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Abstract

Motivation: Cryo-electron microscopy (cryo-EM) is a widely used technology for ultrastructure determination, which
constructs the 3D structures of protein and macromolecular complex from a set of 2D micrographs. However, lim-
ited by the electron beam dose, the micrographs in cryo-EM generally suffer from the extremely low signal-to-noise
ratio (SNR), which hampers the efficiency and effectiveness of downstream analysis. Especially, the noise in cryo-
EM is not simple additive or multiplicative noise whose statistical characteristics are quite different from the ones in
natural image, extremely shackling the performance of conventional denoising methods.

Results: Here, we introduce the Noise-Transfer2Clean (NT2C), a denoising deep neural network (DNN) for cryo-EM
to enhance image contrast and restore specimen signal, whose main idea is to improve the denoising performance
by correctly learning the noise distribution of cryo-EM images and transferring the statistical nature of noise into the
denoiser. Especially, to cope with the complex noise model in cryo-EM, we design a contrast-guided noise and sig-
nal re-weighted algorithm to achieve clean-noisy data synthesis and data augmentation, making our method au-
thentically achieve signal restoration based on noise’s true properties. Our work verifies the feasibility of denoising
based on mining the complex cryo-EM noise patterns directly from the noise patches. Comprehensive experimental
results on simulated datasets and real datasets show that NT2C achieved a notable improvement in image denois-
ing, especially in background noise removal, compared with the commonly used methods. Moreover, a case study
on the real dataset demonstrates that NT2C can greatly alleviate the obstacles caused by the SNR to particle picking
and simplify the identifying of particles.

Availabilityand implementation: The code is available at https://github.com/Lihongjia-ict/NoiseTransfer2Clean/.

Contact: hanrenmin@gmail.com or zhup@ibp.ac.cn or zhangfa@ict.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cryo-electron microscopy (cryo-EM) is a widely used technology
that resolves high-resolution three-dimensional (3D) structures of
protein and macromolecular complexes from a series of two-
dimensional (2D) micrographs (Bai et al., 2015). However, the
signal-to-noise ratio (SNR) of raw cryo-EM images is estimated to
be only as high as 0.01–0.1 (Bendory et al., 2020), among the lowest
in any imaging field, which extremely decreases the accuracy and ef-
ficiency in downstream analysis of cryo-EM images and reduces the

confidence of structures determination. Therefore, an image restor-
ation operation is usually necessary before particle picking, structure
segmentation and other cryo-EM data analysis processes to attain
high-resolution cryo-EM 3D reconstructions.

A variety of conventional methods have been developed to im-
prove the contrast and decrease the noise level in cryo-EM micro-
graphs, such as BM3D (Dabov et al., 2007), band-pass filter
(Penczek, 2010) and Wiener filter (Sindelar and Grigorieff, 2011).
For an image restoration algorithm, additional image prior know-
ledge will be introduced to repair the missing and degenerated
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information, in which human knowledge concluded from the nat-
ural images is usually used. However, the noise model in the cryo-
EM micrograph is usually unknown and varies in different data col-
lection configurations. Therefore, the pre-defined image priors used
in these conventional methods cannot correctly fit the noise model
in cryo-EM, leading to a limited performance when the conventional
methods are applied to cryo-EM data.

Recently, learning-based denoising methods have shown their
advantages. Mao et al. (2016) proposed an encoding-decoding
framework with symmetric convolutional-deconvolutional layers
for image restoration. Ledig et al. (2017) presented a generative ad-
versarial network (GAN) (Goodfellow et al., 2020) for image super-
resolution (SR) which recovers photo-realistic textures from heavily
downsampled images. However, most of these learning methods re-
quire a clean-noisy paired dataset for training, therefore, cannot be
applied to cryo-EM, where ground truth is unavailable. To over-
come this barrier, several methods learned from paired noisy images
or single noisy images are proposed (Krull et al., 2019). Lehtinen
et al. (2018) presented a general machine learning (ML) framework,
called Noise2Noise (N2N), for learning denoising models from
paired noisy images. Chen et al. (2018) proposed a GAN-CNN-
based framework, GCBD, for learning denoising models from single
noisy images where GAN is utilized to build paired training datasets
and then convolutional neural network (CNN) is employed for
denoising. Specifically, Bepler et al. (2020) proposed a denoiser
called Topaz-Denoise for cryo-EM and cryo-electron tomography
(cryo-ET), based on an N2N architecture and trained by thousands
of cryo-EM micrographs. However, the N2N framework is based
on a hypothesis that the noise is zero mean and independent and
identically distributed. Therefore, theoretically, the noise removed
by TopazDenoise is mainly digitization noise which is caused by the
detector in cryo-EM.

In this article, we propose a novel denoising framework, the
Noise-Transfer2Clean (NT2C), to restore the specimen signal and
enhance the image contrast by learning the unknown noise distribu-
tion directly from the pure noise patches in the cryo-EM image.
First, a coarse CNN denoiser is trained to enhance the contrast of a
cryo-EM image, to distinguish the background and specimen signal.
Then, the pure noise patches are extracted from the micrographs
and fed into a GAN to estimate and simulate the noise distribution.
Finally, a fine denoising network is able to be trained by the clean-
noisy pairs simulated from the accurately estimated noise distribu-
tion in GAN. By completely mining the noise patterns from pure
noise patches, our strategy is able to further decomplex the specimen
signal from the noisy background. Especially, to cope with the com-
plex noise model in cryo-EM, we design a contrast-guided noise and
signal re-weighted algorithm to achieve clean-noisy data synthesis
and data augmentation, making our method authentically achieve
signal restoration based on the noise’s true properties. We have
tested and compared our denoising model with several commonly
used cryo-EM denoising algorithms on both synthetic and real data-
sets. The experiment results show that NT2C performs particularly
excellent in background noise removal and the denoising perform-
ance of NT2C can be comparable to current state-of-the-art meth-
ods. A case study on particle picking further proves that our
denoising method greatly simplifies the difficulty of particle identify-
ing in micrographs with extremely low SNR.

2 Materials and methods

2.1 NT2C protocol
2.1.1 Overview of the procedure

The key idea of NT2C is to learn the noise patterns in cryo-EM
images over pure noise patches and transfer the statistical nature of
noise into the denoiser. As shown in Figure 1, NT2C contains three
modules:

a. Noise extraction. The noise extraction module takes raw micro-

graphs as input, and output the pure noise patches of the back-

ground (see Section 2.2.2). Due to the extremely low SNR in

cryo-EM micrographs, distinguishing the background from the

particles is a hard task in raw noisy micrographs. Here, a coarse

denoiser (see Section 2.1.2) is trained to roughly enhance the

image quality and aid the extraction of noise patches, based on

the simulated datasets with the same experimental parameters as

the real-world dataset (see Section 2.2.1).

b. Noise modeling. The statistical properties of noise in cryo-EM

micrograph change with different configurations during data

collection. It is critical to correctly understand the statistical na-

ture of the noise for image denoising. Here, a GAN noise synthe-

sizer (see Section 2.1.2) is trained to learn the statistical

properties of noise, with pure noise patches as input and simu-

lated noise patches as output.

c. Denoiser training. The noise synthesizer poses the possibility of

clean-noisy pair generation for cryo-EM, which is critical in

denoiser training. However, as described in Supplementary

Section S1 (see Supplemental Materials), the noise pattern in

cryo-EM is quite complex. Here, we design a contrast-guided

noise and signal re-weighted algorithm (see Section 2.2.3) to

transfer the non-additive noise to a clean image, to achieve

clean-noisy pair synthesis and data augmentation. Based on the

abundant synthesized clean-noisy pairs, a fine denoiser (see

Section 2.1.2) is able to be trained to precisely restore specimen

signal from the high-level noise.

2.1.2 Main components

(1) CNN denoiser
The CNN denoiser in NT2C is based on a U-net architecture

(Ronneberger et al., 2015), which contains five max-pooling down-
sampling blocks and five nearest-neighbor up-sampling blocks, with
skip connections between down- and up-sampling blocks at each
spatial resolution (shown in Fig. 2). Given the set of clean-noisy
pairs fy and x � NoiseðyÞg, a denoising function f with parameter h
can be learned. The loss function for our task is

argminhEx�X½kfhðxÞ � ykp� (1)

where p¼2 is used in NT2C to find f with mean-seeking behavior.
The CNN denoiser has been called twice in NT2C’s procedure:

(i) as a coarse denoiser trained with the simulated clean-noisy pairs
(see Section 2.2.1) to roughly enhance the contrast of cryo-EM
images, for the ease of noise patch extraction; (ii) as a fine denoiser
trained with the clean-noisy pairs produced by the noise and signal
re-weighted algorithm (see GAN noise synthesizer and Section
2.2.3) to capture the nature of noise statistical properties and restore
the specimen signal in cryo-EM micrographs. Here, the model
parameters of the coarse denoiser could be transferred to the fine
denoiser to avoid retrain from scratch.

Coarse CNN denoiser

GAN noise synthesizerFine CNN denoiser
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Fig. 1. The overall protocol of NT2C method for cryo-EM image denoising. There

are three main modules in NT2C: (a) noise extraction, (b) noise modeling and (c)

denoiser training
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(2) GAN noise synthesizer
The patterns and quantity of noise blocks extracted from raw

micrographs are limited, especially when input noisy images is
not enough or the biological samples are densely distributed in
micrographs. Moreover, the noise model in cryo-EM is too com-
plex to be explicitly described by an analytical expression.
Therefore, we build a GAN framework to implicitly learn the la-
tent noise model in cryo-EM micrographs and generate more
noise samples. In this framework, the convolutional layer, which
can learn image features better than the multi-layer perceptron
used in standard GAN, is adopted as the basic network structure
of GAN. And to solve the unstable training problem of GAN, we
use Wasserstein distance and gradient penalty to construct a cost
function to achieve stable convergence of the network. Moreover,
the Batch Normalization (Ioffe and Szegedy, 2015) is used to fur-
ther secure the model stability and Leaky Rectified Linear Unit
(LeakyReLU) (Maas et al., 2013) activation is used to ensure fast
learning.

As shown in Figure 3, this framework contains two compo-
nents, a generative network that consists of six transposed con-
volutional layers, and a discriminative network that consists of
six convolutional layers. The generative network is trained to
generate noise samples while the discriminative network is
trained to determine whether a sample is from real data or the
generative network. After the convergence of adversarial learn-
ing, the generative network will be able to produce noise patches
hard to be distinguished from real noise patches. The loss func-
tion for our task is

£GAN ¼ E
~x�Pg

½Dð~xÞ� � E
x�Pr

½DðxÞ� þ k E
x̂�PX̂

��
k�x̂Dðx̂Þk2 � 1

�2
�

(2)

where Pr is the distribution over noise patches, Pg is the generator
distribution, PX̂ is defined as a distribution sampling uniformly
along straight lines between pairs of points sampled from Pr and Pg.

2.2 Detailed algorithm
2.2.1 Simulation based on experimental parameters

The lack of supervised training data hampers the application of
learning-based denoising method in cryo-EM. Here, we adopt the
simulation software InSilicoTEM (Vulovi�c et al., 2013), which can
simulate the photographing process in cryo-EM based on physical
principles, to generate paired clean-noisy datasets.

We set the simulation according to the experimental parameters
used in data collection (shown in Fig. 4), including the pixel size, de-
focus, voltage, electron dose and detector type, which make the lim-
ited resolution, contrast transfer function (Wade, 1992) and
modulation in the simulation very close to the real-world data. The
proteins downloaded from Protein Data Bank (PDB) (Burley et al.,
2017) are used to produce clean ground truth. Such a simulation is
possible to generate datasets with statistical properties of noise close
to the ones in real cryo-EM micrographs. Consequently, the com-
posed clean-noisy pairs could be fed into the coarse CNN denoiser
to produce a model that achieves roughly denoising and contrast en-
hancement on the cryo-EM image, for the ease of noise patch extrac-
tion. Subsequently, the paired simulated data will be reweighted
with the noise samples generated by GAN noise synthesizer to con-
struct the final training set for the fine CNN denoiser.

2.2.2 Patch-similarity guided noise patch extraction

If we divide a cryo-EM micrograph into patches with suitable size,
these patches could be classified into two categories: patch contain-
ing specimen signal or patch of background with pure noise (shown
in Fig. 5). Naturally, the background patches are homogeneous to
each other while the patches containing specimen signals have differ-
ent patterns. Because the ice is almost transparent, the background
patch represents pure noise.

Here, we proposed a patch-similarity guided algorithm to extract
the noise patches in a cryo-EM micrograph:

1. Given a micrograph I, denoise I with the CNN coarse denoiser

trained by the simulated data in Section 2.2.1 to get an enhanced

image I0;

2. Divide I0 into a set of overlapping patches H ¼ fPig (d � d

pixel2 per patch) with a step size of s;

3. For each patch Pi 2 H, further divide Pi into N local patches

fPi;kg and calculate the structural similarity (SSIM) between

each Pi;k1
-Pi;k2

pairs (k1 6¼ k2).
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4. For the patch Pi, if 8k1;k2ðk1 6¼ k2Þ; SSIMðPi;k1
;Pi;k2

Þ is large

than a given threshold thre, determine Pi as a background patch;

5. Repeat 1–3 until all the background patches are identified, ex-

tract the exact patches in the original micrograph I.

Here, the commonly used value of patch size d is 320, the step
size is set to half of the patch size, the value of N is set to 4, and the
default value of thre is set to 0.7. All the hyperparameters can be
adjusted according to the properties of the datasets. It should be
noted that the similarity determination is operated on micrograph I0

but the noise patch is extracted from the original micrograph I. The
similarity measurement SSIMðPi;k1

;Pi;k2
Þ used in our algorithm is

defined as

SSIMðPi;k1
;Pi;k2

Þ ¼
ð2lPi;k1

lPi;k2
þ c1Þð2rPi;k1

Pi;k2
þ c2Þ

ðl2
Pi;k1
þ l2

Pi;k2
þ c1Þðr2

Pi;k1
þ r2

Pi;k2
þ c2Þ

(3)

where lPi;k1
and rPi;k1

are the mean and standard deviation of
Pi;k1

; lPi;k2
and rPi;k2

are the mean and standard deviation of
Pi;k2

; rPi;k1
Pi;k2

are the cross-covariance between patch Pi;k1
and Pi;k2

,
c1 and c2 are the regularization constants with very small values to
avoid the extreme small denominator. According to the study of
Wang et al. (2004), c1 ¼ ðK1LÞ2; c2 ¼ ðK2LÞ2 and L¼255 for 8-bit
images, with K1 ¼ 0:01 and K2 ¼ 0:03. In NT2C, the pixel values
of an image are normalized to [0,1], and L is set to 1 to get the same
result.

2.2.3 Contrast-guided noise and signal re-weighting

Though we have designed an experimental parameters-based simu-
lation to produce simulated clean-noisy pairs (Section 2.2.1), these
simulated data are still not good enough to present the noise pattern
in real cryo-EM images, which is more complex than the principles
in the simulation. On the contrary, the GAN noise synthesizer
(Section 2.1.2) is able to produce noise patches with almost the
same statistical properties as the real noise in the cryo-EM image.
Here, we design a contrast-guided noise and signal re-weighted algo-
rithm to transfer the noise pattern produced in the GAN noise syn-
thesizer to the simulated clean data, to produce sophisticated clean-
noisy pairs for fine CNN denoiser training.

Figure 6 shows the detailed process of the re-weighted algorithm.
The algorithm accepts the pure noise patches fVig generated from
GAN and the clean signal patches fSig generated from the simula-
tion as input, utilizing the simulated patches fXig corresponding to
the exact signal patches from the simulation as a reference, and

outputs a re-weighted dataset fYig with the GAN-synthesized noise
transferred to the clean simulated signal. Here, we use the contrast
of Xi as a baseline. Denote Yi ¼ Fða � Si þ b � Vi þ cÞ (Fð�Þ is a
modulation function), the noise transfer should comply with the fol-
lowing objective function:

min
a;b;c

Xd�1

m¼0

Xd�1

n¼0

����
����
�
a � Siðm; nÞ þ b � Viðm;nÞ þ c

�
�Xiðm; nÞ

����
����
2

2

(4)

where a, b and c are scalar coefficients and d is the patch size. Such
a minimizing problem can be easily solved by the least-square
method. Then, with the solved coefficients, the signal will be re-
weighted and modulated, to produce clean-noisy pairs. The con-
structed clean-noisy pairs are fed into a fine CNN denoiser to train
the model that captures the true noise statistics and restores speci-
men signals from noise.

2.3 Datasets
Four simulated datasets and three real-world datasets are used to
evaluate the performance of NT2C. We generated four simulated
datasets by 2wrj.pdb, 1kd1.pdb, 5lzf.pdb and 1gr5.pdb to demon-
strate the performance of NT2C on simulated datasets and denoted
them as SIM1, SIM2, SIM3, SIM4. The real-world datasets are col-
lected from public repositories. We downloaded the EMPIAR-
10025 (abbr. EM25) (Campbell et al., 2015), EMPIAR-10028
(abbr. EM28) (Wong et al., 2014) and EMPIAR-10077 (abbr.
EM77) (Fischer et al., 2016) from EMPIAR and generated three cor-
responding simulated datasets by 1iru.pdb, 1i96.pdb and 6w6p.pdb,
marked as SIM-EM25, SIM-EM28 and SIM-EM77. These three
simulated datasets are used for the training of coarse CNN denoiser
and real-world datasets are used to demonstrate the performance of
NT2C on real-world noise. For each dataset, we randomly extracted
10% of images as validation dataset, 10% of images as test dataset
and the remaining as training dataset. The detailed information of
these datasets is summarized in Supplementary Table S1.

3 Experiments and results

We designed a series of experiments to demonstrate the effectiveness
of NT2C on the simulated datasets (see Supplementary Materials)
and real-world datasets (see Section 3.1), and compared it with sev-
eral commonly used cryo-EM denoising methods. We further
explored the effect of denoising on particle picking tasks with a real-
world dataset (see Section 3.2). In addition, we provide an experi-
ment to verify the robustness of simulation-based noise pattern dis-
covery, which is a critical part of NT2C (see Supplementary
Materials). Finally, an ablation study is provided to illustrate the im-
portant contributions from individual components of NT2C (see
Supplemental Materials).

3.1 Evaluation with real noise
To demonstrate NT2C’s ability to deal with complex latent noise in
real cryo-EM images, we evaluated the performance of NT2C on
two real-world datasets (EM25 and EM28). We compared the per-
formance of NT2C with four mainstream cryo-EM denoising
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methods, including three conventional methods, i.e. Low-pass filter,
Gaussian filter (Haddad and Akansu, 1991), BM3D and learning-
based methods, i.e. Topaz-Denoise (The pre-trained model provided
by Topaz-Denoise is denoted as ’TopazDe-gen’ and the Topaz-
Denoise model retrained with a specific dataset is denoted as
’TopazDe’. Since EM25 and EM28 are included in the training data-
set for Topaz-Denoise general model, the TopazDe is adopted for
EM25 and EM28. While EM77 is not included and the raw movies
are unavailable, the TopazDe-gen is adopted for EM77.).

Denoising with NT2C improves micrograph interpretability and
SNR. Figure 7 shows a representative region selected from EM28
and denoised results of Low-pass filter (2x binning), Gaussian filter,
BM3D, TopazDe and NT2C. It can be seen that two learning-based
methods, TopazDe and NT2C are better than conventional methods
in noise smoothing and specimen signal enhancing. Moreover,
NT2C achieves a stronger noise removal performance and reserved
clearer specimen signals than N2N, therefore providing better inter-
pretability. The whole-image results are shown in Supplementary
Figure S1.

Furthermore, we quantitatively assessed denoising performance
by measuring the SNR of raw micrographs and micrographs
denoised with different methods. Due to the non-existent ground
truth, the SNR is estimated in a similar way to Bepler et al. (2020).
First, we select 10 paired signal and background regions across 10
micrographs where the background regions are as close as possible
to the corresponding signal region. Given N signal and background
pairs, xi

s; xi
b, the mean and variance of each background region is

marked as li
b; vi

b. We define the signal for each region as si ¼
xi

s � li
b and calculate the mean and variance of signal region, li

s; vi
s.

The average SNR in dB for the regions is defined as:

SNR ¼ 10

N

XN
i¼1

log10

�
vi

sÞ � log 10ðvi
b

�
(5)

This SNR has no physical meaning, just criteria for comparison.
As shown in Table 1, the conventional methods only improve rough-
ly 0.1 dB over raw micrographs. NT2C method improves SNR by
8 dB over raw micrographs and roughly 6 dB over TopazDe meth-
ods. It should be noted that since the SNR metrics and the signal
and noise regions selected by our method and TopazDenoise for
SNR calculations are different, the SNR values of the same dataset
reported in our work may be different from that reported in Bepler
et al. (2020). However, this does not affect the evaluation of denois-
ing performance and the comparison among the denoising
algorithms.

NT2C accurately resolve complex noise model and restore clear
specimen signal. To further study the NT2C’s performance on noise
removal and specimen signal restoration, we selected two

representative regions from dataset EM25, one containing specimen
signals and the other containing pure noise. Figure 8 presents the
raw micrograph and denoised results of Lowpass filter, Gaussian fil-
ter, BM3D, TopazDe and NT2C. It can be found that NT2C per-
forms outstandingly in background noise removing, where the pure
noise region denoised by NT2C is cleaner than all other methods.
TopazDe removes most of the noise and the conventional methods
achieve the poorest performance on noise smoothing. Moreover, as
shown in the region containing specimen signal, while removing
noise thoroughly, NT2C correctly decomplex structured features
from complex noise. The signal restored by N2TC presents distinct
structures and the particles with different projections are easily dis-
tinguished. Table 1 gives quantitative analysis on SNR, which fur-
ther proves the notable performance achieved by NT2C. It improves
SNR by 4.91 dB, 4.54 dB and >4.6 dB over raw micrograph,
TopazDe and conventional methods.

3.2 Denoising with NT2C makes the task of particle

picking much easier
To free researchers from laborious particle picking work, a number
of fully automatic and semi-automatic particle picking approaches
have been proposed (Bepler et al., 2019; Zhang et al., 2017).
However, the performance of particle picking is limited by many
factors, among which the extremely low SNR of the micrographs is
an important one, especially for the fully automatic or conventional
particle picking algorithms. It can be seen from the above experi-
ments that one prominent advantage of the NT2C denoising algo-
rithm is that it can remove background noise thoroughly. Therefore,
the particles and the background can be easily distinguished. This
provides a possibility that if combined with NT2C denoising, the
particle picking may become a very simple task.

Here, we designed a set of experiments to combine the denoising
algorithm with a fully automatic particle picking algorithm, PIXER
(Zhang et al., 2019) and choose TopazDe as a comparison. In
PIXER, the author designed a segmentation network to convert the
noisy micrographs to probability density maps and the probability
indicates the likelihood of one pixel belonging to a particle. Then
the preliminary particle coordinates can be generated from probabil-
ity density maps. The real data EM77, where the SNR is extremely
low and the particles are difficult to identify, is adopted here.
Figure 9 shows the raw and denoised micrographs (the first column),
the heat map (probability density maps) generated by PIXER (the se-
cond column), the clusters calculated by meanshift algorithm
(Comaniciu and Meer, 2002) based on the segmented heat map (the
third column), and the particle picking results (the last column).

It can be found that the particles in the raw micrograph can
hardly be recognized from noisy backgrounds. TopazDe-gen greatly
enhances the image contrast, while the contour of the particles is not
clear enough and the background is not clean. However, the NT2C
significantly increases protein density confidence and almost com-
pletely removes the background noise, making the particles easy to
identify. It can be seen from the heatmap and clustered results, the
particle and the background cannot be accurately segmented, mak-
ing the particles in the raw micrograph difficult to be identified.

Raw Lowpass Gaussian

BM3D TopazDe NT2C

Fig. 7. Denoising with NT2C improves micrograph interpretability in real-world

datasets. Comparison among different denoising methods is carried out on real-

world datasets EM28. A small region is selected to illustrates that NT2C performs

better in noise smoothing and signal enhancing than both conventional (Lowpass fil-

ter, Gaussian filter, BM3D) and learning-based methods (TopazDe)

Table 1. Comparison of denoising methods based on estimated

SNR (in dB, larger is better)

SNR Dataset

Methods EM25 EM28 EM77

Raw �0.16 �0.34 0.14

Lowpass �0.04 �0.24 0.30

Gaussian �0.14 �0.18 0.33

BM3D 0.07 �0.27 0.53

TopazDe-gen — — 1.24

TopazDe 0.21 1.04 —

NT2C 4.88 7.65 6.29
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Although the particles denoised by TopazDe can be segmented out
by PIXER, affected by residual background noise, there are many
false-positive particles picked, as the red cross labeled ones shown in
Figure 9. On the contrary, the particles in the micrograph denoised
by NT2C are easily and accurately identified.

Inspired by the excellent denoising performance of NT2C, we
tested the effect of directly combining the denoising algorithm with
the meanshift clustering algorithm to locate particles (see
Supplementary Materials). As shown in Supplementary Figure S3, it
is difficult to obtain particles directly from the raw micrograph and
the micrograph denoised by TopazDe with the meanshift clustering
algorithm. On the contrary, most of the particles in micrograph
denoised by NT2C can be accurately identified. Although there are
false-positive ones, the accuracy of particle locating is even better
than the result of the combination of TopazDe and PIXER
(Fig. 9H). It can be proved that NT2C provides great possibilities
for simplifying the task of particle picking.

4 Discussion

In this work, we proposed a new idea for cryo-EM image denoising
which learns the unknown noise distribution directly from the pure
noise patches in cryo-EM and transfer the statistical nature of noise
into the denoiser. It has achieved impressive denoising performance
and performs especially outstanding in noising removal.

As described in Baxter et al. (2009), the noise in cryo-EM comes
from three aspects: (i) structural noise which is caused by the ice ma-
trix around molecules and the superimposed carbon film.
Conceptually, any part of the molecule structure that is not reprodu-
cible due to conformational variations is also counted as structural
noise. (ii) Shot noise caused by the quantum nature of the electron
radiation. (iii) Digitization noise caused by the photographic record-
ing and subsequent digitization. However, the currently most com-
monly used denoising frameworks for cryo-EM, such as
Noise2Noise which was adopted by TopazDenoise or Noise2Void,
are based on a hypothesis: the noise is zero mean and independent
and identically distributed. Therefore, theoretically, this kind of

algorithm will regard structural noise and shot noise as signals and
mainly remove digitization noise which is caused by the detector.
Conversely, our algorithm directly learns the noise distribution from
the noise patches in cryo-EM images, therefore, it can mine noise

patterns more completely and implement modeling for all types of
noise, achieving more thorough removal of noise. This is the reason
our algorithm achieved outstanding performance on noise removal
and signal recovery.

We believe that our method is inspirational and has great poten-
tial, however, the performance of NT2C is closely related to the dif-
ference between simulated data and real data. Therefore, we are
working hard to find optimal simulation software. At present, the

simulation software adopted in this work makes our algorithm prac-
tical, however, it brings two limitations. First, since our algorithm
requires the generation of simulated clean-noisy pairs, it brings a
problem that our algorithm takes more time than other denoising
algorithms. Second, the real noise model in cryo-EM images is ra-
ther complicated and affected by various factors, such as uneven ice

thickness, uneven distribution of samples and different under-focus
values. However, the existing simulation software generally gener-
ates micrographs based on the physical model under ideal conditions
which limit our method to mainly perform excellently on samples
with relatively uniform backgrounds. Therefore, our following work

includes further exploring the complex relationship between image
formation theory adopted in simulation and the realistic imaging
process of cryo-EM to develop a more professional simulation soft-
ware. We are also attempting to adopt deep learning techniques to
solve the problem of simulated data generation, thus improving

NT2C’s ability on the cryo-EM data collected in various complex
situations.

It should be noted that the framework is flexible, therefore the

components, such as GAN noise synthesizers and coarse CNN deno-
iser, can be replaced by better models or methods in the future. Our
study is designed to focus specifically on denoising ability this time
and we will continuously optimize the algorithm in the future to
provide a more general model for cryo-EM denoising.

Raw Lowpass Gaussian

BM3D TopazDe NT2C

Fig. 8. NT2C accurately resolve complex noise model and restore clear specimen signal. Two regions, one containing pure noise and the other containing specimen signal, are

selected from one micrograph of EM25 to illustrate the performance of NT2C. Comparing with Lowpass filter, Gaussian filter, BM3D and TopazDe, NT2C can thoroughly re-

move noise and decomplex structured features from noise
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5 Conclusion

In this article, we presented a denoising framework for image contrast
enhancement and specimen signal restoration in cryo-EM. The key
idea of NT2C is discovering the noise model of cryo-EM images over
pure noise patches and transferring the statistical nature of noise into
the denoiser, making the denoising based on noise’s true properties.
To cope with the complex noise model in cryo-EM, we further design
a contrast-guided noise and signal re-weighted algorithm to achieve
clean-noisy data synthesis and data augmentation for denoiser. Our
work has verified the feasibility of denoising based on capturing the
nature of noise statistical properties directly from noise patches in
cryo-EM images. Comprehensive experiments on both simulated and
real-world datasets demonstrate that NT2C is able to deal with high-
level complex noise in cryo-EM images. A case study further demon-
strates that NT2C can significantly reduce the difficulty of particle
picking and even make it possible to use conventional image process-
ing algorithms to achieve particle identifying.
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