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Abstract

Compounds with anti-glutamatergic properties currently in clinical use for various indications 

(e.g., Alzheimer's disease, epilepsy, psychosis, mood disorders) have potential utility as novel 

treatments for alcoholism. Enhanced sensitivity to certain acute intoxicating effects (ataxia, 

sedative) of alcohol may be one mechanism by which anti-glutamatergic drugs modulate alcohol 

use. We examined the effects of six compounds (memantine, dextromethorphan, haloperidol, 

lamotrigine, oxcarbazepine, topiramate) on sensitivity to acute intoxicating effects of ethanol 

(ataxia, hypothermia, sedation/hypnosis) in C57BL/6J mice. Analysis of topiramate was extended 

to determine the influence of genetic background (via comparison of the 129S1, BALB/cJ, 

C57BL/6J, DBA/2J inbred strains) and prior stress history (via chronic exposure of C57BL/6J to 

swim stress) on topiramate's effects on ethanol-induced sedation/hypnosis. Results showed that 

one N-methyl-D-aspartate receptor (NMDAR) antagonist, memantine, but not another, 

dextromethorphan, potentiated the ataxic but not hypothermic or sedative/hypnotic effects of 

ethanol. Haloperidol increased ethanol-induced ataxia and sedation/hypnosis to a similar extent as 

the prototypical NMDAR antagonist MK-801. Of the anticonvulsants tested, lamotrigine 

accentuated ethanol-induced sedation/hypnosis, while oxcarbazepine was without effect. 

Topiramate was without effect per se under baseline conditions in C57BL/6J, but had a synergistic 

effect with MK-801 on ethanol-induced sedation/hypnosis. Comparing inbred strains, topiramate 

was found to significantly potentiated ethanol's sedative/hypnotic effects in BALB/cJ, but not 

129S1, C57BL/6J or DBA/2J strains. Topiramate also increased ethanol-induced sedation/

hypnosis in C57BL/6J after exposure to chronic stress exposure. Current data demonstrate that, 

with the exception of MK-801 and haloperidol, the compounds tested had either no significant or 

assay-selective effects on sensitivity to acute ethanol under baseline conditions in C57BL/6J. 

However, significant effects of topiramate were revealed as a function of co-treatment with a 
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NMDAR blocker, genetic background or prior stress history. These findings raise the possibility 

that topiramate and possibly other anti-glutamatergic drugs could promote the acute intoxicating 

effects of ethanol in specific subpopulations defined by genetics or life history.
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Introduction

There is growing evidence that the glutamate system plays a major role in the neural and 

behavioral actions of alcohol and the processes driving the development of alcoholism 

(Heilig and Egli, 2006; Spanagel and Kiefer, 2008). In vitro, ethanol (EtOH) acts an 

allosteric inhibitor of N-methyl-D-aspartate receptors (NMDAR) at behavioral intoxicating 

doses, likely via direct receptor occupancy and actions on gating, as well as receptor 

phosphorylation (Lovinger et al., 1989; Woodward, 2000). EtOH also inhibits the function 

of L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid ionotropic glutamate 

receptors (AMPAR) in vitro, perhaps by facilitating receptor desensitization (Costa et al., 

2000; Fischer et al., 2003; Frye and Fincher, 2000; Lovinger et al., 1989; Moykkynen et al., 

2003). Furthermore, chronic exposure to EtOH produces an upregulation of NMDAR 

protein levels, synaptic NMDAR clustering and NMDAR-mediated synaptic currents 

(Carpenter-Hyland et al., 2004; Crabbe et al., 1991; Kumari and Ticku, 2000; Liu and 

Weiss, 2002; Roberto et al., 2006; Smothers et al., 1997). These adaptive changes are 

thought to contribute to the behavioral tolerance, acute withdrawal and increased alcohol 

consumption that occurs with repeated EtOH exposure (Mulholland and Chandler, 2007).

Pharmacological or genetic blockade of glutamate receptors alters the behavioral effects of 

EtOH. For example, NMDAR antagonists mimic the subjective feelings of intoxication in 

humans and substitute for the discriminative stimulus effects of EtOH in mice (for 

comprehensive review, see Gass and Olive, 2008). NMDAR inactivation reduces EtOH self-

administration and reward-related responses to EtOH and also attenuates withdrawal from 

chronic EtOH exposure (Gass and Olive, 2008). On the other hand, when given in 

combination with EtOH, NMDAR antagonists exacerbate the acute behavioral effects of 

EtOH (Gass and Olive, 2008). Pharmacological blockade of AMPAR also reduces EtOH 

consumption in alcohol-deprived mice, possibly via the GluR3 subunit, (Sanchis-Segura et 

al., 2006), while gene deletion of the GluR1 subunit does not alter most acute responses to 

EtOH (Cowen et al., 2003; Palachick et al., 2008). Finally, metabotropic glutamate receptor 

(mGluR)-acting drugs such as MPEP (mGluR5 antagonist) and LY379268 (mGluR2/3 

agonist) reduce EtOH self-administration in various assays (e.g., Backstrom et al., 2004; 

Cowen et al., 2005; Hodge et al., 2006; Zhao et al., 2006).

Against the background of preclinical data, there is growing interest in the potential efficacy 

of various clinically available drugs with ‘anti-glutamatergic’ properties for the treatment of 

alcoholism (Krupitsky et al., 2007b). For example, the Alzheimer's disease medication 

memantine has anti-alcohol craving effects in recovering alcoholics (e.g., Krupitsky et al., 
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2007a; Krupitsky et al., 2007b); although a recent large double-blind study found no effect 

in actively drinking alcoholics (Evans et al., 2007). Like memantine, the antitussive 

dextromethorphan has NMDAR antagonist activity and appears to mimic the subjective 

intoxicating effects of alcohol (Soyka et al., 2000). Although primarily known as an 

antipsychotic and dopamine D2 receptor blocker, haloperidol also has NMDAR antagonist 

effects and efficacy as a treatment for certain populations of alcoholics (e.g., Coyle, 2006; 

Lynch and Gallagher, 1996). Lamotrigine, oxcarbazepine and topiramate represent a class of 

anticonvulsant compounds with glutamate release inhibiting properties that shows 

encouraging evidence as novel mediations for alcoholism. Lamotrigine attenuates 

withdrawal (Krupitsky et al., 2007b) and reduces craving in alcoholics comorbid for 

schizophrenia or bipolar disorder (Kalyoncu et al., 2005; Rubio et al., 2006). Although the 

efficacy of oxcarbazepine in alcoholism has not yet been well established (Croissant et al., 

2006; Koethe et al., 2007; Schik et al., 2005), there is now good evidence that topiramate 

reduces craving, withdrawal and drinking in recovering alcoholics (Johnson et al., 2004; 

Johnson et al., 2003; Johnson et al., 2007; Komanduri, 2003; Krupitsky et al., 2007b; Rubio 

et al., 2004; Rustembegovic et al., 2002).

Current models propose that alcohol abuse and alcoholism results from multiple risk factors, 

including a drive to alleviate the negative reinforcing effects of alcohol withdrawal (Koob, 

2003) and a progressive impairment of executive control over alcohol seeking (Everitt and 

Robbins, 2005). Predisposition towards alcoholism is also associated with decreased 

sensitivity/increased acute tolerance to certain intoxicating (e.g., ataxic) effects of EtOH 

(Newlin and Thomson, 1990; Schuckit, 1994). However, although the aforementioned 

preclinical literature supports a major interaction between experimental glutamate-acting 

compounds and EtOH, it is currently unclear whether clinically tolerated ‘anti-

glutamatergic’ drugs also modulate (i.e., promote) the acute intoxicating effects of EtOH; an 

effect that could contribute to their therapeutic profile. Thus, the aim of the present study 

was to assess six clinically available compounds that have some degree of anti-

glutamatergic activity (memantine, dextromethorphan, haloperidol, lamotrigine 

oxcarbazepine, topiramate) for effects on the acute intoxicating effects of EtOH in mice. To 

provide a positive control, and to test for potential interactions (e.g., additive effects) with a 

NMDAR antagonist that robustly potentiates the ataxic and sedative/hypnotic effects of 

EtOH in mice (e.g., Palachick et al., 2008), each of the compounds was administered 

alongside, or in combination with MK-801. In addition, because, of these compounds, 

clinical and pre-clinical studies of topiramate have been the most extensive, we also tested 

whether topiramate's effects on EtOH-induced sedation/hypnosis varied as a function of two 

major influences on risk and treatment for alcoholism: genetic background and stress history 

(Goldman et al., 2005; Grant et al., 2008; Koob, 2003).

Material and methods

Subjects

Unless stated otherwise, subjects were male C57BL/6J mice obtained from The Jackson 

Laboratory (Bar Harbor, ME). This strain was chosen as a reference strain given its common 

use in models of alcoholism (Crabbe et al., 2006; Lopez and Becker, 2005) and because we 
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have recently characterized the effects of glutamate receptor manipulations on EtOH 

behaviors in this strain (Boyce-Rustay and Holmes, 2005; Boyce-Rustay and Holmes, 2006; 

Palachick et al., 2008). For the strain comparison experiment, subjects were 129S1/SvImJ 

(hereafter abbreviated 129S1), BALB/cJ, C57BL/6J, and DBA/2J obtained from The 

Jackson Laboratory. These strains were chosen based on their frequent use in behavioral 

neuroscience, including studies of EtOH-related behaviors (e.g., Crabbe et al., 2006; 

Millstein et al., 2006), as genetic backgrounds for mutants and inclusion as ‘group A’ 

priority strains in the Mouse Phenome Project, an international effort to provide the 

biomedical research community with phenotypic data on the most commonly used mouse 

strains (www.jax.org/phenome). Mice were housed 2/cage in a temperature and humidity 

controlled vivarium under a 12 h light/dark cycle (lights on 0600 h) with ad libitum access 

to food and water. All experimental procedures were approved by the National Institute on 

Alcohol Abuse and Alcoholism Animal Care and Use Committee and strictly followed the 

NIH guidelines ‘Using Animals in Intramural Research.’

General procedures

Sensitivity to EtOH's acute intoxicating effects was assessed using a battery of 3 behavioral 

assays: EtOH-induced ataxia, hypothermia and sedation/hypnosis. Mice were tested on each 

assay with the assay involving the lowest dose (i.e., ataxia) first, followed by hypothermia 

and sedation/hypnosis, with an interval of at least 1 week between tests. This regimen is not 

expected to produce long-term tolerance to EtOH's effects (Crabbe, 2007). To our 

knowledge, there is also no evidence that infrequent treatment with any of the ‘anti-

glutamatergic’ compounds tested here would produce tolerance or sensitization. 

Nonetheless, to minimize this possibility and avoid a potential bias introduced by treating 

the same group of mice with the same treatment, mice were randomly reassigned to drug 

treatment groups between each of the 3 assays. For each assay, the effects of the 6 ‘anti-

glutamatergic’ drugs were tested in 7−10 C57BL/6J mice per drug treatment (i.e., in each of 

6 different treatment conditions, see below). Strain differences in responses to topiramate 

were tested in 6−10 mice per strain, per drug treatment. Stress effects on responses to 

topiramate were tested in 8 mice per stress condition, per drug treatment.

Rotarod training and EtOH-induced ataxia

EtOH-induced ataxia was assessed using the accelerating rotarod as previously described 

(Hefner and Holmes, 2007; Rustay et al., 2003). The apparatus was a Med Associates 

rotarod typically used for testing rats (model ENV-577). The 7-cm-diameter dowel was 

covered with 320 grit sandpaper to provide a uniform surface that prevented mice gripping 

the rubberized dowel. Mice were placed onto the rotarod dowel which was then accelerated 

at a constant rate of 8 rpm/min up to 40 rpm. The latency to fall to the floor 10.5 cm below 

was automatically recorded by photocell beams, with a maximum cutoff latency of 5 min. 

Mice first received 10 consecutive training trials separated by a 30-sec inter-trial interval. 

Change in latency to fall was measured by repeated measures analysis of variance. Results 

showed that there was a significant increase in latency to fall across rotarod training trials in 

the experiments assessing the effects of memantine (F9,423=25.15, p<.01, Supplemental 

Fig. 1A), dextromethorphan (F9,423=18.75, p<.01, Supplemental Fig. 1B), haloperidol 

(F9,459=28.94, p<.01, Supplemental Fig. 1C), lamotrigine (F9,513=31.92, p<.01, 
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Supplemental Fig. 1D), oxcarbazepine (F9,423=13.10, p<.01, Supplemental Fig. 1E), and 

topiramate (F9,423=31.87, p<.01, Supplemental Fig. 1F).

Twenty-four hr after training, there was a baseline acclimation trial followed by 2 more 

baseline trials (average=pre-drug performance). Mice were then injected intraperitoneally 

(i.p.) with the ‘anti-glutamatergic’ drug followed, 30 min later, by either saline vehicle or 

0.2 mg/kg MK-801 ((+)-5-methyl-10,11-dihydro-SH-dibenzo[a,d]cyclohepten-5,10-imine 

maleate) (dissolved in a 0.9% saline vehicle). Thirty min later, mice were injected with 1.75 

g/kg EtOH (for schematic of treatment procedure, see Supplemental Fig. 2). For this (and 

the 2 assays below) EtOH (200 proof) was prepared in 0.9% saline to produce 20% v/v 

solutions and injected i.p. with the dose determined by manipulating the volume of injection. 

Thirty min after EtOH challenge, there was 1 acclimation trial followed by 2 test trials 

(average=post-drug performance). The dependent measure was the difference in pre- versus 

post-drug performance (=delta latency). Note, we have previously shown that 0.2 mg/kg 

MK-801 per se does not produce significant rotarod ataxia in C57BL/6J mice (Palachick et 

al., 2008).

EtOH-induced hypothermia

EtOH-induced hypothermia was tested as previously described (Hefner and Holmes, 2007). 

Basal core body temperature was first measured by inserting a Thermalert TH-5 

thermometer (Physitemp, Clifton, NJ, USA) 2 cm into the rectum until a stable reading was 

obtained. Mice were then injected with the ‘anti-glutamatergic’ drug followed, 30 min later, 

by saline vehicle or 0.2 mg MK-801. Thirty min later, mice were injected with 3.0 g/kg 

EtOH (for schematic of treatment procedure, see Supplemental Fig. 2). Temperature was 

measured prior to each drug treatment and 30, 60, 90, and 120 min later to provide an 

average post-EtOH measure. The difference between pre-EtOH (i.e., post-‘anti-

glutamatergic drug’/post-MK-801) and post-EtOH temperature was taken as the dependent 

measure (=delta temperature). Ambient room temperature was 23°C. Note, we have 

previously reported that 0.2 mg/kg MK-801 per se does not produce hypothermia in 

C57BL/6J mice (Palachick et al., 2008).

EtOH-induced sedation/hypnosis

EtOH-induced sedation/hypnosis was assessed as previously described (Daws et al., 2006). 

Mice were then injected with the ‘anti-glutamatergic’ drug followed, 30 min later, by saline 

vehicle or 0.2 mg/kg MK-801. Thirty min later, mice were injected with 3.0 g/kg EtOH (for 

schematic of treatment procedure, see Supplemental Fig. 2) and immediately placed into the 

supine position in a ‘V’-shaped chamber. Sleep time was measured as the time from 

injection to recovery of the righting reflex (turning onto all 4 paws twice in 30 sec after 

initial self-righting), with a maximum latency of 180 min before the experiment was 

terminated. To measure blood EtOH concentrations (BECs) at recovery, mice were 

sacrificed via cervical dislocation and rapid decapitation and trunk blood was taken for 

analysis using the Analox AM1 Alcohol Analyzer (Analox Instruments USA Inc, 

Lunenburg, MA). Note, we have previously reported that 0.2 mg/kg MK-801 per se does not 

produce sedation/hypnosis in C57BL/6J mice (Palachick et al., 2008).
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Effects of memantine, dextromethorphan, haloperidol

The effects of pre-treatment with memantine (1-amino-3,5-dimethyl-adamantane), 

dextromethorphan ((+)-3-methoxy-17-methyl-(9α,13α,14α)-morphinan) and haloperidol (4-

[4-(4-chlorophenyl)-4-hydroxy-1-piperidyl]-1-(4-fluorophenyl)-butan-1-one) were tested as 

described above. Memantine (7.5 and 15 mg/kg), dextramethorphan (30 and 60 mg/kg) and 

haloperidol (0.15 and 0.30 mg/kg) were dissolved in a 0.9% saline vehicle, which also 

served as the 0 mg/kg dose and injected i.p. in a volume of 10 mL/kg body weight. Doses 

were chosen on the basis of prior behavioral studies in rats and mice: memantine (Holter et 

al., 1996; Piasecki et al., 1998), dextramethorphan (Erden et al., 1999), haloperidol 

(Karlsson et al., 2008; Wiedholz et al., 2008), as well as pilot work showing that when 

injected alone (i.e., without EtOH) these doses did not produce significant rotarod ataxia or 

sedation/hypnosis (effects on core body temperature are described in the Results below). All 

3 drugs were obtained from Sigma (St. Louis, MO).

Effects of lamotrigine, oxcarbazepine, topiramate

The effects of pre-treatment with lamotrigine (6-(2,3-dichlorophenyl)-1,2,4-triazine-3,5-

diamine), oxcarbazepine (10,11-Dihydro-10-oxo-5 H -dibenz(b,f)azepine-5-carboxamide) 

and topiramate (2,3:4,5-bis-O-(1 methylethylidene)-[beta]-D-fructopyranose sulfamate) 

were tested as described above. Lamotrigine (15 and 30 mg/kg) was dissolved in 30% 

DMSO, which served as the 0 mg/kg dose for this drug. Topiramate (25 and 50 mg/kg) was 

dissolved in 0.9% physiological saline, which also served as the 0 mg/kg dose. Both drugs 

were injected i.p. in a volume of 10 mL/kg body weight. Oxcarbazepine (25 and 50 mg/kg) 

was dissolved in 60% DMSO, which served as the 0 mg/kg dose, and injected i.p. at a 

(lower) volume of 5 mL/kg body weight. Doses were chosen on the basis of prior behavioral 

studies in rats and mice: lamotrigine (Brody et al., 2003; Vengeliene et al., 2007), 

oxcarbazepine (Beijamini et al., 1998), topiramate (Gabriel and Cunningham, 2005; 

Hargreaves and McGregor, 2007; Knapp et al., 2007a; Nguyen et al., 2007) and pilot work 

showing that when injected alone (i.e., without EtOH) these doses did not produce 

significant rotarod ataxia or sedation/hypnosis (effects on core body temperature are 

described in the Results below). All 3 drugs were obtained from Sigma (St. Louis, MO).

Strain comparison of effects of topiramate on EtOH-induced sedation/hypnosis

The effect of topiramate pre-treatment on EtOH-induced sedation/hypnosis was tested in 

EtOH-naïve C57BL/6J, DBA/2J, 129S1, and BALB/cJ mice. Mice were injected i.p. with 0 

or 50 mg topiramate 60 min (to mimic the time interval between topiramate and EtOH used 

above) prior to 3.0 g/kg EtOH and tested for sleep time as above.

Effects of topiramate on EtOH-induced sedation/hypnosis following chronic stress

C57BL/6J mice were exposed to a regimen of chronic swim stress previously shown to 

produce decreases in EtOH self-administration and produce increases in sensitivity to the 

sedative/hypnotic effects of 4.0 g/kg EtOH in BALB/cByJ, C57BL/6J and DBA/2J (Boyce-

Rustay et al., 2008a; Boyce-Rustay et al., 2007; Boyce-Rustay et al., 2008b). Mice were 

placed in a transparent Plexiglas cylinder (20 cm diameter) filled halfway with water (24±1 

°C) for 10 min each day for 14 consecutive days. We have previously shown that this 
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procedure produces significant elevation of corticosterone levels that persist after 14 days 

(Boyce-Rustay et al., 2007). Twenty-four hr after the final stress exposure, mice were 

injected i.p. with 0 or 50 mg topiramate 60 min (to mimic the time interval between 

topiramate and EtOH used above) prior to 3.0 g/kg EtOH and tested for sleep time as above.

Statistical analysis

Drug (‘anti-glutamatergic’ drug) x drug (MK-801), strain x topiramate and stress x 

topiramate effects were analyzed using analysis of variance and Newman Keuls post hoc 

tests. The relationship between sleep time duration and blood EtOH concentrations were 

analyzed using linear regression. Statistical significance was set at p<.05.

Results

Memantine

There was a significant memantine x MK-801 interaction for delta latency to fall from the 

rotarod (F2,42=4.15, p<.05). Post hoc analysis showed that memantine dose-dependently 

increased EtOH-induced ataxia relative to vehicle, and that MK-801 pre-treatment 

augmented EtOH-induced ataxia relative to vehicle pre-treatment, regardless of memantine 

dose (Fig. 1A). Although there was no indication of an additive effect between these two 

drug treatments on ataxia, this may have been obscured by a ‘floor effect’ because MK-801 

per se impaired rotarod performance to near baseline. This general caveat should be borne in 

mind for all the drugs tested.

Neither memantine nor MK-801 affected core temperature or EtOH-induced hypothermia 

(Fig. 1B).

There was a significant effect of MK-801 (F2,41=119.52, p<.01) but not memantine and no 

drug x drug interaction for sleep time. MK-801 pre-treatment prolonged EtOH-induced 

sleep time relative to vehicle pre-treatment (Fig. 1C). Although there was a significant 

memantine x MK-801 interaction for BECs at recovery (F2,41=14.52, p<.01), post hoc 

analysis found lower BECs after MK-801 regardless of memantine treatment (Supplemental 

Table 1). There was a significant negative relationship between sleep time and BECs at 

recovery (R2=.75, p<.01, Supplemental Fig. 3A).

In summary, memantine potentiated the ataxic, but not hypothermic or sedative/hypnotic, 

effects of EtOH.

Dextromethorphan

There was a significant effect of MK-801 (F2,42=138.71, p<.01) but not dextromethorphan 

and no inter-drug interaction for delta latency to fall. MK-801 pre-treatment promoted 

EtOH-induced ataxia relative to vehicle pre-treatment (Fig. 2A).

Prior to MK-801 and EtOH treatment, the highest dose of dextromethorphan significantly 

decreased core body temperature relative to vehicle (F2,45=8.89, p<.01; 0 mg/kg=38.1 ±0.1 

°C, 30 mg/kg=37.9 ±0.1, 60 mg/kg=37.0 ±0.3). Neither dextromethorphan nor MK-801 

altered the hypothermic effects of EtOH (Fig. 2B).
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There was a significant effect of MK-801 (F1,42=330.78, p<.01) and dextromethorphan 

(F2,42=4.50, p<.05) but no inter-drug interaction for sleep time. The 60 mg/kg dose of 

dextromethorphan treatment produced a non-significant trend (as measured by post hoc 

tests) for prolonged EtOH-induced sleep time relative to vehicle (Fig. 2C). MK-801 pre-

treatment prolonged EtOH-induced sleep time relative to vehicle pre-treatment. There was a 

significant dextromethorphan x MK-801 interaction for BECs at recovery (F2,41=14.52, p<.

01). Post hoc tests showed that BECs were significantly lower in MK-801 pre-treated mice 

than in mice pre-treated with vehicle, irrespective of dextromethorphan treatment 

(Supplemental Table 1). There was a significant negative correlation between sleep time 

duration and BECs at recovery (R2=.89, p<.01, Supplemental Fig. 3B).

To summarize, dextromethorphan failed to alter the ataxic, hypothermic or sedative/

hypnotic effects of EtOH.

Haloperidol

There was a significant interaction between haloperidol and MK-801 (F2,46=4.51, p<.05) 

for delta latency to fall. Post hoc analysis showed that 0.3 mg/kg haloperidol significantly 

promoted EtOH-induced ataxia relative to vehicle, while MK-801 pre-treatment increased 

EtOH-induced ataxia in mice that also received vehicle or 0.15 mg/kg, but not 0.3 mg/kg, 

haloperidol (Fig. 3A).

Neither baseline nor EtOH-induced hypothermia was affected by haloperidol or MK-801 

(Fig. 3B).

There was a significant MK-801 x haloperidol interaction for sleep time (F2,43=14.13, p<.

01). Post hoc analysis showed that showed that 0.3 mg/kg haloperidol increased EtOH-

induced sleep time relative to vehicle, to a level equivalent to that produced by MK-801 pre-

treatment (Fig. 3C). There was a significant haloperidol x MK-801 interaction for BECs at 

recovery (F2,41=14.52, p<.01). Post hoc analysis revealed that BECs were lower at 

recovery in haloperidol treated mice regardless of topiramate treatment (Supplemental Table 

1). There was a significant negative correlation between sleep time duration and BECs at 

recovery (R2=.67, p<.01, Supplemental Fig. 3C).

In summary, haloperidol potentiated the ataxic and sedative/hypnotic, but not hypothermic, 

effects of EtOH.

Lamotrigine

There was a significant effect of lamotrigine (F2,51=4.29, p<.05) and MK-801 

(F1,51=83.40, p<.01) but no inter-drug interaction for delta latency to fall. The 30 mg/kg 

dose of lamotrigine treatment produced a non-significant trend (as determined by post hoc 

tests) for potentiated EtOH-induced ataxia relative to vehicle (Fig. 2A). MK-801 pre-

treatment promoted EtOH-induced ataxia relative to vehicle pre-treatment (Fig. 4A).

Prior to MK-801 or EtOH treatment, lamotrigine dose-dependently decreased core 

temperature relative to vehicle (F2,53=16.99, p<.01; 0 mg/kg=37.9 ±0.1°C change, 15 mg/
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kg=35.9 ±0.4, 30 mg/kg=34.3 ±0.5). However, neither lamotrigine nor MK-801 affected 

EtOH-induced hypothermia (Fig. 4B).

There was a significant MK-801 x lamotrigine interaction for sleep time (F2,44=4.42, p<.

01). Post hoc analysis showed that 30 mg/kg lamotrigine increased EtOH-induced sleep time 

relative to vehicle. MK-801 pre-treatment increased EtOH-induced sleep time in mice that 

also received vehicle or 15 mg/kg, but not 30 mg/kg, lamotrigine — however, the lack of 

MK-801 effect at the highest lamotrigine dose could be due to a ‘ceiling effect’ given the 

180 min sleep time cutoff at which point we ended experiments (Fig. 4C). There was a 

significant lamotrigine x MK-801 interaction for BECs at recovery (F2,41=14.52, p<.01). 

Post hoc analysis revealed lower BECs after MK-801 pre-treatment regardless of 

lamotrigine treatment (Supplemental Table 1). There was a significant negative relationship 

between sleep time duration and recovery BECs (R2=.26, p<.01, Supplemental Fig. 3D).

To summarize, lamotrigine potentiated the sedative/hypnotic, but not ataxic or hypothermic, 

effects of EtOH.

Oxcarbazepine

There was a significant effect of MK-801 (F2,42=72.75, p<.01) but not oxcarbazepine and 

no drug interaction for delta latency to fall. MK-801 pre-treatment promoted EtOH-induced 

ataxia relative to vehicle pre-treatment (Fig. 5A).

Prior to MK-801 or EtOH treatment, the highest dose of oxcarbazepine per se produced a 

significant decrease in body temperature relative to vehicle (F2,45=6.34, p<.01; 0 mg/

kg=37.1 ±0.2°C, 25 mg/kg=35.7 ±0.3, 50 mg/kg=34.2 ±0.8). However, neither 

oxcarbazepine nor MK-801 altered the EtOH-induced hypothermia (Fig. 5B).

There was a significant effect of MK-801 (F1,41=168.19, p<.01) and oxcarbazepine 

(F2,41=8.77, p<.01) but no interaction for sleep time. Post hoc analysis showed that 50 

mg/kg oxcarbazepine dose produced a non-significant trend for prolonged EtOH-induced 

sleep time relative to vehicle (Fig. 5C). MK-801 pre-treatment prolonged EtOH-induced 

sleep time relative to vehicle pre-treatment. Mice pre-treated with MK-801 also showed 

lower BECs at recovery than vehicle pre-treated mice (F2,41=103.33, p<.01) (Supplemental 

Table 1). There was a significant negative correlation between sleep time and recovery 

BECs (R2=.66, p<.01, Supplemental Fig. 3E).

In summary, oxcarbazepine did not reliably potentiate either the ataxic, hypothermia or 

sedative/hypnotic effects of EtOH.

Topiramate

There was a significant effect of topiramate (F2,42=3.26, p<.05) and MK-801 (F1,42=66.58, 

p<.01) but no inter-drug interaction for delta latency to fall. There was a non-significant (as 

determined by post hoc tests) trend for both topiramate doses to potentiate EtOH-induced 

ataxia relative to vehicle (Fig. 6A). MK-801 pre-treatment significantly potentiated EtOH-

induced ataxia relative to vehicle pre-treatment, irrespective of topiramate treatment.
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Neither baseline nor EtOH-induced hypothermia was affected by topiramate or MK-801 

(Fig. 6B).

There was a significant topiramate x MK-801 interaction for sleep time (F2,41=13.59, p<.

01). Post hoc analysis showed that while topiramate per se had no effect on EtOH-induced 

sleep time, the drug dose-dependently enhanced MK-801-potentiation of EtOH-induced 

sleep time (Fig. 6C). There was also a significant topiramate x MK-801 interaction for BECs 

at recovery (F2,41=14.52, p<.01). Post hoc showed that BECs were lower after MK-801 

pre-treatment relative to vehicle pre-treatment regardless of topiramate dose (Supplemental 

Table 1). There was a significant negative correlation between sleep time duration and BECs 

at recovery (R2=.78, p<.01, Supplemental Fig. 3F).

In summary, topiramate per se did not affect the ataxic, hypothermic or sedative/hypnotic 

effects of EtOH in C57BL/6J mice, but augmented the pro-sedative/hypnotic effects of 

MK-801.

Topiramate across strains

There was a significant strain x topiramate interaction (F2,50=4.14, p<.05). Post hoc 

showed that topiramate increased EtOH-induced sleep time relative to vehicle in BALB/cJ, 

but not C57BL/6J, 129S1 or DBA/2J (Fig. 7). In vehicle-treated mice, sleep time was higher 

in 129S1 than BALB/cJ, C57BL/6J and DBA/2J, and higher in DBA/2J than C57BL/6J. 

There was a significant strain x topiramate interaction for BECs at recovery (F3,49=3.73, 

p<.05). Post hoc analysis found lower BECs in 129S1 than the other 3 strains, regardless of 

treatment (Supplemental Table 2). There was a borderline significant trend (p=.0782) for 

lower BECs in topiramate-treated BALB/cJ relative to vehicle-treated BALB/cJ 

counterparts.

Topiramate after chronic stress

There was a significant effect of stress (F1,28=6.17, p<.05) and topiramate (F1,28=7.63, p<.

05) and a non-significant stress x topiramate interaction. Planned post hoc comparisons 

showed topiramate increased EtOH-induced sleep time in stressed mice but not non-stressed 

controls (Fig. 8). In vehicle-treated mice, sleep time did not differ between stressed and non-

stressed groups. BECs were not analyzed in this experiment as we have previously found no 

effect of stress on BECs in C57BL/6J (Boyce-Rustay et al., 2007).

Discussion

The current study assessed the effects of various ‘anti-glutamatergic’ drugs with clinical 

promise as novel alcoholism treatments for effects on the acute intoxicating actions of 

EtOH. Results are summarized in Supplemental Table 3.

The first finding was that the uncompetitive NMDAR antagonist, MK-801, reliably 

potentiated the ataxic and sedative/hypnotic effects of acute EtOH, consistent with previous 

studies (e.g., Boyce-Rustay and Holmes, 2005; Kuribara, 1994; Meyer and Phillips, 2003; 

Palachick et al., 2008; Shen and Phillips, 1998; Vanover, 1999; Wilson et al., 1990). By 

contrast, MK-801 did not affect EtOH-induced hypothermia, and did not appear to impair 
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EtOH metabolism, at least as evidenced by a negative relationship between sleep time 

duration and lesser BECs. The same was true for the other six compounds tested. This 

pattern of findings argues against the possibility that any of these drugs affected sensitivity 

to EtOH's behavioral actions by disrupting EtOH's pharmacokinetic effects.

While MK-801 effects targets other than the NMDAR, including dopamine (Seeman et al., 

2005), norepinephrine (Snell et al., 1988) and acetylcholine (Ramoa et al., 1990), it is likely 

that the drug's EtOH-potentiating effects are due in large part to antagonism of NMDARs. 

As such, because memantine and dextromethorphan also act as uncompetitive NMDAR 

antagonists, they might be expected to mimic the EtOH-potentiating effects of MK-801. 

Indeed, akin to the ability of the NMDAR antagonist ketamine to mimic subjective 

intoxicating effects of EtOH (Krystal et al., 2003), memantine potentiated the dissociative 

effects of EtOH in human volunteers (Bisaga and Evans, 2004), although the same study did 

not observe an effect on EtOH-induced stimulation or sedation. Dextromethorphan has also 

been found to mimic the intoxicating effects of EtOH in healthy volunteers and detoxified 

alcoholics and produce mild craving in the latter (Soyka et al., 2000). In rodents, previous 

studies found that dextromethorphan attenuates EtOH-withdrawal (Erden et al., 1999) and 

memantine reduces EtOH self-administration, particularly under conditions such as 

deprivation or limited access (Holter et al., 1996; Piasecki et al., 1998). Current data showed 

that memantine significantly potentiated EtOH-induced ataxia on the rotarod test, but did not 

affect EtOH-induced sedation/hypnosis. On the other hand, dextromethorphan had no effects 

on either measure at the doses tested. The reason why these drugs did not fully recapitulate 

the effects of MK-801 is not fully clear. The most parsimonious explanation is that they 

have lesser affinity for NMDARs than MK-801 (see Parsons et al., 1999), although their 

actions at other targets such as 5-HT3, dopamine D2 and nicotinic receptors may also have 

contributed to their pharmacodynamic profile (Aracava et al., 2005; Nankai et al., 1995; 

Rammes et al., 2001; Seeman et al., 2008).

Though haloperidol is a potent dopamine D2 receptor antagonist, this drug also blocks 

NMDAR (in vitro) amongst its various other actions (Lynch and Gallagher, 1996). 

Interestingly, haloperidol exerted effects on EtOH sensitivity that were stronger than either 

memantine or dextromethorphan and, at the higher dose (0.3 mg/kg), actually of a similar 

magnitude to those produced by MK-801. These data are in agreement with previous studies 

demonstrating that haloperidol produced effects on EtOH-induced sedation/hypnosis as well 

as other EtOH-related behaviors that are similar to those produced by NMDAR antagonists, 

including suppression of EtOH self-administration and attenuation of EtOH-withdrawal 

(Broadbent et al., 1995; Cohen et al., 1997; Cunningham et al., 1992; Files et al., 1998; 

Overstreet et al., 2007; Risinger et al., 1992; Uzbay et al., 1994). On the other hand, in 

contrast to NMDAR inactivation (Boyce-Rustay and Cunningham, 2004; Boyce-Rustay and 

Holmes, 2006) haloperidol does not block EtOH conditioned place preference (Cunningham 

et al., 1992; Risinger et al., 1992). Thus, while these data and current findings suggest that 

anti-glutamatergic activity could contribute to haloperidol's effects on EtOH-related 

behaviors, the available evidence is not fully consistent and remains indirect. Nonetheless, 

these data speak to the clinical utility of this antipsychotic drug for treating alcoholism co-

morbid with psychosis (Coyle, 2006).
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There is growing interest in the therapeutic potential of anticonvulsants for alcoholism. 

Topiramate, lamotrigine and oxcarbazepine inhibit glutamate release, probably via blockade 

of voltage-gated sodium and calcium channels (Ahmad et al., 2004b; Cunningham and 

Jones, 2000; Lees and Leach, 1993; Sitges et al., 2007; Waldmeier et al., 1995; Wang et al., 

1996; Wang et al., 2001). However, as with memantine, dextromethorphan and haloperidol, 

it is important to note that the pharmacological actions of these drugs are not restricted to 

anti-glutamatergic effects. For example, topiramate activates gamma-aminobutyric acid 

(GABA) receptors (Gordey et al., 2000; Sitges et al., 2007; White et al., 2007), and 

lamotrigine increases GABA release and inhibits extracellular levels of serotonin and 

dopamine (Ahmad et al., 2004a; Cunningham and Jones, 2000; Lees and Leach, 1993; 

Waldmeier et al., 1995). One or more of these actions could potentially contribute to the in 

vivo effects of these drugs on EtOH-related behaviors along with their anti-glutamatergic 

properties. In this context, lamotrigine has been found to attenuate cue-induced alcohol-

seeking in rats (Vengeliene et al., 2007) but has no effect on EtOH-withdrawal anxiety-like 

behavior (Knapp et al., 2007b). Moreover, while there are to our knowledge no published 

reports of oxcarbazepine effects on rodent EtOH-related behaviors, topiramate has no effect 

on EtOH conditioned place preference but does attenuate EtOH withdrawal and drinking, 

perhaps most robustly after EtOH deprivation (Cagetti et al., 2004; Farook et al., 2007; 

Gabriel and Cunningham, 2005; Gremel et al., 2006; Hargreaves and McGregor, 2007; 

Knapp et al., 2007a; Nguyen et al., 2007).

The current experiments found that these compounds were largely devoid of effects on acute 

sensitivity to EtOH in the reference mouse strain C57BL/6J. Although the highest dose of 

lamotrigine tested promoted EtOH's sedative/hypnotic effects, this was associated with a 

hypothermic effect of lamotrigine treatment per se and it is unclear whether prolonged sleep 

time in response to EtOH was caused by loss of core body temperature. Therefore, one 

interpretation of these negative data is the increased sensitivity to the intoxicating effects of 

EtOH is not a major mechanism of action driving the anti-alcohol efficacy of these 

compounds. However, a number of additional findings point to a more nuanced conclusion. 

First, topiramate produced a significant increase (and lamotrigine a non-significant trend) in 

sleep time when mice were co-treated with MK-801. This synergistic-like effect could 

reflect the combined effects of glutamate release inhibition and NMDAR blockade, which 

would in turn demonstrate that topiramate effects can be unmasked under conditions of 

reduced NMDAR function. Second, despite showing no differences in baseline sleep 

responses to EtOH as compared to C57BL/6J, the BALB/cJ strain exhibited a clear EtOH-

potentiating response to topiramate. Interestingly, the BALB/cJ strain is characterized as a 

relatively stress-reactive, ‘anxious’ strain of mouse (e.g., Belzung, 2001; Norcross et al., 

2008). This is noteworthy in the context of the third finding that the normally topiramate-

unresponsive C57BL/6J strain could also be rendered sensitive to the drugs pro-EtOH-

sedating effects following chronic stress exposure. Stress per se had minimal effects on 

EtOH-induced sleep, consistent with previous reports at this dose (Boyce-Rustay et al., 

2007; Boyce-Rustay et al., 2008b). Thus, taken together our data show that topiramate did 

promote the intoxicating effects of EtOH, but did so in a manner dependent upon NMDAR 

availability, genetic background and stress exposure.
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These findings raise a number of important issues for future research. One obvious question 

is whether the other anti-glutamatergic compounds tested herein also show interactions with 

stress and genetic background. A second key issue is how the profile of these drugs might 

differ in C57BL/6J mice rendered EtOH-dependent (e.g., Becker and Lopez, 2004). EtOH-

dependence not only better models the clinical state, but current theories posit that the 

development of dependence is associated with increased glutamatergic signaling (Heilig and 

Egli, 2006; Koob, 2003; Spanagel and Kiefer, 2008). As such, it will be interesting to assess 

whether topiramate and other anti-glutamatergic drugs promote EtOH intoxication in post-

dependent mice, such as C57BL/6J, that are insensitive under baseline conditions.

In summary, the current study found that memantine significantly potentiated the ataxic 

effects of EtOH, while another compound that also has NMDAR antagonist properties, 

dextromethorphan, failed to affect three measures of EtOH sensitivity. The antipsychotic 

haloperidol strongly promoted both the ataxic and sedative/hypnotic effects of EtOH to a 

similar degree as the prototypical NMDAR antagonist MK-801, but it is unclear to what 

extent, if any, these effects were due to haloperidol's actions at NMDARs. The 

anticonvulsants lamotrigine, oxcarbazepine and topiramate largely failed to alter the acute 

intoxicating effects of EtOH in C57BL/6J under baseline conditions. Importantly however, 

topiramate significantly potentiated EtOH-induced sedation/hypnosis in the BALB/cJ strain, 

and in C57BL/6J either co-treated with MK-801 or exposed to chronic swim stress. 

Although future studies are needed in rodent models and human subjects, these data lend 

tentative support for the hypothesis that topiramate, and possibly other clinically tolerated 

anti-glutamatergic drugs, promote the intoxicating effects of alcohol in genetically- or life 

history-defined sub-populations, and that these actions may contribute to the drugs’ profile 

as treatments for alcoholism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Effects of memantine and MK-801. (A) Both memantine and MK-801 potentiated 1.75 g/kg 

EtOH-induced ataxia (n=8/dose). (B) Neither memantine nor MK-801 affected 3.0 g/kg 

EtOH-induced hypothermia (n=8/dose). (D) MK-801 but not memantine potentiated 3.0 

g/kg EtOH-induced sedation/hypnosis (n=7−8/dose). **p<.01, *p<.05 vs. vehicle (open 

bars) at the same memantine dose; ##p<.01 vs. vehicle/vehicle. Data in Figs 1-8 are Means 

±SEM.
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Fig. 2. 
Effects of dextromethorphan and MK-801. (A) MK-801 but not dextromethorphan 

potentiated 1.75 g/kg EtOH-induced ataxia (n=8/dose). (B) Neither dextromethorphan nor 

MK-801 affected 3.0 g/kg EtOH-induced hypothermia (n=8/dose). (C) MK-801 but not 

dextromethorphan potentiated EtOH-induced 3.0 g/kg sedation/hypnosis (n=8/dose).
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Fig. 3. 
Effects of haloperidol and MK-801. (A) Both haloperidol and MK-801 potentiated 1.75 g/kg 

EtOH-induced ataxia (n=7−10/dose). (B) Neither MK-801 nor haloperidol affected 3.0 g/kg 

EtOH-induced hypothermia (n=7−10/dose). (C) Both haloperidol and MK-801 potentiated 

3.0 g/kg EtOH-induced sedation/hypnosis (n=7−10/dose). **p<.01 vs. vehicle (open bars) at 

the same haloperidol dose; ##p<.01 vs. vehicle/vehicle.
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Fig. 4. 
Effects of lamotrigine and MK-801. (A) MK-801 but not lamotrigine potentiated 1.75 g/kg 

EtOH-induced ataxia (n=9−11/dose). (B) Neither lamotrigine nor MK-801 affected 3.0 g/kg 

EtOH-induced hypothermia (n=8−12/dose). (C) Both lamotrigine and MK-801 potentiated 

3.0 g/kg EtOH-induced sedation/hypnosis (n=7−10/dose). **p<.01 vs. vehicle (open bars) at 

the same lamotrigine dose; ##p<.01 vs. vehicle/vehicle.
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Fig. 5. 
Effects of oxcarbazepine and MK-801. (A) MK-801 but not oxcarbazepine potentiated 1.75 

g/kg EtOH-induced ataxia (n=8/dose). (B) Neither MK-801 nor oxcarbazepine affected 3.0 

g/kg EtOH-induced hypothermia (n=7−8/dose). (C) MK-801 but not oxcarbazepine 

potentiated 3.0 g/kg EtOH-induced sedation/hypnosis (n=7−8/dose). **p<.01 vs. vehicle 

(open bars) at the same oxcarbazepine dose.
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Fig. 6. 
Effects of topiramate and MK-801. (A) MK-801 but not topiramate potentiated 1.75 g/kg 

EtOH-induced ataxia (n=8/dose). (B) Neither MK-801 nor topiramate affected 3.0 g/kg 

EtOH-induced hypothermia (n=8−9/dose). (C) MK-801 but not topiramate potentiated 3.0 

g/kg EtOH-induced sedation/hypnosis, while topiramate augmented MK-801's EtOH-

potentiating effects (n=7−8/dose). **p<.01 vs. vehicle (open bars) at the same topiramate 

dose; ##p<.01, #p<.05 vs. vehicle/vehicle.
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Fig. 7. 
Effects of topiramate across inbred strains. Topiramate potentiated 3.0 g/kg EtOH-induced 

sedation/hypnosis in BALB/cJ but not 129S1, C57BL/6J or DBA/2J. n=6-8/dose/strain. ‡ 

p<.01 vs. all other vehicle-treated strains; **p<.01 vs. vehicle-treated BALB/cJ; #p<.05 vs. 

C57BL/6J.
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Fig. 8. 
Effects of topiramate following exposure to chronic stress. Topiramate potentiated 3.0 g/kg 

EtOH-induced sedation/hypnosis in C57BL/6J mice exposed to chronic swim stress, but not 

non-stressed controls. n=8/dose/stress condition. **p<.01 vs. vehicle-treated stressed.
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