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Transcriptomic analysis identifies 
organ‑specific metastasis genes and pathways 
across different primary sites
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Abstract 

Background:  Metastasis is the most devastating stage of cancer progression and often shows a preference for spe-
cific organs.

Methods:  To reveal the mechanisms underlying organ-specific metastasis, we systematically analyzed gene expres-
sion profiles for three common metastasis sites across all available primary origins. A rank-based method was used to 
detect differentially expressed genes between metastatic tumor tissues and corresponding control tissues. For each 
metastasis site, the common differentially expressed genes across all primary origins were identified as organ-specific 
metastasis genes.

Results:  Pathways enriched by these genes reveal an interplay between the molecular characteristics of the can-
cer cells and those of the target organ. Specifically, the neuroactive ligand-receptor interaction pathway and HIF-1 
signaling pathway were found to have prominent roles in adapting to the target organ environment in brain and 
liver metastases, respectively. Finally, the identified organ-specific metastasis genes and pathways were validated 
using a primary breast tumor dataset. Survival and cluster analysis showed that organ-specific metastasis genes and 
pathways tended to be expressed uniquely by a subgroup of patients having metastasis to the target organ, and were 
associated with the clinical outcome.

Conclusions:  Elucidating the genes and pathways underlying organ-specific metastasis may help to identify drug 
targets and develop treatment strategies to benefit patients.
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Background
Metastasis is a fatal step in cancer progression and is the 
main cause of cancer-related deaths [1]. Tumor metas-
tasis to different organs is not a random process but is 
known to show organ-specific preference [2]. Organ-
specific metastasis was first described by the “seed and 
soil” theory proposed by Stephen Paget; according to the 
theory, certain tumors (the “seeds”) have specific affinity 

for particular organs (the “soil”) [3]. For instance, colon 
carcinomas usually metastasize to liver and lung but 
rarely to bone, brain, and kidneys. In contrast, breast car-
cinomas, frequently metastasize to most of these organs 
[4]. Recent discoveries indicate that molecular charac-
teristics of cancer cells and their target tissues cooper-
ate to determine the organ-specific metastasis observed 
for many tumors, greatly enhancing our understand-
ing of the “seed and soil” theory [5]. Investigation of the 
mechanisms that mediate site-specific metastasis are 
likely to lead to the identification of new drug targets for 
therapy. For instance, targeting the expression of plate-
let-derived growth factor receptor signaling pathways in 
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tumor-associated endothelial cells and pericytes could 
inhibit liver metastasis of colon carcinoma [6]. However, 
the mechanisms of organ-specific metastasis remain an 
intriguing but unanswered questions in cancer research.

Gene expression profiles are widely used to explore 
organ-specific metastasis. Several groups have devel-
oped microarray-based diagnostic tools to determine a 
tumor’s site of origin [7, 8] or to predict metastasis sites 
[9]. For example, the Pathwork Diagnostics® is a well-
studied and clinically validated microarray-based gene 
expression diagnostic test for determining tissue of origin 
[7, 8]. However, these studies did not elucidate the roles 
of signatures in the preferences of primary tumor types 
when spreading to specific distant sites. Several groups 
have worked on this question, mainly focusing on identi-
fying genes that mediate metastases of one primary can-
cer type to particular sites [10–12] or whose expression 
in primary tumors correlates with metastatic recurrence 
[13]. However, to our knowledge, these markers tended 
to capture the diversity of primary cancer metastases, 
especially for breast cancer metastases [10–12, 14]. There 
has been a lack of systematic research on the common-
ality of molecular characteristics for different primary 
tumors metastasizing to the same target organ. Moreo-
ver, a well-designed dataset and schema of organ-specific 
metastasis gene identification are crucial for this type of 
analysis.

In this study, we investigate organ-specific metasta-
sis by examining gene expression signatures across dif-
ferent tumor types that metastasize to the same organ 
(e.g., comparing primary breast and lung tumors that 
both metastasize to the brain). For each metastasis site 
(brain, liver, or lung), at least two types of primary site 
were included in the integrated dataset. Then, a rank-
based method was used to detect differentially expressed 

genes (DEGs) between metastatic tumor tissues and the 
corresponding control tissues. We focused on common 
DEGs and enriched pathways across all tissues of origin, 
and investigated these organ-specific metastasis genes 
and enriched pathways in breast primary tumors. Cluster 
analysis and survival analysis were used to test whether 
the organ-specific metastasis genes and pathways were 
expressed uniquely by a subgroup of patients with metas-
tasis to the target organ, and whether they were associ-
ated with clinical outcomes. In conclusion, we present 
here an analysis to identify signatures that are specific to 
the common target organ rather than to diverse primary 
tumor tissue types. The delineation of the roles of these 
signatures in the interplay between cancer cells and the 
target organ will lead to a better understanding of organ-
specific metastasis and its susceptibilities to treatment.

Materials and methods
Datasets
We searched all public databases for transcriptional pro-
files with clinical data of primary and metastasis site. 
Nine metastasis microarray gene expression datasets, 
covering three metastasis sites (brain, liver and lung) 
[15], were collected from the Gene Expression Omni-
bus (GEO) database [16]. As shown in Table 1, for each 
type of metastasis site, at least two types of primary sites 
were considered. Control tissue samples for each type of 
metastasis site were also collected from GEO (Table 2). 

All of nine metastasis microarray gene expression 
datasets were collected from the Affymetrix platform 
with relatively consistent quality control. For the two 
datasets performed on the customized GPL10379 plat-
form (Rosetta/Merck Human RSTA Custom Affymetrix 
2.0 microarray), only samples with high quality control 
(> 50% tumor cell content) were included in the datasets. 

Table 1  Datasets of metastasis samples for three metastasis sites across different primary sites

a  Number of brain metastasis samples
b  Number of liver metastasis samples
c  Number of lung metastasis samples

Primary site Dataset #Brain metastasisa #Liver metastasisb #Lung metastasisc Platform Year

Breast cancer GSE56493 27 GPL10379 2014

GSE46141 16 GPL10379 2013

GSE14020 19 5 18 GPL96, GPL570 2009

GSE43837 19 GPL1352 2014

GSE46928 11 GPL96 2013

Colon cancer GSE41568 79 8 GPL570 2016

GSE18549 25 6 GPL570 2016

Lung cancer GSE14108 28 GPL96, GPL570 2010

GSE18549 6 GPL570 2016

Liver cancer GSE40367 12 GPL570 2015
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Additional, among the five datasets metastasized from 
breast cancer, only one dataset GSE43837 was specific for 
the HER2+ subtype, this dataset was not excluded from 
this study in order to enhance the statistical power in 
DEG detection.

Dataset integration and DEG detection
To make full use of the information available from multi-
ple datasets, data from different datasets were integrated 
using the R package virtualArray [17]. The virtualArray 
software combine data sets of different chip types based 
on current gene annotations from NCBI database. The 
integrated expression datasets have their expression val-
ues presented as log2-transformed.

Genes that were detected by all platforms (Tables  1 
and 2) were kept for the integrated dataset. As non-
biological experimental variation or “batch effects” 
are commonly observed across multiple datasets from 
microarray experiments [18], conventional expression 
intensity-based methods such as the significance analysis 
of microarrays (SAM) were not appropriate here. Instead, 
as the relative ordering of gene expression within each 
sample would be rather robust against batch effects and 
insensitive to data normalization, the rank-based method 
RankComp was used for DEG identification [19].

RankComp method is based on the relative ordering 
information of gene expression within each sample. As 
the relative ordering of gene expression is overall sta-
ble for particular types of normal human tissues across 
common platforms [20], reversal ordering in the disease 
sample indicate a gene’s up- or down-regulation relative 
to the other gene for a reversal gene pair. The Fisher’s 
exact test was used to determine whether a given gene 
is differentially expressed in a given disease sample by 
testing the null hypothesis that the numbers of reversal 
gene pairs supporting its upregulation and downregula-
tion are equal. DEGs at the subpopulation level was iden-
tified by using the binomial test to find a non-randomly 
high percentage of disease samples sharing certain DEGs. 
The p-values were adjusted by the Benjamini–Hochberg 

procedure with a 5% false discovery rate (FDR) threshold 
[21].

Quantification and statistical analysis of DEG detection
We further estimated effect size for the identified DEGs. 
To estimate the effect size in unpaired data, expressions 
of each DEG were assumed to follow normal distribu-
tions with different variances in condition i and j such 
that Xi ∼ N (µi, σ

2
i ),Xj ∼

(

µj , σ
2
j

)

 . Moreover, the vari-
ance between datasets was omitted for the asymptotic 
estimator. In this more realistic heteroscedastic case, we 
applied the effect size definition proposed by Kulinskaya 
[22, 23]:

Let n = ni + nj and q = nj/n, the denominator σ could be 
rewritten as:

This effect size could, therefore, be linked to the Welch 
t statistic as:

A medium effect size threshold of 0.5 was used to fur-
ther screen the DEGs that were identified by the Rank-
Comp method.

In addition, Chi-square test was used to test whether 
there’s a prominent bias towards available clinical char-
acteristics (such as age and stage) between metasta-
sis tumor and control samples for each dataset in DEG 
detection.

Organ‑specific metastasis gene identification and function 
analysis
To identify organ-specific metastasis genes, we com-
pared samples grouped according to the metastasis 
sites. As illustrated in Fig.  1, in the case of lung metas-
tasis, we obtained different sets of DEGs by comparing 
lung metastasis samples from different tissues of origin 
with the same group of lung control samples. Then, to 
exclude housekeeping genes from the resulting gene set, 
we selected overlapping DEGs in lung metastases from 
different tissues of origin rather than selecting genes with 
similar expression across lung metastasis samples from 
different tissues of origin. These were considered to be 
lung-specific metastasis genes.

As individual genes often act in concert and may be 
responsible for multiple effects, organ-specific genes 
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Table 2  Datasets of  control tissue samples for  three 
metastasis sites

a  Number of brain/liver/lung normal tissue samples

Metastasis site Dataset #Controla Platform Year

Brain GSE7696 4 GPL570 2008

GSE13162 17 GPL571 2008

GSE4757 10 GPL570 2006

GSE35864 6 GPL570 2012

Liver GSE25097 243 GPL10687 2011

Lung GSE19804 60 GPL570 2011
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should be considered in a global context. Separate 
enrichment analysis was performed for up- and down-
regulated organ-specific metastasis genes using known 
biological pathways [24], which were downloaded from 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[25] and Gene Ontology (GO) database [26] in August, 
2019. The hypergeometric distribution model was used 
to test whether the number of organ-specifics metastasis 
genes annotated in a functional category was significantly 
greater than would be expected by random chance [27]. 
The p-values were adjusted using the Benjamini–Hoch-
berg procedure [21].

Results
High percentage overlapping DEGs among primary cancer 
metastases to the same organ
Among the 9797 genes included in the integrated data-
set, 1857 DEGs were identified between the 49 metastatic 
brain samples originating from breast cancer and 37 
brain control tissue samples, denoting this list of DEGs 
as Lbb. Another 1979 DEGs were identified between 34 
metastatic brain samples originating from lung can-
cer and the same brain control samples, denoted as Llb. 
Between these two lists, 1612 DEGs overlapped, account-
ing for 87% of Lbb (p < 1.0E−06, hypergeometric test) and 
81% of Llb (p < 1.0E−06, hypergeometric test). There was 

a particularly large overlap for brain metastases from 
breast cancer and lung cancer (as shown in Fig. 2). Simi-
lar results were observed for liver and lung metastases 
(Fig. 2): 948 DEGs overlapped for liver metastases origi-
nating from breast and colon cancer, accounting for the 
72% of the shorter DEG list (p < 1.0E−06, hypergeomet-
ric test); and 526 DEGs were shared for lung metastases 
from three primary sites, covering one third of the short-
est DEG list.

The overlapping DEGs that metastasized from different 
primary sites to the same metastasis site were identified 
as organ-specific metastasis genes (brain-specific, liver-
specific, and lung-specific metastasis genes are listed in 
the Additional file  1: Table  S1). Using functional analy-
sis, we characterized the prominent molecular events in 
the initialization, dissemination, and colonization stages 
of brain, liver, and lung metastasis [28], as illustrated in 
Fig. 3 and detailed in the following sections.

Genes and pathways mediating metastasis of different 
cancers to the brain
We analyzed the 1612 overlapping DEGs between Lbb 
and Llb that both metastasized to the brain tissue, and 
found that 59% of the common DEGs were down-regu-
lated relative to their levels in brain control tissue. Using 
functional enrichment analysis with a 5% FDR threshold, 

Fig. 1  Schema of organ-specific metastasis gene identification. The schema is illustrated by the lung-specific metastasis gene identification

Fig. 2  Similarity of DEGs identified in brain, liver, and lung metastases. Proportionate Venn diagram of DEGs are enumerated and labeled in boxes 
with colors matching the circles in brain (a), liver (b) and lung metastasis (c)
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16 KEGG signaling pathways (as shown in Table 3) and 
81 fine-grained GO biologic processes (Additional file 1: 
Tables S2 and S3) were identified that were specific to 
brain metastasis.

Some of these 16 pathways were found to be related 
to brain-specific dissemination and colonization (Fig. 3), 
and most of them had not been previously reported. In 

the initialization stage, pathways regulating pluripotency 
of stem cells was enriched among the up-regulated brain-
specific metastasis genes. Stem cells are pluripotent and 
proliferate, the long-term tumorigenic potential of some 
tumors may rely on a small proportion of stem cells 
endowed with the capacity to indefinitely self-renew [28]. 
In the dissemination stage, the brain is protected by the 

Fig. 3  Prominent pathways in the process of metastasis. Some of enriched pathways of common DEGs are highlighted in the initialization, 
dissemination and colonization stage for brain, liver and lung metastasis

Table 3  KEGG pathways enriched for brain metastasis specific genes

a  The p-values corrected with Benjamini–Hochberg
b  The percentage of associated genes in each signaling pathway
c  The number of associated genes in each signaling pathway

DEG KEGG pathway FDRa %Genesb (%) #Genesc

Up-regulated Neuroactive ligand-receptor interaction < 0.001 12 42

Cytokine-cytokine receptor interaction < 0.001 11 32

PI3K-Akt signaling pathway 0.007 9 31

JAK-STAT signaling pathway 0.017 10 17

Signaling pathways regulating pluripotency of stem 
cells

0.025 10 15

RIG-I-like receptor signaling pathway 0.043 13 9

Down-regulated Autophagy 0.001 18 24

Tight junction 0.003 13 23

Dopaminergic synapse 0.006 14 19

AMPK signaling pathway 0.007 15 18

Endocytosis 0.010 11 28

Wnt signaling pathway 0.018 13 20

Inositol phosphate metabolism 0.019 16 12

FoxO signaling pathway 0.023 13 17

Lysosome 0.034 13 16

Neurotrophin signaling pathway 0.039 13 15
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blood–brain barrier, which distinguishes it from other 
organs. Interaction with and penetration of the blood–
brain barrier by cancer cells is a key step in colonization 
to brain tissue. The blood–brain barrier relies on tight 
junctions between the endothelial cells of the brain capil-
laries to provide a closed environment for the brain [29]. 
The tight junction pathway, which was enriched among 
the down-regulated brain-specific metastasis genes, 
comprises a number of proteins including occludins, 
claudins, and junctional adhesion molecules. Claudins 
are key integral proteins that regulate blood–brain bar-
rier permeability, these proteins not only regulate para-
cellular permeability but also play a role in the regulation 
of tight junction assemblies [30]. The canonical Wnt 
pathway also has a central role in brain angiogenesis and 
blood–brain barrier formation [29]. In the colonization 
stage, the neuroactive ligand-receptor interaction path-
way was enriched among the up-regulated brain-spe-
cific metastasis genes, the GABAR family (GABARAP, 
GABARAPL1, GABBR1, and GABBR2), the glutamate 
receptor family (GRM5 and GRIN2A), and the choliner-
gic receptor family (CHRNA1, CHRNA3, and CHRNA6) 
showed marked differential expression. Neman et al. [31] 
showed that breast-to-brain metastatic tissue and cells 
displayed a GABAergic phenotype similar to that of neu-
ronal cells, which could represent a malignant adaptation 
required for metastasis to the brain. Glutamate receptors 
have also been implicated in the pathophysiology of vari-
ous human malignancies [32]. These results indicate that 

neuroactive ligand-receptor interactions might also be an 
important pathway in the development of brain metasta-
ses. Finally, significant disturbances were found in path-
ways such as autophagy and endocytosis, which have 
crucial roles in metastatic processes. Malignant tumor 
cells must overcome these various forms of cell death in 
order to metastasize.

Genes and pathways mediating metastasis of different 
cancers to the liver
We analyzed the 948 overlapping DEGs between liver 
tumor samples metastasized from breast and colon can-
cer and found that 63% of these DEGs were up-regulated 
relative to their levels in liver control tissue samples. 
Using functional enrichment analysis with a 5% FDR 
threshold, we identified 16 KEGG signaling pathways (as 
shown in Table 4) and 35 GO biologic processes (Addi-
tional file 1: Tables S4 and S5) specific to liver metastasis.

We identified some pathways involved in liver-spe-
cific dissemination and colonization that had not been 
previously linked to liver-specific metastasis (Fig.  3). 
In the initialization stage, the significantly enriched 
reorganization of the actin cytoskeleton pathway 
reflects the required migratory property [33]. In the 
dissemination stage, the Rap1 signaling pathway plays 
an important part in the regulation of endothelial bar-
rier function, a process controlled largely by cell–cell 
adhesions and their connections to the actin cytoskel-
eton [34]. In the colonization stage, hepatocellular 

Table 4  KEGG pathways enriched for liver metastasis specific genes

a  The p-values corrected with Benjamini–Hochberg
b  The percentage of associated genes in each signaling pathway
c  The number of associated genes in each signaling pathway

DEG KEGG pathway FDRa %Genesb (%) #Genesc

Up-regulated Cell cycle 0.036 10 12

FoxO signaling pathway 0.047 7 10

Glucagon signaling pathway 0.048 7 7

Down-regulated Rap1 signaling pathway < 0.001 9 19

Bile secretion  0.001 13 9

PI3K-Akt signaling pathway  0.001 6 22

Platelet activation 0.002 10 12

MAPK signaling pathway 0.004 6 18

Ras signaling pathway 0.005 6 15

Focal adhesion 0.008 7 13

Complement and coagulation cascades 0.009 9 8

HIF-1 signaling pathway 0.009 8 9

Regulation of actin cytoskeleton 0.012 6 13

ErbB signaling pathway 0.020 8 7

Peroxisome 0.020 8 7

ABC transporters 0.021 11 5
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carcinoma is one of the most hypoxic tumors with 
median oxygen levels as low as 0.8%. The signifi-
cantly disturbed hypoxia-inducible factor-1α (HIF-
1) signaling pathway is capable of mediating cell–cell 
communication and has an essential role in inducing 
metastasis [35, 36]. In addition, it is well established 
that the immune system is crucial to the micro-met-
astatic microenvironment. The outgrowth of tumor 
metastases appears to be linked to inflammation; two 
significantly enriched pathways, platelet activation 
and complement and coagulation cascades, are likely 
to play a role in this. Finally, a large proportion of 
the enriched pathways were enriched in the metabo-
lism system, including glucagon signaling pathway, 
bile secretion and ABC transporters. This is probably 
due to the importance of glucose homeostasis and bil-
iary metabolism in liver microenvironment [37], liver 
metastases are highly glycolytic and consume local 
glucose. While the significantly enriched FOXO sign-
aling pathway also plays an important part in the inte-
gration of insulin signaling with glucose homeostasis 
[38]. Various ABC transporters in the liver are key 
players that safeguard hepatocytes and avoid toxicity 
due to over-accumulation of bile acid [39]. The combi-
nation of an alternative ABC transporter with a novel 
substrate may prove an effective chemo-preventive or 
therapeutic strategy.

Genes and pathways mediating metastasis of different 
cancers to the lung
Lung is the second most common metastasis site. 
Tumors of the breast, colon, pancreas, and liver all tend 
to metastasize to the lung [40]. Using functional enrich-
ment analysis with a 5% FDR threshold, 18 KEGG signal-
ing pathways (as shown in Table 5) and 139 GO biologic 
processes (Additional file 1: Tables S6 and S7) were iden-
tified that are specific to lung metastasis, some pathways 
involved in lung-specific dissemination and colonization 
were illustrated in Fig. 3.

The broad surface area and numerous capillaries of 
lung tissue provide opportunities for cancer cells to 
adhere, extravasate, and colonize [40]. The significantly 
enriched cell adhesion molecules (CAMs) pathway has 
an important role in adhesion of cancer cells to the vas-
cular endothelium [41] and can be induced by the sig-
nificantly enriched JAK-STAT and NF-kappa B signaling 
pathways in endothelial cell [42]. The endothelial layer in 
the lung also has tight junctions between endothelial cells 
and an intact basement membrane; thus, it represents a 
more restrictive barrier for extravasation compared with 
bone or liver [2]. The significantly enriched JAK-STAT 
might be involved in modulating permeability via effects 
on cell proliferation [43]. Finally, in the colonization 
stage, immune responses interact with inflammation, 
angiogenesis, and cancerized stroma, remodeling the 

Table 5  KEGG pathways enriched for lung metastasis specific genes

a  The p-values corrected with Benjamini–Hochberg
b  The percentage of associated genes in each signaling pathway
c  The number of associated genes in each signaling pathway

DEG KEGG pathway FDRa %Genesb (%) #Genesc

Up-regulated JAK-STAT signaling pathway 0.002 7 11

Cell cycle 0.022 5 6

Glycolysis/gluconeogenesis 0.032 6 4

Down-regulated Hematopoietic cell lineage < 0.001 12 12

Cytokine-cytokine receptor interaction < 0.001 7 21

Toll-like receptor signaling pathway < 0.001 11 11

TNF signaling pathway < 0.001 10 11

Leukocyte transendothelial migration 0.001 9 10

NF-kappa B signaling pathway 0.002 9 9

T cell receptor signaling pathway 0.002 9 9

Natural killer cell mediated cytotoxicity 0.006 7 9

B cell receptor signaling pathway 0.006 9 7

Chemokine signaling pathway 0.006 6 11

Complement and coagulation cascades 0.006 8 7

Adherens junction 0.010 8 6

NOD-like receptor signaling pathway 0.012 6 10

Th17 cell differentiation 0.016 7 7

Cell adhesion molecules (CAMs) 0.024 5 8
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microenvironment to favor colonization [44]. The natu-
ral killer cell-mediated cytotoxicity pathway is enriched 
by significantly down-regulated lung metastasis genes, 
there is a consensus that natural killer cells exert cyto-
toxicity against metastatic tumor cells [45]. Activation of 
epithelial–mesenchymal transition in tumor cells during 
the metastasis cascade is accompanied by altered cell-
surface ligands, recognizable by T cell infiltration, which 
is crucial to tumor microenvironments and has been 
extensively studied in primary tumors [46]. However, T 
cell-dependent mechanisms involved in organ-specific 
metastasis remain underexplored.

Validation of brain‑specific metastasis genes in primary 
breast tumor
Genes and pathways related to organ-specific metasta-
sis are expected to be both biologically meaningful and 
clinically relevant. Taking brain-specific metastasis as an 
example, the corresponding genes and pathways might 
be expressed uniquely by a subgroup of patients that suf-
fered metastasis to the brain and associated with clinical 
outcome.

To test this, the validation dataset GSE2034 of 286 pri-
mary tumors from breast cancer patients was taken from 
the GEO database. The clinical data of these patients was 
obtained from a previous report [12], including follow-
up observations of metastasis site and metastasis-free 
survival time. A univariate Cox proportional hazards 
model was constructed to correlate the expression lev-
els of brain-specific metastasis genes with survival out-
comes. Overall, 28% of 1612 brain-specific metastasis 
genes were significantly associated with metastasis-free 
survival. For each pathway enriched with respect to the 

1612 brain-specific metastasis genes (Table  3), the risk 
index was calculated as a linear combination of the gene 
expression values for the brain-specific metastasis genes 
involved in this pathway, weighted by their estimated 
regression coefficients in Cox proportional hazards 
regression modeling [47]. Using the median risk index 
value as a cut-off point to distinguish high- and low-risk 
groups, 13 out of 16 pathways showed a significant differ-
ence in metastasis-free survival between the two groups 
(log rank test, p < 0.05). For example, the tight junction 
pathway distinguished patients at high risk from those 
at low risk of developing brain metastases (Fig.  4b; log 
rank test, p < 1.0E−06). Furthermore, the brain-specific 
metastasis genes involved in the tight junction pathway 
were used to cluster the dataset hierarchically; most of 
the brain metastasis patients (marked with asterisks) 
were clustered together (Fig.  4a). Manual inspection of 
branches in the dendrogram revealed a group of primary 
tumors concordantly expressing many elements of these 
genes, especially high expression of TUBA4A and MSN. 
These results indicated that a clinically relevant subgroup 
of patients express certain combinations of brain metas-
tasis signature genes and show differences in metastasis-
free survival compared with other patients.

Discussion
The mechanisms by which different tumor types spread 
to specific organs, and the identification of the genes and 
pathways involved, is an emerging topic of investigation 
in current cancer research. We have systematically ana-
lyzed organ-specific metastasis with respect to several 
organs across all available primary sites. For each metas-
tasis site, we focused on the common DEGs and enriched 

Fig. 4  Brain-specific metastasis signature in primary breast tumors. a Hierarchical clustering of 268 primary breast cancer patients was performed 
with 23 genes in the tight junction pathway. A dendrogram of the tumors is shown on the left, tumors from patients who developed brain 
metastasis were denoted with asterisk marks; b metastasis-free survival between low- and high-risk groups of primary breast cancer patients 
distinguished based on the risk score. The p-value of survival difference by logrank test was shown
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pathways across all primary sites. This approach has the 
potential to identify genes that are specific to the target 
organ rather than to the primary tumor type. Rank-based 
method RankComp was used for DEG identification, 
which enabled us to enlarge the sample size and compare 
samples collected from different cohorts and microarray 
platforms. However, DEGs were identified only among 
the genes detected by all platforms; other potential DEGs 
could have been missed.

We identified a set of genes and pathways that char-
acterized organ-specific metastasis for each metastasis 
site. Many of the genes identified had not previously been 
linked to organ-specific metastasis. For example, 53 of 
the identified brain-specific metastasis genes overlapped 
with the 243 genes involved in breast cancer metastasis 
to the brain reported by Bos et  al. [12]. The additional 
genes, including members of the GABAR family, the 
glutamate receptor family, and the cholinergic receptor 
family, which were enriched in the neuroactive ligand-
receptor interaction pathway, could have important roles 
in the colonization process in metastasis to the brain. 
As another example, 15 of the identified lung-specific 
metastasis genes overlapped with the 95 genes involved 
in breast cancer metastasis to the lung reported by Minn 
et  al. [11]. The newly identified lung-specific metastasis 
genes and pathways revealed characteristics at different 
stages of the lung-specific metastasis process. For exam-
ple, the CAMs pathway enables cancer cells to attach to 
the endothelium in the target organ, and the Ig-CAMs 
(ICAM1, ICAM3) have important roles in this process 
[41].

The organ-specific metastasis-related pathways identi-
fied for each target organ in this study were not necessar-
ily exclusive of each other, possibly owing to the similar 
characteristics shared by different metastasis organs. For 
example, the JAK-STAT signaling pathway was enriched 
in both lung-specific and brain-specific metastasis. This 
might be due to the functional similarity of the vascu-
lature in the lungs and brain, constituted by a continu-
ous layer of endothelial cells with well-developed tight 
junctions [48]; whereas the microvasculature in liver is 
fenestrated. Moreover, tight junction enriched in brain-
specific metastases and adherens junction, CAMs sign-
aling pathway enriched in lung-specific metastases 
provided further evidence that brain and lung metastatic 
cells need to overcome tight vascular barriers to colonize 
their target organs. The common pathways also could be 
induced by multifunctional genes that cooperate with 
cancer-specific metastasis genes. The pathways enriched 
by these multifunctional genes reflect general enhance-
ments in the process of metastasis. For example, the 
PI3K-Akt signaling pathway, which was enriched in both 
brain and liver metastasis, has multiple roles in regulating 

survival, cell growth, differentiation, cellular metabolism, 
and cytoskeletal reorganization of cells in cancer. Moreo-
ver, it is noteworthy that, many biology pathways, such as 
Inositol phosphate metabolism, Wnt signaling pathway, 
PI3K-Akt signaling pathway, Tight junction, MAPK sign-
aling pathway, TGF-beta signaling pathway and Ras sign-
aling pathway, were strongly associated with cell polarity 
in the process of metastasis.

Organ-specific metastasis is an intriguing but com-
plex problem. Attempts to understand this phenomenon 
molecularly have yielded many useful gene markers. 
However, to our knowledge, these markers tended to 
explore the diversity of primary cancer metastases, 
especially for breast cancer metastases. In contrast, our 
approach more tended to capture the required molecu-
lar alterations to colonize and adapt to certain metastasis 
organs. Many identified genes and pathways are of pre-
viously unknown relevance to organ-specific metastasis. 
Further investigations of the mechanisms that mediate 
site-specific metastasis are likely to lead to the identifica-
tion of new targets for therapy.

Conclusion
In this article, we attempted to explore the commonal-
ity of different primary tumors metastasizing to the same 
organ. For each organ, a substantial proportion of DEGs 
that metastasized from different primary sites were over-
lapped. These organ-specific metastasis genes revealed 
an interplay between the molecular characteristics of the 
cancer cells and those of the target organ. Specifically, 
the neuroactive ligand-receptor interaction pathway and 
HIF-1 signaling pathway were found to have prominent 
roles in adapting to the target organ environment in brain 
and liver metastases, respectively. The identified organ-
specific metastasis genes and pathways were validated 
using a primary breast tumor dataset. Survival and clus-
ter analysis showed that organ-specific metastasis genes 
and pathways tended to be expressed uniquely by a sub-
group of patients having metastasis to the target organ, 
and were associated with the clinical outcome.
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