While the chains we investigate above
show clear band formation with exquisite all-optical control over
many band features including band splitting, dispersionless
defect-state condensation, and arbitrarily excited band con-
densation, they remain finite systems. As shown in Fig. 2f,
increasing the number of unit cells brings the system closer to the
ideal infinite system and increases the fidelity of the band fea-
tures. However, there are technical limitations to the size of
chains that can be created, for example, due to the field of view of
the objective or available power of the pump laser. In Fig. 6, we
demonstrate polariton condensation in geometries of uniform
and staggered octagons. Such a system implements a periodic
boundary condition and provides a platform to avoid effects
originating due to finite lattice sizes. Indeed, in ideal realisations
of synthetic crystal lattices, one would like to achieve a well-
defined crystal momentum for energy bands that follows from
periodic boundary conditions. In optical lattices of cold atoms,
such a system is difficult to create; the typical lattices have a finite
length and they are additionally also superposed with a harmonic
trapping potential. In a finite chain that we have considered until
now, the description of eigenmodes in terms of their momenta is
only approximate. To overcome this limitation, the ring-shaped
lattice can be engineered for the polariton condensates in which
case the Bloch waves of Eq. (1) form exact eigenstates of the
corresponding tight-binding Hamiltonian Eq. (7) of the system.
The presence of very weak radial modes clearly seen in
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logarithmic colour scale in Fig. 6 can be minimised by increasing
the polygon’s size. As long as the general features of the couplings
between the condensates can be approximated by the tight-
binding model, the assumption of the periodic boundary condi-
tions remains valid. We point out that for our detection set-up
the extraction of polariton band features along the polygons
circumcircle in Fig. 6 is currently not possible.

Discussion
Our study advances the emulation of many different lattice
structures using a recyclable, and optically reprogrammable,
multi-purpose platform in the strong light–matter coupling
regime. The controllable condensation into arbitrarily excited
Bloch states of the system gives access to excited orbital many-
particle dynamics, which previously have been difficult to reach in
solid-state systems. In particular, we address the challenge of
realising a condensate lattice with periodic boundary conditions,
which, in general, is attractive for analytical considerations
(Bose–Hubbard model on a ring), and more closely resembles
classic band-structure models of solid-state physics. In finite

chains, the description of polariton Bloch eigenmodes in terms of
their momenta is only approximate. Ring-shaped lattices, how-
ever, overcome such limitations where the definition of topolo-
gical quantities like the Zak phase in the tight-binding limit
becomes exact.

The observed defect-state condensation paves the way towards
strong nonlinear lattice physics, with application in polaritonic
devices such as information routing and fine tunable emission
wavelength lasers. In addition, we expect that topological defect
lasing can be realised by controlled defect preparation. We point
out that the current study is performed in the scalar polariton
regime but can be easily extended to include its spin degree of
freedom by changing the polarisation of the pump, which creates
different spin populations of the excitonic reservoirs feeding the
condensates. Working with a horizontally polarised excitation,
the system is chiral symmetric and each pump spot results in a
randomly linearly polarised condensate. If interactions between
the condensates, or on-site energies, are made spin dependent
through typical photonic TE-TM microcavity splitting63, or
sample birefringence, then one gains access to spin-dependent
band structures. This broadens the impact of nonresonantly
generated artificial polariton lattices and, in principle, permits
design of optical Chern insulators given the inherent spin–orbit
coupling of polaritons in conjunction with applied magnetic
fields35,37. Another exciting area for future research is expanding
to topologically protected transport states with investigation into
robustness against engineered imperfections.

Methods
Sample and experimental techniques. We use a planar distributed Bragg reflector
microcavity with a 2λ GaAs-based cavity containing eight 6-nm InGaAs QWs
organised in pairs at the three anti-nodal positions of the confined field, with an
additional QW at the final node either side of the cavity48. The sample is cooled to
~6 K using a cold finger flow cryostat and is excited with a monomode continuous
wave laser blue detuned energetically above the stop band to maximise coupling in
efficiency. The laser is modulated in time into square wave packets with a frequency
of 10 kHz and a duty cycle <5% to prevent sample heating, and we operate at ~50%
above the excitation density required for formation of a macroscopic coherent
single-particle state. The sample has a vacuum Rabi splitting ~8meV48 and the
regions of the sample utilised have an exciton–photon detuning of ~−3.5meV.

The spatial profile of the excitation beam is sculpted using a phase-only spatial
light modulator to imprint a phase map so that, when the beam is focused via a 0.4
numerical aperture microscope objective lens, the desired real-space is projected
onto the sample surface. The same objective lens is used to collect the PL, which is
then directed into the detection set-up. By controlling the spatial intensity
distribution of the non-resonant excitation beam, we imprint a reprogrammable
potential landscape43,44,46 without the need of irreversible engineering. In the
relaxation process from a non-resonant optical injection of free charge carriers to
the polariton condensate, an incoherent ‘hot’ excitonic reservoir is produced that
feeds the condensate. This reservoir is co-localised with the non-resonant
excitation beam(s) and due to the strong polariton–exciton interaction results in a
potential hill for polaritons where the excitation density is high42. This method
additionally enables the elimination of large inhomogeneities since each element of
the potential lattice can be adjusted through the power or shape of its respective
pump element, such that the system achieves a homogeneous crystal structure.
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Fig. 5 Demonstration of control over the energy of a defect state through changing the size of the engineered defect. Experimental dispersions of the PL
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Fig. 6 Experimental polariton condensate PL using eight pump spots
forming a circle. Logarithmic colourmaps showing the a, c real-space and
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regular and dimerised octagons, respectively. The black lines are 15 μm and
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In the current experimental set-up, when using similar lattice constants to those
used throughout the manuscript, the upper limit of condensates in a 1D chain is
approximately 14. However, we highlight that this is not a fundamental limit of the
experimental technique. By replacing a few optical components, such as the
microscope objective lens, this number could be increased. Equally by reducing the
lattice constant, one can fit more non-resonant excitation beams. We note here that
the lower limit of the lattice constant is determined by the width of the condensate
bright centres, which approximately coincide with the Gaussian form of the
nonresonant beam. In order to avoid strong overlap between the condensate
centres, they should be separated by more than the FWHM of the pump beam.

Theory. The single particle dynamics of planar cavity polaritons, occupying the
lower polariton dispersion curve, can be described by a two-dimensional
Schrödinger equation26,

i_
dΨ
dt

¼ � _2∇2

2μ
þ VðrÞ � i_γ

2

� �
Ψ: ð3Þ

Here μ is the polariton mass, γ is their lifetime, and V(r) is the pump-induced
complex potential. For the non-Hermitian lattice of Gaussian potentials, the
interaction between polariton wavefunctions, gain-localised at their respective
potentials, and separated by a distance ∣rn− rm∣= dnm, we can project the system
onto an appropriate basis of wavefunctions. Omitting the diffusion of polaritons
perpendicular from the chain, we consider a 1D system with the ansatz
ϕnðxÞ ¼

ffiffiffi
κ

p
eikjx�xn j , where k= kc+ iκ. The condensate wavefunction is then

written,

Ψðx; tÞ ¼
X
n

cnðtÞϕnðxÞ: ð4Þ

Here kc, κ > 0 represents the outflow momentum and decaying envelope of the
polaritons generated at each potential. Given the narrow width of the pumps, we
have approximated them as delta potentials, which, by direct integration, gives the
following discretised single-particle equations of motion (details given in Supple-
mentary Notes 2),

i_
dcn
dt

¼ Ωcn þ
X
m

Jnmcm; ð5Þ

Jnm ¼ η V0 cosðkcdnmÞ �
_2kc
μ

sinðkcdnmÞ
� �

jHð1Þ
0 ðkcdnmÞj: ð6Þ

Here Jnm denotes the condensate hopping amplitudes, Ω is the complex-valued
potential energy of polaritons generated at their respective pump spots, and kc is
the outflow momentum of the polaritons from their pump spot, which depends
on exciton–photon detuning, excitation beam waist, and excitation density42,

Hð1Þ
0 is the zeroth order Hankel function of the first kind that accounts for the

two-dimensional envelope of the propagating polaritons, V0 2 C is the strength
of the complex-valued pump-induced potential, and η a fitting parameter. The
physical meaning of Eqs. (5) and (6) is that condensate polaritons do not tunnel
from one site to the next (evanescent coupling) but rather ballistically exchange
energy. The term ballistically refers to the non-negligible polariton phase gra-
dient away from the potentials determined by their strong outflow momentum
kc, which gives rise to the interferometric hopping dependence (sine and cosine
functions).

In particular, in a distance staggered system (see Fig. 2) the condensates become
linked by interchanging long and short distance d±= d ± δ, respectively, where we
assume d≫ δ. For only nearest neighbour interactions, it leads to dimerisation of
Eq. (5), which becomes characterised by two hopping amplitudes J±. As a
consequence, one obtains an approximate single-particle two-band problem
representing a non-Hermitian version of the SSH model10. In the picture of second
quantisation, Eq. (5) can be written as (see Supplementary Notes 2),

H ¼ Ω
XM
m¼1

X
α

m; αj i m; αh j þ Jþ
XM
m¼1

ð m;Bj i m;Ah j þ h:c:Þ

þ J�
XM�1

m¼1

ð mþ 1;Aj i m;Bh j þ h:c:Þ:
ð7Þ

Here m; αj i are state vectors of unit cell m on sublattice α∈ {A, B}. With periodic
boundary conditions, Eq. (7) can be diagonalised by standard Fourier
transformation to the basis of crystal momentum qj i ¼ M�1=2PM

m¼1 e
imq m; αj i,

where q ∈ {δq, 2δq, 3δq, …} and δq= 2π/M. It then follows that HðqÞ ¼ hqjHjqi
giving Eq. (1).

Parameters used for the calculations presented in Fig. 3 are: d= 9.5 μm,
kc= 1.5 μm−1, μ= 0.32 meV ps2 μm−2, η= 0.24, Ω= 1.315 meV, and V0=
1.44+ i0.5 meV.

Data availability
The data supporting the findings of this study are openly available from the University of
Southampton repository at https://doi.org/10.5258/SOTON/D119464.
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