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In order to investigate the ecotoxicological effects of nano-ZnO particles and seawater
acidification on marine bivalves, the thick shell mussels, Mytilus coruscus were
subjected to joint treatments with different nano-ZnO concentrations (0 [control], 2.5
[medium] and 10 mg L−1 [high]) under two pH levels (7.7 [low]and 8.1 [control])
for 14 days. The results showed that respiration rate (RR), absorption efficiency
(AE), clearance rate (CR), O:N ratio and scope for growth (SFG) were significantly
reduced with nano-ZnO concentration increase, but ammonium excretion rate (ER)
was increased. Low pH significantly reduced CR, RR, SFG, and O:N ratio of the
mussels especially under high nano-ZnO conditions, and significantly increased ER.
Principal component analysis (PCA) showed consistent relationships among most
tested parameters, especially among SFG, RR, O:N ratio and CR under the normal
pH and 0 nano-ZnO conditions. Therefore, seawater acidification and nano-ZnO
interactively impact the ecophysiological responses of mussels and cause more severe
effects when they appear concurrently.

Keywords: Nano-ZnO, acidification, Mytilus coruscus, physiology, combined effects

INTRODUCTION

Since the beginning of industrial revolution, large amounts of fossil fuels have been burned and
the green vegetation has been reduced greatly worldwide, resulting in dramatic increased carbon
dioxide (CO2) emissions (Caldeira and Wickett, 2003; Intergovernmental Panel on Climate Change
[IPCC], 2014). The ocean plays an important role in the global carbon cycle, and about one-third of
the CO2 emitted by human activities is absorbed by the oceans (Feely et al., 2004). The absorption
of CO2 in the ocean slows down the trend of rising atmospheric carbon dioxide concentration,
but the continuous absorption of CO2 changes the carbon dioxide-carbonate system of seawater,
resulting in increased concentrations of hydrogen ions, CO2 and bicarbonate in seawater, and
decreased carbonate concentration, ultimately ocean acidification (OA) (Sabine et al., 2004;
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Wang et al., 2012). According to the current energy use structure,
it is estimated that by 2100, the ocean’s pH will be further reduced
by 0.3–0.4 units, and by 0.7 units to 2300 years (Orr et al.,
2005). According to the exiting evidences, OA can affect the
physiological process and fitness of marine animals through acid-
base regulation, digestion, metabolism and growth (Fabry et al.,
2008; Melzner et al., 2009; Kroeker et al., 2010; Lannig et al., 2010;
Fernández-Reiriz et al., 2011; Gazeau et al., 2013; Matoo et al.,
2013; Stumpp et al., 2013; Jakubowska and Normant, 2015; Hu
et al., 2015; Jansson et al., 2015).

Most nanoparticle contaminants can be deposited in water,
posing a threat to aquatic ecosystem (Renzi and Guerranti, 2015).
Due to the widespread use of zinc oxide nanoparticles, coastal
waters and the ocean would become an ultimate sink of these
environmental contaminants (Yung et al., 2014). The application
of nanoparticles has attracted more and more attention in aquatic
environmental research (Montes et al., 2012; Gagné et al., 2016).
It has been found that nanoparticles exert immunotoxic effects
on shellfish cells, such as altering DNA structure, transcription
level of immune-related genes and expression of related proteins
in shellfish, and inhibiting development of shellfish embryos and
larvae (Wang et al., 2014). Particularly, nano-ZnO stimulates
the respiration rate (RR) and reduces the time of survival of
mussels (Hanna et al., 2013). Also, Muller et al. (2014) pointed out
that long-term exposure of Mytilus galloprovincialis to nano-ZnO
cause accumulation of zinc in mussel tissues, affecting the energy
budget. Although nano-ZnO has attracted some attention in
ecotoxicological research, there is little research on the combined
physiological effects of nano-ZnO associated with additional
environmental stressors on marine bivalves. Therefore, it is
necessary to explore the combined effects of nano-ZnO and OA
on marine species.

Mytilus coruscus is an important marine bivalve species in the
East China Sea. The individual is large with poor mobility and
long life history, and can accumulate environmental pollutants
(such as heavy metals), with strong tolerance to environmental
disturbance, thus often serves as an environmental indicator
to monitor the changes of coastal environment (Foy et al.,
2001; Reeburgh, 2007; Tian et al., 2011; Liu et al., 2014).
Scope for growth (SFG), referring to the net energy balance
of molluscs, is defined as the energy transferred from the
diet into growth by deducting the energy consumed by
respiration and excretion, which can be determined by
integrating some physiological parameters (i.e., clearance,
absorption, respiration, and excretion, Bayne and Widdows,
1978; Widdows and Hawkins, 1989; Smaal and Widdows,
1994; Widdows et al., 2002; Widdows and Staff, 2006;
Sarà et al., 2008; Halldórsson et al., 2008; Fernández-Reiriz
et al., 2011). These physiological indicators, are not only
able to predict the growth rate very well (Bayne et al.,
1979), but also good indicators of the health state and
the sensitive indexes of the mussels to the environmental
changes (Wang et al., 2012). The purpose of this study
was to probe the interactive effects of decreased pH and
nano-ZnO on the physiological energetic in the mussel
M. coruscus. The physiological parameters of the shellfish were
determined, including clearance rate (CR), RR, absorption

efficiency (AE), ammonium excretion rate (ER), SFG, and O:N
ratio.

MATERIALS AND METHODS

Preparation of Nano-ZnO
Nano-ZnO powder (declared purity of 99.9%) was purchased
in Horsehead Company, United States. It was made into
stock solution for preservation (10 g nano-ZnO L−1). The
morphology and particle size of nano-ZnO were measured by
transmission electron microscope (Low Voltage Tem5, LVEM5)
and scanning electron microscopy (Hitachi JSM-7500F). X-ray
diffraction of nano-ZnO was determined by X’Pert PRO X-ray
Diffractometer (PANalytical B.V.). Particle size range and zeta
potential of nano-ZnO were determined by dynamic light
scattering (DLS) using a ZetaSizer Nano ZEN3600 (Malvern,
United Kingdom).

Experimental Mussels and Acclimation
Procedure
Adult mussels (shell length: 8.0 ± 2.0 cm; dry weight
1.6 ± 0.9 g) were collected from the Gouqi island, Zhejiang
Province, China, acclimated for 1 week in full aeration
seawater (temperature: 20 ± 0.5◦C; pH: 8.1; salinity: 25 ± 1
psu), and fed daily with the microalgae Chlorella spp.
(2.5 × 105cells mL−1). The handling of experimental mussels
was carried on in terms of regulations of the animal welfare
for scientific research made by the Institutional Animal
Care and Use Committee (IACUC) of Shanghai Ocean
University.

Experimental Design
The mussels were placed in six treatments: two values of pH [7.7
as the low value of present natural variability at the sampling
site (Li et al., 2014), 8.1 as the present average pH] and two
doses (mg L−1) of nano-ZnO (0 as control, 2.5 as medium, and
10.0 as high). The concentrations of 1–10 mg L−1 n-ZnO are
the most common concentrations currently used in laboratory
research, which allow for sub-lethal physiological effects over
the exposure period rather than animal mortality (Ciacci et al.,
2012; Hao and Chen, 2012). The mussels were divided into
six treatments randomly, the six treatments were carried out
in exactly the same circulatory system, each system set up
three repeated experimental tanks, and each tank contained
30 mussels, with the above mentioned microalgae feed. The
low pH value was reduced by adding pure CO2 through a
pCO2/pH system (DAQ-M), which was equipped with pH meter
(WTW 3310) and pH electrodes (SenTix 41) and operated by
CapCTRL software (Loligo Systems Inc.). A multiparameter
instrument (model 5200A, YSI, United States) was used to
measure seawater salinity. Total alkalinity (TA) was measured
by titration method. Other carbonate chemical parameters
of seawater (dissolved inorganic carbon (DIC), pCO2, calcite
saturation state (�cal) and aragonite saturation state (�ara))
were calculated based on TA and pHNBS using CO2SYS (Lewis
et al., 2013).
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Physiological Measurements
Clearance Rate
The thick shell mussels were fasted for 6 h to clear the intestine.
They were acclimated for 15 min to ensure they open shells
and exchange seawater with the outside environment. Then the
microalgae with the initial concentration of 2.5× 104 cells mL−1

were added, and no pseudo-feces were produced in a preliminary
experiment. Three same experimental tanks without mussels
were used as the control. At the beginning of the experiment, an
initial 20 ml of seawater was taken from the each experimental
tank using pipets, after mussels were fed for 60 min, 20 ml of
water sample was taken from each experimental tank. The cell
concentration in seawater sample was measured with a Coulter
Counter (Multisizer 3, Beckman, Irvine, CA, United States).
There was no significant decrease in cell concentration during
the experiment in the control tanks. CR was computed by the
following formula of (Coughlan, 1969):

CR =V×(lnC0 − lnCt)/Nt

where CR denotes the CR (L h−1 g−1), V represents the volume
of seawater in the tanks (L), C0 is the initial cell concentration
(cells mL−1), Ct is the cell concentration at time t (cells mL−1),
N is the number of animals in the tank, t is the sampling time
(h). CR and other subsequent physiological parameters were
standardized to unit dry weight.

Absorption Efficiency
After measuring CR, the feces of each replicate tank were
collected to calculate AE. Four liters of seawater containing
2.5 × 104 cell mL−1 algae were filtered by 40 mm glass fiber
filters (Whatman GF/C), which was ashed and pre-weighed, to
determined the organic content of microalgae. The filter papers
were rinsed with ammonium formate solution (0.5 M) and dried
in the oven (110◦C) for 24 h, the first weighing results were
recorded. Another weight was measured after ashing the filter
papers in a muffle furnace (450◦C) for 6 h. The filters were cooled
in desiccators in advance. Feces were collected by a pipet from
the experimental tanks 8 h after the CR determinations, and the
organic content of the feces was measured using the same method
as above. AE was computed according to Conover (1966):

AE = (F− E)/[(1− E)× F]

Where AE denotes the AE (%), F represents the ratio of organic
dry weight: dry weight in the diets, and E is the ratio of organic
dry weight: dry weight in the feces.

Ingestion rate (IR) was computed by multiplying CR by POM
concentration (particulate organic matter, mg L−1, Hawkins
et al., 1998), i.e., the amount of ingested organic food per hour.
The POM concentration was transformed to joules using a
conversion value of 23 J mg−1 for Chlorella spp (Widdows and
Johnson, 1988; Widdows et al., 1990).

Respiration Rate
The RR of mussels was measured from the corresponding
treatment tanks in closed glass respirometer (800 ml) containing
air-saturated seawater. To make sure that every mussel was

breathing normally, the experiment began after their valves had
been open for 15 min and then sealed off the respirometers
for 60 min. Two tanks filled only with seawater were used as
the control. The decline in oxygen content was measured by an
oxygen meter (model 5200A, YSI, United States). Then the initial
and final oxygen concentrations of each tank were obtained.

The RR was then computed using the following equation
(Wang et al., 2015):

RR = [Ct0 − Ct1] × V/Nt

Where RR demotes the RR (mg O2 h−1 g−1), Ct0 and Ct1
represent the initial and final DO levels (mg O2 L−1), respectively,
V (L) is the water volume in the respirometer, N is the mussel
number, and t (h) is the exposure time. Values for RR were
changed to J h−1 using a conversion value of 13.98 J mg O2

−1

(Wong and Cheung, 2003).

Ammonia Excretion Rate
Excretion rates (ER) were measured after measuring RR of
the same mussels. Water samples from each tank were frozen
to −20◦C until the analysis. The concentration of ammonia
was measured by spectrophotometry, referring to the method
of phenol-sodium hypochlorite (Solorzano, 1969). ER was
calculated on the basis of the difference in the concentration of
ammonia in the experimental tank and the blank tank using the
following equation (Wang et al., 2015):

ER = (Ce − Cc)× (V/1000)/Nt

where ER denotes the rate of ammonia excretion (mg NH4-N
h−1 g−1), Ce is the ammonia concentration (mg L−1) in the
experimental sample, Cc is the ammonia concentration (mg L−1)
in the control, V is the seawater volume (ml) in the tank, N is
the mussel number in the tank and t is the exposure time (h).
ER values were changed to J h−1using the conversion value of
1mg NH4-N = 25 J (Elliott and Davison, 1975). The ratio of
oxygen consumption to ammonia excretion (O:N) was calculated
to reflect the proportion of protein relative to carbohydrates and
lipids metabolized under different conditions (Widdows, 1985).

Scope for Growth
Scope for growth was computed by the energy balance equation
given by Smaal and Widdows (1994):

SFG = Ab− (R+ U)

Where SFG denotes SFG (J h−1g−1), Ab represents the total
absorbed energy (J h−1 g−1), R is the energy lost for respiration
(J h−1g−1), and U is the energy lost for ammonia excretion
(J h−1g−1).

Absorption rate (Ab) = IR (J h−1)× AE (%).

Statistical Analyses
The normality and homogeneity of the data were checked by
Shapiro-Wilk’s test and Levene’s test (SPSS 19.0), respectively. The
effects of pH, nano-ZnO and their interactions were analyzed by
two-way analysis of variance (ANOVA). If there is an interaction,
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the significant effects of nano-ZnO were analyzed by one-way
ANOVA at each fixed pH followed by Tukey’s HSD test. Student’s
t-test was applied to examine the significant effects of pH at each
nano-ZnO concentration. Principal component analysis (PCA)
was conducted by XLSTAT R©2014. The measured parameters and
the observations were listed in a biplot. The significant difference
level was considered as P < 0.05.

RESULTS

Seawater Chemistry
During the experiment, the salinity remained at 25.1 ± 0.3 psu,
the water temperature remained at 20.1 ± 0.3◦C, the normal pH
was kept at 8.10 ± 0.02, and the low pH was kept at 7.69 ± 0.02
(Table 1). Moreover, Table 1 also summarized the carbonate
chemical parameters of seawater for all treatments. All mussels
were alive during the experimental period.

Nano-ZnO Characterization
The nano-ZnO morphology was observed by both TEM and
SEM. The particle diameter of ca. 15–25 nm and spheroid
irregular shapes of nano-ZnO were found by TEM and SEM,
respectively (Supplementary Figures S1A,B). From the X-ray
diffraction patterns (Supplementary Figure S1C), all peaks of
the nano-ZnO were well indexed to the hexagonal wurtzite
structure of ZnO (JCPDS Card no. 01-089-0510), and there
were no other impurity diffraction peaks in the spectrum, so
the nanomaterials were pure nano-ZnO. DLS results showed
that the particle size of nano-ZnO was affected by pH
(Table 2).

Physiological Parameters
CR varied from 1.1 to 4.0 L h−1 g−1 after the mussels were
exposed to different treatments of pH and nano-ZnO for

14 days. High concentration of nano-ZnO resulted in a significant
reduction of CR throughout the whole experiment. Low pH
significantly reduced the CR of the thick shell mussels (p < 0.05)
when the nano-ZnO was 10 mgL−1. CR was the lowest when
the concentration of nano-ZnO was 10 mg L−1 under pH 7.7
(Figure 1A).

The AE was low, ranging from 15 to 45%. High concentration
of nano-ZnO significantly reduced the AE, but there was
no significant difference between the two pH levels. During
the 14-day experiment, AE was reduced to the lowest value
when the concentration of nano-ZnO was 10 mg L−1

(Figure 1B).
During the experiment, RR was significantly affected by the

interaction of nano-ZnO and pH (Table 3 and Figure 1C).
Similar to CR, high nano-ZnO significantly reduced the RR of
the mussels (p < 0.05). RR was significant reduced (p < 0.05) by
low pH when the nano-ZnO is 10 mgL−1 except at day 14. The
lowest value of measured RR at each time point was at pH 7.7 and
nano-ZnO 10 mg L−1 (Figure 1C).

During the whole experiment, low pH significantly increased
ER (p < 0.05), and ER was significantly increased with
the increment of nano-ZnO concentrations except at day 1.
Moreover, the highest values were observed when the mussels
were subject to low pH and high nano-ZnO, and interactive
effects of nano-ZnO and pH were found at day 14 (Table 3 and
Figure 1D).

Nano-ZnO significantly reduced O: N ratio throughout the
experiment, and low pH significantly decreased the O: N
ratio compared to normal pH 8.1 when nano-ZnO was absent
(p < 0.05), and some interactive effects were also observed
(Table 3). The effects of both pH and nano-ZnO showed similar
trends and resulted in a significant low value at low pH and high
nano-ZnO (Figure 1E).

The SFG was significantly decreased (p < 0.05) under
high nano-ZnO condition throughout the whole experiment.

TABLE 1 | Seawater chemistry monitoring during the experiment (mean ± SD, n = 4).

Treatments Salinity T (◦C) pHNBS TA DIC p CO2 �cal �ara

pH∗ZnO (psu) (µmol Kg−1) (µmol Kg−1) (µatm)

8.1∗0 25.1 ± 0.2 20.0 ± 0.1 8.11 ± 0.01 2268 ± 77 2047 ± 67 365 ± 11 4.35 ± 0.24 2.74 ± 0.15

8.1∗2.5 25.2 ± 0.1 20.1 ± 0.3 8.10 ± 0.02 2308 ± 42 2085 ± 37 375 ± 17 4.41 ± 0.17 2.78 ± 0.11

8.1∗10 25.1 ± 0.2 20.1 ± 0.2 8.10 ± 0.01 2356 ± 34 2134 ± 31 391 ± 5 4.44 ± 0.09 2.80 ± 0.05

7.7∗0 25.2 ± 0.1 20.0 ± 0.1 7.70 ± 0.01 2331 ± 52 2261 ± 53 1062 ± 45 1.98 ± 0.05 1.25 ± 0.03

7.7∗2.5 25.1 ± 0.3 20.1 ± 0.2 7.69 ± 0.02 2342 ± 22 2276 ± 23 1096 ± 47 1.95 ± 0.06 1.23 ± 0.04

7.7∗10 25.0 ± 0.3 20.1 ± 0.2 7.71 ± 0.01 2354 ± 6 2283 ± 7 1062 ± 25 2.02 ± 0.06 1.27 ± 0.03

pH was monitored by the pH/CO2 system continuously during the experiment. Salinity, temperature and total alkalinity (TA) were determined at each sampling time. Partial
pressure of CO2 (pCO2), dissolved inorganic carbon (DIC), saturation degrees for calcite (�cal) and aragonite (�ara) were calculated based on the above parameters.

TABLE 2 | The parameters of Nano-ZnO sedimentation experiments.

Nano-ZnO (mg L−1) pH Hydrodynamic diameter (nm) Particle dispersion index Zeta potential (mV)

2.5 8.1 749 ± 53 0.22 ± 0.03 −15.03 ± 4.45

10 8.1 1235 ± 128 0.08 ± 0.01 −21.39 ± 5.56

2.5 7.7 1083 ± 96 0.14 ± 0.02 −15.86 ± 3.25

10 7.7 1761 ± 134 0.06 ± 0.02 −20.16 ± 4.12
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FIGURE 1 | (A) Clearance rate (CR), (B) absorption efficiency (AE), (C) respiration rate (RR), (D) ammonia excretion rate (ER), (E) O:N ratio and (F) Scope for growth
(SFG) of M. coruscus exposed to different combinations of pH and nano-ZnO for 14 days. The means denoted by different superscripts at each fixed pH are
significantly different among three nano-ZnO concentrations at each sampling time (P < 0.05). The means sharing the asterisk between two pH levels at each fixed
nano-ZnO are significantly different at each sampling time (P < 0.05).

Moreover, the SFG displayed positive values for all treatments
except for nano-ZnO 10 mg L−1 and pH 7.7 at day 14. Low pH
significantly decreased the SFG (p < 0.05) when nano-ZnO was

2.5 and 10 mg L−1 at days 7 and 10 (Figure 1F), and the lowest
SFG was observed under the combination of high nano-ZnO and
low pH.
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TABLE 3 | Summary of two-way ANOVA results on effects of pH and nano-ZnO on clearance rate (CR), absorption efficiency (AE), respiration rate (RR), excretion rate
(ER), O:N ratio, and scope for growth (SFG).

Source CR AE RR

ZnO pH ZnO∗pH ZnO pH ZnO∗pH ZnO pH ZnO∗pH

df 2 1 2 2 1 2 2 1 2

1 day MS 4.580 0.350 0.430 161.977 0.465 2.605 0.651 0.665 0.019

F 283.940 216.717 265.617 187.311 5.382 30.174 567.484 614.069 17.278

P < 0.001 0.658 0.317 < 0.001 0.039 12.124 < 0.001 0.064 0.031

3 days MS 4.974 0.095 0.360 302.314 3.166 63.926 0.924 0.182 0.013

F 53.489 58.474 21.031 680.977 7.131 13.320 916.872 180.840 13.320

P 0.084 0.084 0.165 0.481 0.774 1.226 < 0.001 0.014 0.032

7 days MS 8.233 0.052 0.338 9.710 0.778 0.140 0.609 0.184 0.001

F 239.069 85.977 12.746 79.135 83.399 5.044 33.645 472.892 2.911

P 0.112 0.05 2.221 0.114 0.016 0.921 0.445 0.784 0.044

14 days MS 5.507 < 0.001 0.019 89.258 1.194 2.987 0.785 0.081 0.006

F 189.218 11.793 66.094 23.246 361.646 407.953 36.955 93.456 16.452

P 1.245 5.681 5.121 0.488 0.987 0.557 0.663 0.412 0.018

Source ER SFG O:N

ZnO pH ZnO∗pH ZnO pH ZnO∗pH ZnO pH ZnO∗pH

df 2 1 2 2 1 2 2 1 2

1 day MS 0.001 0.001 0.456 81.270 3.775 0.297 463.162 100.716 4.482

F 91.920 113.792 0.705 324.647 15.080 1.185 885.728 192.604 8.571

P < 0.001 < 0.001 0.514 < 0.001 0.002 0.339 < 0.001 < 0.001 0.005

3 days MS 0.001 0.002 < 0.001 91.469 6.715 0.047 723.992 63.646 16.004

F 487.209 197.843 1.284 162.743 11.947 0.084 370.508 32.571 8.190

P < 0.001 < 0.001 0.312 0.005 < 0.001 0.920 < 0.001 < 0.001 0.006

7 days MS 0.001 0.002 < 0.001 273.568 21.985 1.263 506.541 66.142 7.943

F 169.565 256.020 1.392 285.058 229.201 13.171 893.046 247.185 29.684

P < 0.001 < 0.001 0.286 < 0.001 < 0.001 0.061 < 0.001 < 0.001 < 0.001

14 days MS 0.002 0.002 < 0.001 110.021 29.480 8.092 746.436 53.524 13.136

F 221.616 224.575 83.068 370.898 883.702 462.456 941.324 674.916 165.644

P < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.315 < 0.001 < 0.001 < 0.001

pH: 7.7and 8.1; Nano-ZnO: 0, 2.5 mg L−1 and 10 mg L−1.

According to PCA, 93.27% of total variance was represented
by the two principal components (Figure 2). PC1 accounted for
78.68% of total variance, the distinct response was the separation
between zero concentration and high concentration of nano-
ZnO, where the high levels of most physiological activities were
observed, especially high levels of SFG associated with CR,
O:N and RR under normal pH and 0 nano-ZnO conditions.
PC2 representing 14.59% of total variance, differentiated normal
pH from low pH exposed mussels, showing that high ER was
correlated to low pH treatments.

DISCUSSION

It was reported that pH has a significant effect on the scattering
behavior of ZnO nanoparticles (Bian et al., 2011), and the
physical and chemical properties of nanoparticles can be affected
by low pH value, thus promoting the polymerization behavior
(Huang et al., 2016). The DLS results showed that nano-ZnO

can agglomerate to form larger particles at low pH compared
to pH 8.1. In terms of the feeding characteristics of mussels,
they can ingest more nano-ZnO in the form of aggregation
during acidification conditions, resulting in more accumulation
of nano-ZnO in the body and leading greater biological toxicity.

From the experimental results, the combination of seawater
acidification and nano-ZnO had a direct impact on the
physiology of M. coruscus, and some interactive effects were
observed. It was found that 14-d nano-ZnO exposure led to
significant low CR, RR, AE, SFG, and O: N ratio, but high ER
in the thick shell mussel, while the low pH had less effect on the
mussels compared to high nano-ZnO. According to the existing
research reports, the effect of decreased pH on CR of bivalves
is different. Sui et al. (2016) found that the CR of M. coruscus
was significantly reduced at low pH. Liu and He (2012) found
that low pH resulted in decreased clearance of Chlamys nobilis
and Perna viridis. However, low pH made the CR of the pearl
oyster Pinctada martensi increased while the filtration activities
of the mussel M. galloprovincialis were not affected by the pH
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FIGURE 2 | Biplot originating from principal component analysis integrating all measured variables (CR, AE, RR, ER, O:N, SFG) for four sampling times (days: 1, 3, 7,
and 14) at six different treatments (�-0 mgL−1

× pH 8.1, �–0mgL−1
× pH 7.7, �-2.5 mgL−1

× pH 8.1, ♦-2.5 mgL−1
× pH 7.7 N-10 mgL−1

× pH 8.1,
1-10 mgL−1

× pH 7.7). Both the loadings of the variables (•) and the scores of the experimental conditions were shown.

reduction (Fernández-Reiriz et al., 2012). For NPs effects, nano-
TiO2 exposure reduced CR of M. coruscus (Hu et al., 2017). CR of
M. galloprovincialis increased with nano-CeO2 concentration but
decreased over time in groups exposed to nano-CeO2 (Conway
et al., 2014). In addition, Doyle et al. (2016) found that the
adsorption of nano-TiO2 on the gill surface in mussels and
oysters resulted in sub-lethal effects, causing gill proliferation
and edema and thus affected the respiratory function, damaged
mussel filtration function and food intake. In this experiment, it
was speculated that nano-ZnO damaged the function of gills of
the mussels, thus reducing the CR.

The results showed that the AE of M. coruscus was not affected
by low pH. Navarro et al. (2013) found that low pH significantly
reduced the AE of M. chilensis. However, at low pH conditions,
M. galloprovincialis can show high AE values (Fernández-Reiriz
et al., 2012). It is speculated that the low pH may increase the
activity of certain digestive enzymes of M. galloprovincialis to
promote the nutrient uptake (Areekijseree et al., 2004). From the
above results, it can be seen that the effect of acidification on
the digestion and absorption is different among species. NPs can
enter digestive system and induce oxidative stress and lysosomal
membrane changes in digestive gland of mussels (Canesi et al.,
2012; Hull et al., 2013). Saggese et al. (2016) found a decreasing
AE trend across the silver nanoparticles (AgNPs) concentration
gradient in the mussel Brachidontes pharaonis. In the present
study, high nano-ZnO significantly reduced AE of the mussels,
which may be due to the accumulation of nano-ZnO in the
digestive tube of mussels, causing severe stress responses and
damage to mussel health. It can be inferred that nano-ZnO
has a toxic effect on the digestive physiology of the thick shell
mussel.

pH significantly reduced the RR of the mussels when nano-
ZnO was 10 mgL−1, indicating the negative effect of acidification
on mussels was enhanced under high nano-ZnO. Michaelidis
et al. (2005) pointed out that seawater acidification significantly
decreased the RR of the mussel M. galloprovincialis. Liu and He
(2012) found that the RR of the noble scallop Chlamys nobilis
was significantly reduced at pH 7.4. In contrast, researchers
have pointed out that some species have a certain adaptability
to seawater acidification, thus seawater acidification sometimes
increases the metabolic efficiency in some species, such as the
mussel M. galloprovincialis and the scallop Pecten maximus
(Fernández-Reiriz et al., 2012; Sanders et al., 2013). Throughout
the whole experiment, nano-ZnO always negatively affected the
RR of the mussels. Due to the toxic effects of nano-ZnO on the
gills, the respiration function may be impaired, and ultimately the
RR was decreased. However, Hanna et al. (2013) found that after
12 weeks of exposure to nano-ZnO, RR of mussels increased with
ZnO concentration, indicating that mussels may adapt nano-
ZnO conditions if they were exposed for long term. Muller et al.
(2014) confirmed that nano-ZnO accumulated in tissues could
impair the RR of M. galloprovincialis.

The ER can be used as an ideal indicator of stress in mussels
(Fernández-Reiriz et al., 2011). It is presumed that the stress
response of the mussels to acidification leads to an increase in
ER. In this study, high nano-ZnO and low pH increased the ER
in M. coruscus. There were similar studies made by Thomsen and
Melzner (2010) who pointed out that with the increase in pCO2,
the ER of M. edulis was increased, while Michaelidis et al. (2005)
found the ER of M. galloprovincialis was significantly reduced
under acidic conditions. If the oyster Pinctada mazatlanica was
exposed to high temperature, the majority of feces is amino acid
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catabolism products (Saucedo et al., 2004), indicating an amino
acid catabolism under stress conditions. It was found that higher
ER values under low pH were observed when NPs were present
(Hu et al., 2017). In this study, the increase in ER may indicate a
sharp increase in amino acid catabolism of the mussels exposed
to high nano-ZnO and low pH. Therefore, it can be concluded
that high nano-ZnO and low pH can affect the physiological
metabolism of M. coruscus.

It is known that normal O:N for molluscs usually is higher
than 30 (Fernández-Reiriz et al., 2011). When the amino acid
metabolism increases (lack of food or environmental stress) the
O:N values may be less than 30 (Fernández-Reiriz et al., 2011).
During the whole experiment, O:N ratio was in the range of
4–28, and it was found that the O:N ratio of M. coruscus was
negatively affected by high nano-ZnO and low pH. It is therefore
speculated that high nano-ZnO and low pH can increase the
protein metabolic rate of mussels.

Scope for growth is an important indicator for the impact
of environmental stress on mussel physiology (Navarro et al.,
2013). In the present study, when M. coruscus was exposed
to high nano-ZnO, the SFG value became negative on day
14, which may be due to a significant decrease in CR, since
most of the other parameters measured can be affected by
the reduced filtration activity of mussels and the time spent
on eating or breathing. In addition, high concentration of
nano-ZnO significantly reduced the SFG, showing that nano-
ZnO obviously damage the growth of M. coruscus. There was
a similar study made by Hu et al. (2017) who pointed out
that the NPs could significantly reduce SFG of M. coruscus.
Acidification also resulted in a decreased SFG of the thick shell
mussel at days 7 and 14 when nano-ZnO was 2.5 and 10 mg
L−1. Similarly some studies found that long-term acidification
exposure significantly reduced the growth of M. galloprovincialis
and Crassostrea virginica (Michaelidis et al., 2005; Berge et al.,
2006; Beniash et al., 2010). Navarro et al. (2013) pointed out
that high levels of pCO2 in seawater had a negative impact on
the health of M. galloprovincialis. Duarte et al. (2014) showed
that elevated carbon dioxide concentrations had a negative
effect on calcium deposition and the weight of M. chilensis.
However, Fernández-Reiriz et al. (2011) found acidification
caused elevated SFG of M. galloprovincialis, indicating the
tolerance to acidification is species specific and even different
within species.

The PCA separated non-nano-ZnO treatments from exposed
treatments since non- nano-ZnO treatments were at positive side
whereas exposed treatments were at negative side by PC1. Under
non- nano-ZnO treatments, there are higher values of AE, SFG,

RR, O:N, and CR. PC2 reflected pH change of the experiment,
as high values of ER was positive, corresponding to the low pH
treatments. According to ANOVA and PCA results, the lower
CR, RR, AE, O:N ratio and SFG, and higher ER were associated
with nano-ZnO exposure treatments. In this study, CR, RR, SFG
and O:N ration had positive correlations, if CR, RR and O:N
were reduced, SFG was also reduced (Figure 2). In addition,
higher ER under high nano-ZnO and low pH indicated the low
absorption rate and high protein catabolism, which was harmful
to the growth of mussels.

CONCLUSION

The impact of high nano-ZnO exposure was greater than that of
low pH, the physiological parameters of mussels were affected
more severely by the combined stress of seawater acidification
and high concentration of nano-ZnO, i.e., the low pH enhanced
the toxicity of nano-ZnO to the M. coruscus. The results of this
study provided new insights for future understanding of the effect
of nanomaterials and ocean acidification on marine organisms.
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