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Abstract: The impact of the still ongoing “Coronavirus Disease 2019” (COVID-19) pandemic has been
and is still vast, affecting not only global human health and stretching healthcare facilities, but also
profoundly disrupting societal and economic systems worldwide. The nature of the way the virus
spreads causes cases to come in further recurring waves. This is due a complex array of biological,
societal and environmental factors, including the novel nature of the emerging pathogen. Other
parameters explaining the epidemic trend consisting of recurring waves are logistic-organizational
challenges in the implementation of the vaccine roll-out, scarcity of doses and human resources,
seasonality, meteorological drivers, and community heterogeneity, as well as cycles of strengthening
and easing/lifting of the mitigation interventions. Therefore, it is crucial to be able to have an early
alert system to identify when another wave of cases is about to occur. The availability of a variety
of newly developed indicators allows for the exploration of multi-feature prediction models for
case data. Ten indicators were selected as features for our prediction model. The model chosen is a
Recurrent Neural Network with Long Short-Term Memory. This paper documents the development
of an early alert/detection system that functions by predicting future daily confirmed cases based on
a series of features that include mobility and stringency indices, and epidemiological parameters.
The model is trained on the intermittent period in between the first and the second wave, in all of the
South African provinces.

Keywords: COVID-19; South Africa; early detection; crisis management; daily case prediction;
Recurrent Neural Network with Long Short-Term Memory
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1. Introduction

The first “Coronavirus Disease 2019” (COVID-19) cases were discovered from an initial
cluster of pneumonia of unknown etiology in the metropolitan city of Wuhan, province
of Hubei, mainland China, in late December 2019 [1]. It is caused by an infectious agent
known as “Severe Acute Respiratory Syndrome-related Coronavirus type 2” (SARS-CoV-2),
the contraction of which results in a generally mild or even asymptomatic infection, that can,
in a fraction of patients, evolve into a serious, life-threatening communicable disease [2].
The impact of the still ongoing pandemic has been and is still vast, affecting not only global
human health and stretching healthcare facilities, but also profoundly disrupting societal
and economic systems worldwide [3].

The nature of the way the virus spreads causes cases to come in further recurring
waves. This is due a complex array of biological, societal and environmental factors,
including the novel nature of the emerging pathogen, for which there was no community
cross-protective immunity, with the population being substantially naive to the virus [4].
Thanks to unprecedented global efforts and co-operations, several candidate vaccines
have been developed, tested and some of them have been finally approved [5]. However,
despite excellent efficacy and safety profiles, there is still uncertainty about the length of the
protection conferred by approved vaccines [6] and, moreover, the immunization campaigns
in different countries are still lagging behind, facing organizational difficulties and scarcity
of doses as well as of human resources [7]. Other determinants of the epidemic trends
of the COVID-19 pandemic include seasonal factors [8], and meteorological drivers [9],
as well as community heterogeneity and complex, highly heterogeneous social networks,
with phenomena such as over-dispersion, super-spreading events, super-spreaders [10]
and behavioral changes at the population level [11]. All these variables, and especially the
behavioral ones [12], make the COVID-19 transmission dynamics particularly uneven and
recurring, by challenging the full attainment of the herd immunity, with only a transient,
waning collective immunity being achieved [12].

Further, the public health measures implemented and enforced by the country authori-
ties, known as Non-pharmaceutical Interventions (NPIs), are not sustainable and acceptable
by the populations for long periods, resulting into “cyclical lock-downs” [13] based on
data-driven escalating/de-escalating, shutting down/re-opening strategies. These cycles
of strengthening and easing/lifting of the mitigation interventions are among the factors
contributing to the recurring nature of the ongoing COVID-19 pandemic [13].

Given such a cyclical nature of the COVID-19 outbreak, it is, therefore, crucial to
have an early alert system to identify when another wave of cases is about to occur,
especially considering that COVID-19 could become a recurrent seasonal infection [14].
The availability of a variety of newly developed indicators allows for the exploration of
multi-feature prediction models for COVID-19 case data. Ten indicators were selected
as features for our prediction model. The model chosen is a Recurrent Neural Network
(RNN) with Long Short-Term Memory (LSTM). RNNs with LSTM are known to be good
time-series predictive models, especially for multi-feature model architectures that require
a memory component without the vanishing gradient pitfalls of a normal RNN [15].

This paper documents the development of an early alert/detection system that func-
tions by predicting future daily confirmed cases based on a series of features that include
mobility and stringency indices, and epidemiological parameters, exploiting Big Data and
Artificial Intelligence. The model is trained on the intermittent period in between the first
and the second wave, in all of the South African provinces. The COVID-19 case prediction
parameter chosen was the daily change in cases, dTCt. The chosen model was trained on
data in the interim period between two COVID-19 case peaks. This caused the system to
be able to predict daily cases accurately during the interim period; however, when there is
a COVID-19 case peak, the system is unable to recognise the behaviour of the features in
relation to the prediction parameter dTCt. We have taken advantage of the pitfall of the
model to predict the daily cases as soon as a peak is reached, in order to develop the early
detection system. A warning was created to notify the government and general public
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when the relative difference formula of the actual versus predicted daily cases exceeds
the province specific threshold value for the relative difference, computed as Risk Index
Metric (RIM).

Using real-world data from in between the first and second waves to calibrate the
model and using the second peaks data as verification of the correct functioning of the
model, the system was able to accurately identify and confirm the beginning of the second
wave. All provinces in South Africa were used to verify that the earlier detection system
functions to identify the beginning of the second wave. The model is now being used for
surveillance of the third wave in South Africa.

2. Materials and Methods
2.1. Description of Features (Data)

The following section will provide a brief overview of the various indicators that were
used as features for the RNN with LSTM model.

2.1.1. Mobility Indicators

Since the beginning of the COVID-19 pandemic, Google and Facebook have produced
mobility reports that include different types of mobility indicators as a measure to under-
stand the consequence of implemented regulations and NPIs on the public movement and
social interactions. These indicators can be used as valuable inputs to the model. Each
of the mobility reports includes different types of mobility indicators that are developed
using different methodologies.

Table 1 contains details on all the mobility indicators used in our model as features:

Table 1. Mobility Indicators.

Description Indicators

Google Mobility Retail and Recreation
Grocery and Pharmacy
Parks
Transit Stations
Workplaces
Residential

Facebook Mobility Tiles visited relative change
Stay in place

The Google Mobility Report data is useful for understanding the geo-spatial move-
ment of people during the pandemic [16]. Movement trends of people over time and over
different categories of places are tracked. The report contains three location categories. The
categories are titled: ‘retail & recreation’; ‘groceries & pharmacies’; ‘parks’, ‘transit stations’;
‘workplaces’ and ‘residential’. These indicators are a valuable resource for understanding
how people interact with different types of locations. All of the Google mobility indicators
have the same overall trend with minor difference except the residential which has an
almost opposite behaviour due to the increase of people staying in their homes as a result
of the pandemic.

The Facebook movement data sets were developed to assist researchers and pub-
lic health experts in monitoring and tracking how populations are responding to so-
cial/physical distancing measures [17]. The Facebook mobility report contains two com-
plementary indicators to describe changes in movement over time: namely, ‘Change in
Movement’ and ‘Stay Put’. Each of the indicators provides different perspectives on move-
ment trends. The Facebook mobility report methodology divides geographical areas up
into equal area tiles. The ‘Change in Movement” indicator measures the number of tiles
people are visiting in a day in a specific region with respect to a baseline defined as the
average number of tiles visited daily in the month of February 2020. The ‘Stay Put’ indicator
conversely measures how many people are staying within a single tile area for the whole
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day compared to the February baseline. People who use Facebook on a mobile device have
the choice of providing their precise location. Movement Range Trends are produced by
aggregating this data.

2.1.2. Stringency Indicators

Another valuable type of indicator to be considered as a feature for the model is a
policy stringency indicator. There are a number of stringency indicators that have been
developed as indications of the level or strictness of implemented regulation in a specific
country or region. Arguably the most comprehensive stringency indicator that has been
developed is the Oxford COVID-19 Government Response Tracker (OxCGRT stringency
index) [18]. The OXCGRT Stringency index is made up of a number of NPI containment
and closure policy indicators which are scored, summed up and then averaged to achieve
the final stringency value for any given day. Details on each of the chosen containment
indicators and their coding can be seen in the OXCGRT code book.

2.1.3. Epidemiological Parameters

The specific epidemiological parameter used as the prediction parameter in this
research is the number of new daily COVID-19 cases.

2.2. Data Preprocessing

The data preprocessing required for the system can be divided into two separate
sections: the primary and secondary data preprocessing. The primary data preprocessing
consists of the conversion of the multiple different data sources (COVID-19 case data,
Facebook mobility, Google mobility and OxCGRT) from their stock format (long format)
into time-series format so that each variable that will be used as a feature exists in its own
column in a final time-series data-frame. The secondary data preprocessing involves feature
scaling and finally the re-framing of the multivariate time series into a supervised learning
data-set that incorporates the selected window size chosen. The supervised learning data
format created contains new columns that represent the variables from previous time steps.
The value of the chosen window size determines how many new columns will be created
for each specific feature. For example, if the window size is three, three new columns will
be created for each variable. The first new column will contain the data from the original
column shifted one time-step down, and the second added column will contain the original
data shifted twice and so on. This is to incorporate the ability of the LSTM RNN to observe
previous values of features when predicting the new value of a chosen feature.

2.3. Research Methodology

The aim of the present research is to develop a functional alert system for an additional
wave of COVID-19 cases in a specific region. The regions used for the research are all
the provinces of South Africa. The approach is to do time-series prediction of a chosen
epidemiological parameter based on a collection of mobility, stringency parameters and
epidemiological parameters.

This research used a confirmatory approach, where the objective was to find out if
the idea was supported by the data. The data from the second wave of COVID-19 cases in
South Africa was used to verify the model.

The chosen prediction model is a RNN with LSTM. This model architecture allows for
multi-feature and multi-step predictions. Though standard RNNs are often used in time
series prediction, the standard architecture suffers from the problem of vanishing gradients,
which hinders the learning of long period relationships and patterns in data sequences.
RNNs with LSTM solve the issue by deliberately adding long-term memory [19,20]. RNNs
with LSTM have two memory cells, one for long-term memory and another for short-term
memory to solve the problem. The equations below describe the LSTM RNN block. C; is
responsible for long-term memory and k; for short-term memory. The introduction of the
Forget gate vector, proposed by Felix A. Gers et al. in 1999, has also improved the accuracy
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of the prediction by allowing the adjustment of long-term memory [21]. More in detail, the
Forget gate vector, f;, controls how much information is discarded from long-term memory,
Ci_1. The new long-term memory cell, C;, is created by adding information from the input
gate vector, i;, and the new short-term memory cell, /; is decided by the output vector, o¢
and the long-term memory, C; (Figures 1-3).

Yi Yz Yt-1 Yt Yr-1 Yr
L1 [ 1 [ 1
h h!—i h! h’r—: h'r
L RNN RNN - } eee 5! RNN
block | blnck b]nck hlnck blnck block

ST

-
-

Time

Figure 1. Recurrent Neural Network (RNN) structure.

hes ﬁhH
T hex he

Figure 2. Details of the Simple Recurrent Neural Network (RNN) Block.

o 0
I I @

tanh

sigmot

he

X

Figure 3. Details of the Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) Block.

fr = o(Wg-[heq, xe] + by) 1
iv = o(Wi-[hi—1,xt] +b;) 2
ét = tanh(We - [hy—1,x¢] + bc) 3)
C = fiOCa+i0C (4)
0y = U'(Wo . [ht_1,xt] + bo) (5)
ht = 0t ©® tanh(Ct) (6)

where © represents the Hadamard product.
The main constraints related to the formation of an early detection algorithm are
related to the availability of mobility and epidemiological data. The Google and Facebook
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mobility reports are available every Sunday with week-old data. This must be taken into
consideration when developing the functioning of the alert system.

The model was trained on data from the interim period between the first and second
COVID-19 case waves experienced in South Africa. This provided the model with the
ability to predict daily cases accurately during the interim period; however, when there
is a COVID-19 case peak, the system is unable to recognise the behaviour of the features
in relation to the prediction parameter dTCt. The pitfall of the model to predict the daily
cases during a peak, has been taken advantage of to develop the early detection system.
Figure 4 shows the total period applicable for training of the model in between peak one
and peak two for the Gauteng province.

” m M\r\/\/\'\lx\w
. -~ |

dTCt

GM_1

2020-06 2020-07 2020-08 2020-09 2020-10 2020-11 2020-12 2021-01 2021-02 2021-03

Figure 4. Appropriate test-train period for Gauteng Province, South Africa.
A schematic of the neural network architecture can be found in Appendix A.

2.3.1. Model Outputs

The output of the trained RNN model with LSTM is a 14-day prediction of new daily
cases, dT'Ct. The first date of the 14-day prediction is a Monday. This Monday corresponds
to 6 days earlier than the actual date that the model is run, this is due to the external
constraints of data availability from each source. This means that the prediction will run
only 7 days into the future from the date the prediction is done.

A secondary output of the model that can be obtained daily is the relative differ-
ence between the prediction and the actual recorded value. The formula for the relative

difference is: (dTC dTCtp)
. tA— tp
Rp = dTCtp @
where dTCt 4 = Daily change in actual total cases and dTCtp = Daily change in predicted

total cases.
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The relative difference is the chosen RIM for an alert of an additional COVID-19
case wave.

In accordance with data availability, the re-calibration of the model and the 14-day
dTCt prediction is done every Sunday, producing prediction values for the dates from the
Monday before to the Monday after. It is important to note that when the alert system
functions as a surveillance system for the third wave, the second peak is removed from the
training data of the model.

2.3.2. Hyper-Parameter Optimization

In order to further refine the functioning of the model to identify an additional case
wave, the hyper-parameters of the LSTM RNN were optimised using a manual optimisation
method consisting of nested loops that looped through a range of possible values for four
chosen model hyper-parameters, whilst recording an evaluation metric for each of the
combination of hyper-parameters. The value options of the hyper-parameter are shown
in Table 2. The evaluation metric used for this optimization was made by summing
the absolute value of each R, value created from three different non-overlapping 14 day
prediction periods. Three different 14 non-overlapping prediction periods were used for
the optimisation for cross validation purposes and to reduce the possibility of over-fitting
based on optimising using only one 14-day prediction period.

Table 2. Hyper-parameters chosen for optimization and chosen possible values.

Hyper-Parameter Value Options
Window size [1,3,5,7]
Number of LSTM layers [1,2,3,4]
Number of unites in LSTM layers [5, 10, 15, 20]
Batch size [5, 10, 15, 20]

2.3.3. Methodology Comparison

For the purpose of validation of this methodology, the prediction of dTCt and as-
sociated RMSE using the LSTM RNN model were compared to alternative more trivial
methodologies. The first methodology chosen for the comparison is a naive forecast. A
naive forecasting the context of a 14-day prediction is created by projecting the last actual
dTCt value available forward for 14 days. Taking the naive forecast slightly further, the
second methodology used for the comparison is a seasonal naive forecast. Which in this
case creates a 14-day prediction that is equal to not just the last actual value, but the last
14 actual values. Usually, seasonal naive forecasts are performed using monthly, quarterly
or yearly seasonality, but in the context of predicting dTCt, weekly seasonality is sometimes
evident due to case data reporting patterns. These two more trivial methodologies for
predicting dTCt are compared to the RNN LSTM methodology by choosing a prediction
date in an interim period and comparing the RMSE over the prediction period. The RMSE
results can be seen in Table 3 and a comparison of their predictions is shown in Figure 5.

450 1 — Historic dTCt data RMSE LSTM: 76.57

—— Actual dTCt RMSE naive: 89.43

400 7' —— Sseasonal Naive dTCt Prediction RMSE seasonal naive: 79,99
—— Naive dTCt Prediction

| —— Optimised LSTM dTCt Prediction

=)

2020-09-08 2020-09-15 2020-09-22 2020-10-01 2020-10-08 2020-10-15 2020-10-22
Date Time

w
&
S

w
&
5]

Daily Confirmed Cases
.
I
8

N
o
3

150 4

100

Figure 5. Comparison of LSTM RNN prediction to naive forecast and seasonal naive forecast.
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Table 3. Methodology Comparison.

Prediction Method RMSE
LSTM RNN model 76.57
Naive Forecast 89.43
Seasonal Naive Forecast 79.99

It can be seen that the RMSE for the LSTM RNN methodology proved to be lower for
the chosen comparison date. Although the seasonal naive forecast performed relatively
well over the chosen prediction period, this is not always the case due to the fact that
reporting patterns change over time due to inconsistencies in human-centric reporting
systems. Therefore, we conclude that the more informed straight line prediction produced
by the LSTM RNN model proved to be best.

2.3.4. Flow Diagram of System

The following diagram (Figure 6) provides a graphical representation of the working of
the alert system. Data channels and processes marked in red happen on a daily basis, whilst
black data channels and all other processes happen weekly. The model is re-calibrated
weekly and predictions are made weekly; however, relative difference values are obtained
daily when the actual case data becomes available.

Alert System

Facebook Mobility

Google Mobility

Indices: Epidimiological

Paramter:
dTct

OxCGRT:
Stringency index

mobility indictaor
stay at home
indicator

retail and recreation
grocery and pharmacy
workplaces
residential
parks
transit stations

Weekly

Weekly Weelly
Weekly
Training Data M
s m Conversion to
reprocessing versio
Test Data ¢ Features: X/ Data Structure

Re-train RNN Update RNN with LSTM
with LSTM Model Prediot 14 Days dTCT

Weekly .

Data Ingestion

Re-train RNN model

WM.W—Z/ Actual dTCt /LEGUaIs—/ReIanvs Dlﬁsrsncs/ Rp = dTCty — dTCtp
dT'Ctp

Dlv\ded by

Relative Dif

."Daily

High
Compare to Alert
threshold
Prewous\y if Threshold
Determmed Rela!lve Difference exceeded
Threshold continuously

Figure 6. Flow Diagram of the developed Alert System related to COVID-19.

Compare to

The first block labeled ‘Data Ingestion” in Figure 6 above represents both the data
ingestion from the various sources, and the primary and secondary data prepossessing
steps. The output of the first block is a supervised time-series format dataset that is
appropriate for an RNN with LSTM for a chosen window size. The ‘Re-train RNN model’
block demonstrates how the model is re-trained weekly and the output of this block
is a 14 day prediction of dTCt. The ‘'Relative Difference’” block shows that the relative
difference value (the RIM) is calculated daily when new case data becomes available.
Lastly, the "Compare to threshold” block demonstrates how the RIM is compared to a
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previously obtained threshold in order to determine when and if the threshold is exceeded
continuously, which would signify another case wave commencing.

2.4. Province Specific Risk Index Threshold

For each province in South Africa, a threshold for the RIM is found by comparing the
distribution of the Rp values over non-peak periods and peak periods. It is evident that
the distribution of Rp over a peak period is much highly skewed than that of non-peak
periods. The Rp distributions are analysed by separating the Rp values obtained over peak
and non-peak times into all the values from the first half for the 14-day prediction and from
the last half of the 14-day prediction. This separation is done in order to account for the
overlap of Rp values caused by doing a 14-day prediction every 7 days. Figure 7 visualises
the Rp values generated from each weeks prediction and actual values and demonstrates
how these Rp arrays overlap.

0 1 2 3 4 5
e e
iv . Weeks
14 day Rp prediction: W1 .
15t 1/2 Ry W1 [2nd 172 Rg W1 :
Y -

14 day R, prediction: W2

IS
-

st 1/2 Rg W2 |2nd 1/2 Rp W2

Y -
14 day Ry, prediction: W3

et
-

2nd 1/2 Rp W3

Y :
14 day Ry, prediction: W4

IS

I I e e L

"
:
.
:
]1
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
h
:
:
:

]
| 1=:122 F'.ID W3

P —

1 Week T ]
1s11/2 Rp W4 [2nd 172 Rp W4
Overlap kil el D [
1=t 1125 Tis1p Ry Wi [ 1st 12 R W2 [ 1st 12 Ry W3 [ 1=t 12 Ry W4 |
Joined
2J”gm1£3 |2nd 172 Rp W1 |2nd 1/2 Rp W2 2nd 1/2 Rp W3 |2nd 112 Rp W4|

Figure 7. Diagram showing overlap of RD values obtained from each weeks prediction.

Figure 8 shows the distribution of all of the first halves of the Rp 14-day arrays created
from each weeks prediction, labeled “1st 1/2s joined’ in Figure 7. The threshold value can
then be extracted from this graph by choosing a value of Rp that encloses the whole Rp
non-peak distribution. This is to take a conservative approach to issuing an alert. This is
carried out for each province to identify the specific threshold values.
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Distribution of RD Comparison: Gauteng rd_peak_vs_no_peak

95% interval: -0.09 < x1 < 0.56 R_D halves total no peak
17.54 m R_D halves total peak

15.0 4 95% interval: 3.20 < x2 < 11.17
12.5
10.0 -
7.59
5.0

2.5+

0.0 -
0 5 10 15 20 25
Relative Difference

Figure 8. Distributions of Rp during peak and non-peak periods.

3. Results
3.1. Example Prediction Result during Non-Peak Period

Figure 9 below shows the final hyper-parameter optimized LSTM RNN model’s ability
to predict dTCt during non-peak times.

—— Input validation data
3007 14days Prediction at 2020-11-08

—— Actual data for the prediction
250 /

2020-10-29 2020-11-01 2020-11-05 2020-11-09 2020-11-13 2020-11-17 2020-11-21

Daily Confirmed Cases

Figure 9. Graph showing 14-day prediction of dTCt during a non-peak period.

3.2. Verification of the Alert System Using Second Wave Data

Using the appropriate threshold discovered for each province in South Africa, shown
in Table 4, the alert system was tested by comparing the system predicted start date of the
second wave against the actual case data. The dates of the start of the second wave for each

province obtained using this technique are shown in Table 5.

Table 4. Province Specific Rp Threshold Values.

Province Rp Threshold
Gauteng 32
Western Cape 4.3
Eastern Cape 1.4
KwaZulu-Natal 134
Free State 0.8
Mpumalanga 2.0
Limpopo 3.0
Northern Cape 0.65

North West 1.3
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Table 5. Province Specific Second Wave Start Date.

Province 2nd Second Wave Start Date
Gauteng 2020-12-07
Western Cape 2020-11-11
Eastern Cape 2020-10-21
KwaZulu-Natal 2020-12-01
Free State 2020-12-19
Mpumalanga 2020-12-15
Limpopo 2020-12-01
North West 2020-12-23
Northern Cape 2020-12-23

Figure 10 below shows all the last halves of the Rp values generated from each weeks

prediction joined for a date period that extends into the second wave period for Gauteng
province. The blue line indicates the date when the model identified a wave starting
for Gauteng.

= = N N
o & S g

Relative Difference

«

0

2020-10-01

T T T
-- Actual value dTCt 7000

T T T T T
—— Relative Difference: last half joined
6000

5000

d Cases

4000

irmet

3000

Daily Confi

2000

1000

I
0
A
/ ‘
A
R !
HELYY
'
" /V\ ;

2020-11-15 2020-12-01 2021-01-01

Date Time

2020-10-15 2020-11-01 2020-12-15

Figure 10. Graph showing all last halves of Rp values joined: Gauteng.

3.3. Third Wave Surveillance

Below is a screenshot of the final output of our model for third wave surveillance

available on the COVID-19 monitoring website. (COVID-19 monitoring website: https:
/ /www.covid19sa.org/riskindex-ai (accessed on 29 June 2021)) The model shown on the
site is updated weekly and the relative difference value is calculated automatically as new
daily case data becomes available (Figure 11). Notably, at the time of writing, the system
has been successful in detecting the beginning of the third wave in the provinces in South
Africa. South African policy makers engage with the created RIM on a weekly basis during
the Gauteng government COVID-19 command council meetings.

6

Risk Index
o

3
®° (8
al @Y 0l
'\Q“\R «\‘J\ \1“\ A3

Predicted period
Risk Index Threshold

1.25K

0.86 gg5 073 07

ro.y‘v—\roos. 021
ok 011

750

Cases

500

250

AY A N N AY N N N
™, m@my&\l&;\x&\ﬂlmlﬂyv@m@@l@l\ﬂ
W QN AN ST g W 3T a3 o

N N N N Ay N N N Al N A N N A) N A A
LS LA AT AR AL AT AR NGa qlgq*@q qn&q*@q AR

N o
3 0 @ 0 0T @ @ @ @ e e e LS
N e W N W oW g W N o e

§ o
T L i
[ LA A

Figure 11. Graph showing the 14-day prediction of dTCt and rd values for surveillance of the

3rd wave.

4. Limitations

The main limitations of this methodology relate to the availability of non-peak data

for training data. If a province had a small period between the first and second peaks,
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the generated model might not be as good as some of the models developed for other
provinces which have longer no-peak periods available for training.

5. Discussion and Conclusions

This research exploits the multivariate, multi-time-step time-series predictive capa-
bilities of an RNN with LSTM to predict daily change in cases dTCt in South African
provinces. Ten features were chosen as inputs to the RNN model. These features include
mobility measures, stringency indicators and epidemiological parameters. The model
was trained over the interim period between COVID-19 case waves within each province.
This configuration caused the model to perform well over the interim period, however
when another COVID-19 case wave is reached, the system is unable to predict the dTCt
values accurately. The intentional pitfall of the model to predict dTCt during a peak has
been taken advantage of to create an alert system by monitoring the relative difference
Rp between the prediction and the actual value on a daily basis. When the Rp value is
consistently above a calculated threshold for at least 2 days, the probability of an additional
wave is high. The thresholds for each province are calculated by analysing the distributions
of Rp values generated as a result of the predictions over time during peak and non-peak
times. The threshold was chosen by selecting an Rp value that encapsulated the whole
non-peak distribution.

Artificial Intelligence and Big Data can be exploited to devise complex, multi-dimensional,
multi-variate, quantitatively reliable models that can assist public health decision- and
policy-makers as well as physicians in a variety of tasks, including diagnosing COVID-19,
identifying individuals at higher risk for COVID-19, stratifying patients and discovering
potential treatments or verifying their effectiveness [22].

Recently, Artificial Intelligence and Big Data have also been utilized to predict COVID-
19 relapses and resurgences [23]. Authors performed a comparative study, comparing
countries such as the USA or Canada in which public health measures against COVID-19
had been implemented in a stringent way versus countries, such as Sweden, where policies
were more relaxed, utilizing three different approaches (namely, a Bayesian susceptible-
infected-recovered or SIR model, a Kalman filter, and machine learning). Policy interven-
tions were effective in curbing the COVID-19 pandemic, even though the drop in infected
cases was higher in those countries in which stricter policies had been enforced.

In the existing scholarly literature, there are few studies specifically utilizing RNN-
based models aimed at predicting COVID-19 waves. For instance, Li and colleagues [24]
have devised a RNN-based alert system, termed as Attentive Lockdown-awaRe Transfer
Learning for Predicting COVID-19 Pandemics in Different Countries (ALeRT-COVID).
This system was devised and trained on a pre-defined country (“source country”) and,
then, adapted (“transferred”) to other target countries. Country-specific models have been
implemented for Brazil [25], USA and India [26].

Few other studies have exploited mobility data, such as those generated by Google.
For example, Wang et al. [27] have shown that is of paramount importance to understand
dynamic changes in human mobility, social networks and spatial interaction trends to better
predict the still ongoing COVID-19 pandemic. Authors were able to demonstrate that
incorporating Google-outputted mobility data resulted in a significantly higher predictive
power of COVID-19 cases.

In the present study, using our methodology, the dates of the starts of the second wave
of COVID-19 cases in South African provinces were accurately estimated. Noteworthy;,
the dates generated by the model would not have been able to be achieved confidently
by simply monitoring the daily change in cases only. Furthermore the model has been
successful in identifying the start of the third wave of COVID-19 cases in South African
provinces and has proved a valuable tool to South African policy makers.
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Appendix A. Neural Network Architecture

Figure Al represents the specific neural network architecture used.

input: | [(None, 10, 3)]
output: | [(None, 10, 3)]

l

Istm_input: InputLayer

input: | (None, 10, 3)
Istm: LSTM
output: | (None, 10, 5)
input: | (None, 10, 5)
Istm_1: LSTM

output: (None, 5)

l

input: | (None, 5)
output: | (None, 14)

i

mput: (None, 14)
output: | (None, 14, 1)

dense: Dense

reshape: Reshape

Figure A1. Schematic of Specific Neural Network Architecture.
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