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Knowledge of infectious diseases now emerging from genomic, proteomic, epidemiological and clinical

data can provide insights into the mechanisms of immune function, disease pathogenesis and

epidemiology. Here, we describe how considerable advances in computational methods of data mining,

mathematical modeling in epidemiology and simulation have been used to enhance our understanding

of infectious agents and discuss their impact on the discovery of new therapeutics and controlling their

spread.
Introduction
Epidemics, pandemics and outbreaks of infectious diseases have

occurred throughout human history. In ancient times, the Athe-

nian plague of 430–427 BC reportedly killed up to one-half of the

population of Athens, the Justinian plague of 541–542 AD resulted

in more than 100 million deaths, and the Black Death between

1348 and 1350 accounted for more than 100 million deaths.

Worldwide, changes in socioeconomic, demographic and envir-

onmental factors have led to the resurgence of old and new

infectious diseases. Over the past few decades, the world has

witnessed not only the increasing problem of drug-resistant patho-

gens in diseases such as malaria and tuberculosis but also the

emergence of new pathogens. These include the rotavirus in

1973, human immunodeficiency virus (HIV) in 1981, hepatitis

C virus in 1989, hantavirus in 1993 and the severe acute respira-

tory syndrome coronavirus (SARS-CoV) in 2002. The re-emergence

of epidemic chikungunya virus (CHIKV), previously known to be a

benign disease, in Africa, the Indian Ocean, South-East Asia and

the Pacific in the past decade has caused severe morbidity with

some fatalities. More recently, in April 2009, the triple reassortant

influenza A (H1N1) viruses, which contain genes from human,

swine and avian influenza A viruses, appeared and have spread to

more than 212 countries and overseas territories or communities,

causing more than 15,921 deaths over the course of one year.
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From the earliest times, human has striven to understand the

behaviors of infectious organisms and the mechanisms governing

disease transmission. This goal has profoundly shaped modern

knowledge of emerging and re-emerging infections. More

recently, computational techniques have led the way to a new

era by enabling rapid large-scale analyses of pathogens that were

not possible using traditional experimental techniques. Here, we

survey methods in mathematical modeling in epidemiology, com-

putational biology and bioinformatics that have been used to

study infectious diseases and discuss how these works have been

translated into benefits for humankind, particularly in molecular

epidemiology and in the design of novel therapeutics.

Mathematical models for understanding disease
epidemiology
Mathematical models are now routinely used for studying the

spread and control of infectious diseases. The history of mathe-

matical epidemiology could be traced to 1760, when Daniel Ber-

noulli formulated a model to evaluate the effectiveness of

variolation of healthy people with the smallpox virus [1]. It was

not until the start of the 20th century, however, that mathema-

tical models were applied to the study of the transmission patterns

of infectious diseases. They were first used to understand the

recurrence of measle epidemics [2] and the incidence and control

of malaria [3]. Since then, epidemiology modeling has grown

rapidly, fueled by the advent of specialized databases (Table 1)

focusing on pathogens and their genes [4]. Some of these methods
/$ - see front matter � 2010 Published by Elsevier Ltd. doi:10.1016/j.drudis.2010.10.007
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TABLE 1

Bioinformatic resource centers for infectious disease research

Resource Description Web URL

Immune Epitope Database Comprehensive repository of MHC-binding peptides, T-cell

epitope and B-cell epitope data.

http://www.immuneepitope.org/

The International ImMunoGeneTics

information system (IMGT)

Highly integrated resource for sequence, structural and genetic

information on immune regulators across multiple species.

http://www.imgt.cines.fr/

The Innate Immune Database (IIDB) Resource for facilitating gene-specific and systems biology
oriented research. Enables integrative analysis of individual

immune-active genes or the entire genomic locus.

http://www.db.systemsbiology.net/IIDB

Immunological Database and

Analysis Portal (ImmPort)

Portal for accessing references and experiment data for

immunologists. Supports production, analysis, archiving
and exchange of scientific data.

https://www.immport.org

SYFPEITHI Database of experimentally verified MHC-binding peptides. http://www.syfpeithi.de/

MHCBN Extensive repository of MHC-binding and non-binding peptides. http://www.imtech.res.in/raghava/mhcbn/

AntiJen Database containing quantitative binding data for

peptides binding to MHC peptides, T-cell epitopes,
transporter associated with antigen processing (TAP),

B-cell epitopes and protein–protein interactions.

http://www.darrenflower.info/antijen/

Bcipep Extensive repository of B-cell epitopes. http://www.imtech.res.in/raghava/bcipep/

AntigenDB Comprehensive information about a wide range of

experimentally-validated antigens cross-linked
to epitope data.

http://www.imtech.res.in/raghava/antigendb/

HIV Molecular Immunology

Database

HIV-1 cytotoxic and helper T-cell epitopes and

antibody-binding sites.

http://www.hiv.lanl.gov/content/immunology/
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had been incorporated into successful environmental manage-

ment programs [5], some in the development of intervention

measures and containment strategies [6], some in the design of

new therapeutic agents [7], and others in the planning of experi-

ments and hypotheses testing [8].

Quantifying disease in an emerging epidemic
Several statistical measures are used frequently to quantify disease

in populations and to facilitate disease management (Table 2). One

such measure is the incidence of disease, defining the rate at which

new cases occur in a population at risk during a specified time

period. Because in reality the population at risk is constantly

changing because of births, deaths and migrations, this measure
TABLE 2

Some commonly used measures for quantifying disease in
population

Measure Formulas

Incidence of

disease

Occurrence of new cases within a population at risk

Specified period of time

Prevalence of
disease

Number of infected people within a population

Specified point of time

Case fatality rate Number of deaths within a population with

a particular condition

Specified period of time

Clinical attack rate Number of infected people with symptoms of disease

Total number of infected people

Relative risk Probability of event occurring in exposed group

Probability of event occurring in a

non-exposed group
might not be a good reflection of the true incidence of disease. One

way to solve this is to relate the number of new cases to the person

years at risk, which is computed by summing the time during

which each individual member of the population is at risk during

the measurement period. Another commonly used measure is the

prevalence of disease, which is the proportion of the infected in a

population at a given point of time. This is often used as an

alternative to incidence in cases in which the sample size is small.

For diseases with high mortality rates, researchers will be inter-

ested in calculating the case fatality rate (CFR) [9]. This is the

proportion of infected patients dying from a certain disease during

a specified period. For instance, an epidemiological investigation

on 1425 patients with SARS-CoV infection in Hong Kong reported

up to 28 April 2003 estimated that the CFR was 13.2% for patients

younger than 60 years and 43.4% for patients aged 60 years or

older [10]. It is used to link mortality to morbidity and can help to

measure various aspects or properties of a disease, such as its

pathogenicity, severity or virulence. Another important factor

that researchers and clinicians are interested in is the clinical

attack rate, which is the proportion of infected patients with

symptoms of the disease [9]. It was estimated that the median

clinical attack rate for the 1889 Russian flu pandemic was 60%, and

the CFR ranged from 0.1% to 0.28% [9]. Other statistical measures

exist and have been reviewed elsewhere [11].

Modeling the spatial spread of pathogens
Understanding how a disease is transmitted from one person to the

next or spread in a population is important for assessing the risk of

infection, for contact tracing and for building a contingency plan

to contain the outbreak. Air travel can play an important part in

the spread of infectious disease. The transmissions of Mycobacter-

ium tuberculosis, SARS-CoV and influenza A virus within the
www.drugdiscoverytoday.com 43
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confined space of airplane cabins have been well documented [12].

Computational analysis on inter-regional influenza spread in the

USA from 1996 to 2005 has shown that international air travel

might affect the onset of disease outbreak [13]. Crépey and Barthél-

emy [14] have studied the epidemic patterns of seasonal influenza

outbreaks in the USA from 1972 to 2002. The team concluded that

air travel flow during this period of time was sufficient to propagate

an epidemic throughout the USA and suggested that realistic

modeling of the spread of epidemics at the interstate level might

only need to take air transportation into account. Yet history has

shown that air travel restrictions would have a limited, if any,

effect on an outbreak. The 1889 Russian flu pandemic had spread

across all of Europe and the USA within four months, despite

slower surface travel and much smaller traveler flows. Mathema-

tical modeling has now made it possible for us to compute the

speed of disease transmission, as shown recently by Valleron et al.

[9], which was estimated at the rate of 394 (�255) km/week in

Europe and 1015 (�727) km/week in the USA. Several computer

simulation experiments on the spread of pandemic influenza have

also concluded that air travel restrictions would have limited

impact compared with local control measures [15]. An explanation

for this might be that the speed of a pandemic is not dependent on

the passenger flows between cities but the degree of connectedness

of a city network [15]. Attempts are also being made to analyze

how a disease spreads within an urban environment [16], quantify

the relative importance of different modes of transportation on

the regional spread of influenza epidemics [15], and evaluate

[()TD$FIG]

FIGURE 1

Sequence conservation of the 2009 influenza A (H1N1) virus. Influenza A is an enve

encoding for 11 proteins: hemagglutinin (HA), nucleocapsid protein (NP), neuramini

protein (PA), polymerase basic protein (PB) 1, PB1-F2 and PB2. When two influenz

offspring lineages that contain segments from both parental strains in a process kn
2009 triple reassortant influenza A (H1N1) virus, which contain gene segments from

shown. Multiple sequence alignment was performed using ClustalX, on 41 012 no

44 www.drugdiscoverytoday.com
intervention strategies such as isolation, household quarantine,

school or workplace closure, travel restrictions and mass screening

at key control nodes including sea ports and airports [17,18].

Analyzing genetic variability
Similarity between related sequences can give clues to the struc-

ture, function or homology to the common ancestor [19]. Com-

putational methods that can align sequence features, therefore, are

particularly useful. Multiple sequence alignment methods orga-

nize the sequences of DNA, RNA or protein to identify regions of

similarity that might help explain functional and/or phenotypic

variability. The 2009 H1N1 flu was not the first human pandemic

caused by influenza A viruses. It shares common ancestry with the

1889 Russian flu that killed approximately 1 million people, the

1918 Spanish flu that reportedly affected approximately 25% of

the global population and killed at least 50 million people world-

wide, the 1957 Asian flu that resulted in approximately 2 million

deaths, and the 1968 Hong Kong flu that caused approximately 1

million deaths. In cases in which ancestry is unclear, multiple

sequence alignment methods have been useful for inferring their

phylogenetic relationships (Fig. 1). This includes not only identi-

fying globally optimal alignment solutions for studying highly

conserved sequences but also identifying maximally homologous

subsequences among sets of long sequences for detecting distantly

related proteins. By applying phylogenetic analysis to rapidly

evolving viruses such as HIV, Bhattacharya et al. [20] have shown

that viral escape effects instead of immune escape often explain
loped virus that contains eight segments of negative-stranded RNA genome,

dase (NA), matrix protein (M), non-structural protein (NS) 1, NS2, polymerase A

a viruses co-infect the same cell, they could swap genes and produce new

own as reassortment. Here, the sequence homology between proteins of the
human, swine and avian influenza A viruses, and their closest ancestors are

n-redundant influenza A sequences extracted from GenBank and SwissProt.
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apparent human leukocyte antigen (HLA)-mediated immune-

escape mutations defined by older analysis methods.

A related concept is the use of information theory to quantify

variability in the pathogens’ sequences. Theoretical statistics, such

as information entropy [21], measure the rate of information

transfer in biological sequences. We used this method recently

to analyze CHIKV proteomes from its introduction in 1952–2009,

and the results indicate that large amounts of ‘antigenic switches’

(i.e. changes in gene expression at a specific site, which might

abrogate binding to HLA molecules or interfere with T-cell

response, leading to cellular immune evasion) were clustered over

the CHIKV genome [22]. There are also several attempts to identify

amino acid residues that are likely to be involved in virus adapta-

tion, for example, by finding interdependencies between muta-

tions in multiple proteins. Miotto et al. [23] applied mutual

information, an information theoretical statistic that measures

the strength of association between a pair of variables, to identify

characteristic sites in influenza A proteins where human isolates

present conserved mutations. A catalogue of 68 characteristic sites

in eight internal proteins was created from 92,343 sequences and

used to derive adaptive signatures of influenza A proteomes.

A novel development in sequence analysis that has evolved

recently is spatio-temporal analysis of infectious disease evolution.

Typically, sequence analysis is performed on a collection of bio-

logical sequences that are assumed to share an evolutionary rela-

tionship. However, the flood of publicly available and newly

generated pathogen sequences annotated with host organism,

time of isolation and country of origin have opened up the

possibility of incorporating these parameters in the study of

microbial pathogen evolution. Sheng et al. [24] have recently

shown how geographical and time information in public biolo-

gical databases could be integrated with pattern-mining algo-

rithms to study antigenic changes in influenza A viruses. The

likelihood of one virus being able to mutate into another form

is dependent on whether they exist within a certain time period,

the connectivity between the locations where they were collected

and their sequence similarity. The method was used to trace the

evolution trajectory of H5N1, H1N1 and H3N2 subtypes in Asia,

the USA and Europe at different time points. Attempts to unify the

epidemiological and evolutionary processes that drive spatio-tem-

poral incidence and phylogenetic patterns at different scales have

also been reported. For instance, Grenfell et al. [25] introduced a

phylodynamic framework to study how pathogen genetic varia-

tion – modulated by host immunity, transmission bottlenecks and

epidemic dynamics – affects the diversity of epidemiological and

phylogenetic patterns in measles, influenza A viruses, HIV, dengue

and hepatitis C virus.

Detecting natural selection in molecular evolution
The epidemic behavior of the pathogen could be qualitatively

examined by analyzing evolutionary inertia within a focal popula-

tion [26]. One approach is to estimate natural selection for nucleo-

tide usage at single amino acid sites [27,28]. Because of degeneracy

of the genetic code, some point mutations are silent with no

amino acid replacements. The neutral theory of molecular evolu-

tion, first introduced by Kimura in 1968 [29], states that most

nucleotide substitutions are selectively neutral and are fixed by

random genetic drift. Because synonymous (silent) substitutions
are primarily transparent to natural selection, whereas non-synon-

ymous (replacement) substitutions might be due to strong selec-

tive pressure, comparing the fixation rates between non-

synonymous (dN) and synonymous (dS) substitutions can help

to assess the extent of adaptive evolution at highly variable genetic

loci [30].

The dN:dS ratio (v), otherwise known as the ‘acceptance rate’,

provides a sensitive measure of selection pressure at the amino acid

level [31]. v = 1 indicates neutral expectation, v < 1 suggests

negative (purifying) selection, and v > 1 suggests positive (diver-

sifying) selection. A group of genes that often show the v > 1

relationship are antigenic genes in HIV-1, plasmodia and other

parasites [30]. Using a ‘relaxed-clock’ phylogenetic model to esti-

mate absolute rates of synonymous and non-synonymous substi-

tution through time, Lemey et al. [32] showed that disease

progression among patients is predicted by synonymous substitu-

tion rates, whereas non-synonymous rates evolve within patients

as a consequence of changing antibody selective pressure. The

hemagglutinin gene from the influenza A virus is probably one of

the fastest evolving genes in terms of the rate of nucleotide

substitution, which was estimated at 5.7 � 10�3 per site per year

[33]. These genes are highly variable so as to enhance the patho-

gen’s ability to evade host defenses.

The simple counting method of Nei and Gojobori [34] is often

used for estimating dN and dS; however, the reliability of this

approach is low when the rate of transitional nucleotide change

is higher than that of transversional change. Model-based max-

imum likelihood methods, such as those proposed by Muse and

Gaut [35] and Goldman and Yang [36], are a viable and widely used

alternative for this purpose. The original maximum likelihood

model of Goldman and Yang [36] assumes a single v for all lineages

and sites and has been extended to account for variation by

allowing v to vary across lineages [37], among substitution sites

[35] or both among sites and among lineages [38]. Lineage-specific

models assume that v values do not vary among sites and can

detect positive selection for a lineage only if the averaged dN over

all sites is greater than the average dS. Site-specific models, con-

versely, allow v to vary among sites but not among lineages. As

such, these models can detect positive selection at individual sites

only if the averaged dN over all lineages is greater than the average

dS. By allowing v to vary both among sites and among lineages, the

extended Goldman and Yang model could be applied to detecting

positive selection that occurred at multiple time points and affects

multiple sites.

Deciphering host–pathogen interactions for
therapeutic designs
Pathogenesis is a multi-step process in which there is continuous

cross-talk between invading pathogens and their human host [39].

The ability of invasive parasites to infiltrate the mammalian host

requires cell surface contact with host target molecules. Such

interaction can take place through specific receptor-mediated

mechanisms that could lead to the lysis of host target cells or

substrates. The immune system comes into play once a pathogen

infiltrates and infects the host using a layered defense mechanism

of increasing specificity. This can take the form of innate and/or

adaptive immunity through an array of immune receptors includ-

ing mast cells, phagocytes, basophils, natural killer cells, and T
www.drugdiscoverytoday.com 45
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FIGURE 2

Example of PPI sub-networks that might be activated during CHIKV infection, predicted using a support vector machine model. The support vector machine
system was trained using 2075 genes and 12,822 PPIs derived from BIOgrid, KEGG, Netpath, MINT, DIP, InAct, Reactome, Ambion and SABiosciences. Cluster A is

implicated in the inflammatory response, clusters B and E in the NF-kB pathway, cluster C in the regulation of ubiquitin–protein ligase activity, cluster D in the

cytokine and chemokine signaling pathway, and cluster F in the JAK-STAT cascade. Mediator factors linking these clusters include IL8 (in cluster A); NF-kBIA (in

cluster B); TRAF2 (in cluster C); IL6ST, JAK1 and JAK3 (in cluster D); TRAF6 (in cluster D); and IFNa and STAT2 (in cluster F).
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cells and B cells. Computational methods, such as support vector

machines, that predict protein–protein interactions (PPIs) and PPI

networks, therefore, are useful not only for identifying effector

proteins associated with host infection but also for discovering

host immune molecules that are involved in the clearance of

pathogen (Fig. 2).

The identification of novel interactions between Plasmodium

falciparum and human proteins was recently reported by Dyer et al.

[40]. P. falciparum is one of four distinct species of the malaria

parasite that infect humans. The parasite is responsible for at least

250 million infections and 1 million deaths each year. Using

Bayesian statistics, the team identified 516 P. falciparum–human

protein interactions and several functionally enriched sub-net-

works that could serve as the starting point for therapeutic devel-
46 www.drugdiscoverytoday.com
opment. The role of NF-kB in regulating gene expression has been

analyzed by Shelest et al. [41] using Pseudomonas aeruginosa as a

model organism. 13,000 genes were screened using weighted

matrices, and 135 potential new target genes were identified.

Attempts have also been made to simulate the human immune

system at the system level. A good example of this is the EU-funded

ImmunoGrid project, which aims to develop a virtual human

immune system that reflects both the diversity and the relative

proportions of its constituent molecules and cells [42].

Computer-aided drug design
Antiviral drugs could, in essence, target either cellular proteins or

viral proteins [43]. Drugs that target cellular proteins could be

active against a spectrum of unrelated viruses because many of the
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Infer functional and evolutionary
relationships between sequences
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FIGURE 3

Example roadmap for a structure-based virtual screening campaign. A structure-based screening campaign usually comprises the following steps: (i) target selection,

(ii) library preparation, (iii) stereochemical quality assessment, (iv) computational modeling, (v) ADME/Tox assessment and (vi) computational optimization.

R
ev
ie
w
s
�
IN
F
O
R
M
A
T
IC
S

same cellular proteins are used by different viruses for replication.

Such compounds might have less possibility of resistance devel-

opment but might lead to an increased risk of toxicity. By contrast,

drugs that target viral proteins are likely to be more specific and

less toxic in nature but with a narrower spectrum of action and

higher likelihood of viral drug resistance. The life cycle of a typical

virus consists of several stages, from virus attachment to the host

cell to the release of the progeny virions from the cell. As such, one

could target specific processes in viral infection including virus

attachment, uncoating, viral RNA replication, and viral protein

synthesis and processing.

The use of structure-guided design methods is important for

identifying and selecting protein targets, as well as for identifying

hits and screening fragments [44] (Fig. 3). The discovery of novel

natural inhibitors for human rhinovirus (HRV) coat protein using

a structure-guided search method was described by Rollinger et al.

[45]. HRVs are small, non-enveloped, single-stranded RNA enter-

oviruses belonging to the Picornaviridae family. The viral capsid

protein contains a hydrophobic pocket occupied by a pocket

factor. Displacing this pocket factor with small antiviral com-

pounds could trigger conformational changes in the capsid pro-

tein, which prevent the virus from uncoating and/or attaching to

the cell surfaces. A structure-guided search, based on features

characteristic for ligand binding in the hydrophobic pocket, was

performed on a database of 9676 plant metabolites endowed with

antiviral activity. The strategy eventually led to the discovery of

asafetida and its constituent compounds, which have selective

inhibitory activity against HRV serotype 2. Other structure-guided

lead discovery initiatives targeting viral proteins have also been

reported, including those against dengue virus envelope protein

[46], HIV type 1 integrase [47] and hepatitis C virus RNA-depen-

dent RNA polymerase [48].

Computer-aided vaccine design
Selecting antigens that could induce effective protective response

is difficult because of the combinatorial nature of the human
immune system. A large repertoire of immunoglobulins and T-

cell receptors is known to exist, generated by mechanisms such as

the combinatorial diversity of the variable, diversity and joining

genes, the N-diversity, and for immunoglobulins, the somatic

hypermutations [49,50]. More than 4600 HLA alleles have been

reported to date, and because a fully heterogeneous person can

inherit up to six different HLA class I alleles and an equal number

of class II alleles, the theoretical number of HLA haplotypes is

greater than 1012. In addition, the number of T-cell epitope

candidates is more than 1011, and many more B-cell epitope

candidates are known to exist.

In the early days, vaccines were primarily developed using dead

or weakened forms of pathogens. More recently, over the past two

decades, advances in information technologies have provided the

basis for systematic discovery of immunogenic epitopes for sub-

unit or peptide-based vaccine design [51,52]. Much emphasis has

been placed on computationally identifying evolutionarily con-

served amino acid sequences on pathogen proteomes, which are

immunologically relevant as potential T-cell epitopes [53]. Such

epitopes could offer broader protection across diverse subtypes and

are particularly useful against pathogens with pandemic potential,

such as the influenza A virus [54]. Another approach is to identify

‘promiscuous’ peptides that could bind to a wide repertoire of HLA

molecules [55]. By making sure that the most frequent HLA

molecules will bind to at least one of the peptides in the vaccine

cocktail, this method enables the design of broad-based peptide

vaccines with improved population coverage. Halling-Brown et al.

[56] have shown that vaccine antigens contain fewer predicted

HLA-binding peptides that control bacterial proteins in most

subcellular locations. A third strategy would thus be to identify

a protein that contains a single immuno-dominant epitope.

Much effort has also been devoted to developing tools that can

help identify B-cell epitopes on antigen sequences. B-cell epitopes

can be either linear or conformational in nature [49]. Although

only 10% of B-cell epitopes are linear, they have been the subject of

intense interest in recent years because they are considered easier
www.drugdiscoverytoday.com 47
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to design than their conformational counterparts [57]. In silico

screens of small-molecule chemokine antagonists have also been

reported [58] and used for the discovery of vaccine adjuvants

augmenting human T-cell proliferation.

Concluding remarks
Here, we have discussed ways in which mathematical modeling in

epidemiology, computational biology and bioinformatics has

been used to better our understanding of infectious agents.

Although the first mathematical model in epidemiology was

reported in 1760, it took one and a half centuries for deterministic

epidemiology to take off and a further century before it was widely

embraced [59]. With the rapid growth in the variety of analytic
48 www.drugdiscoverytoday.com
tools and the increasing availability of large volumes of genomic,

functional, clinical and epidemiological data in scientific litera-

ture, public databases and clinical records, we are now in the midst

of a golden era of infectious disease research. One important

challenge will be how to integrate the methods of various tech-

nology advances and make sense of the data generated using these

techniques. In the next few years, it is expected that more sophis-

ticated methods will emerge to enable integrated data analysis and

higher level experimental design. This will not only enhance our

understanding of the molecular biology and pathogenesis of

infectious diseases but also enable the design of next-generation

diagnostics and therapeutics and new control strategies to contain

their spread.
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