

Safety of catheter-directed thrombolysis for the treatment of acute lower extremity deep vein thrombosis

A systematic review and meta-analysis

Li Wang, Pursuing for Master Degree^a, Chuanlin Zhang, Master Degree^b, Shaoyu Mu, College Degree^{a,*}, Chao Hsing Yeh, PhD^c, Liqun Chen, Pursuing for Master Degree^a, Zeju Zhang, Master Degree^d, Xueqin Wang, College Degree^b

Abstract

Background: Despite established guidelines, catheter-directed thrombolysis (CDT) for the management of acute lower extremity deep vein thrombosis (DVT) should not be overstated because the risks of CDT are uncertain. We performed a meta-analysis to comprehensively and quantitatively evaluate the safety of CDT for patients with acute lower extremity DVT.

Methods: Relevant databases, including PubMed, Embase, Cochrane, Ovid MEDLINE, and Scopus, were searched up to January 2017. The inclusion criteria were applied to select patients with acute lower extremity DVT treated by CDT or compared CDT with anticoagulation. In case series studies, the pooled estimates of safety outcomes for complications, pulmonary embolism (PE), and mortality were calculated across studies. In studies comparing CDT with anticoagulation, summary odds ratios (ORs) were calculated.

Results: Of the 1696 citations identified, 24 studies (6 comparing CDT with anticoagulation and 18 case series) including 9157 patients met the eligibility criteria. In the case series studies, the pooled risks of major, minor, and total complications were 0.03 (95% confidence interval [CI]: 0.02-0.04), 0.07 (95% CI: 0.05-0.08), and 0.09 (95% CI: 0.08-0.11), respectively; other pooled risk results were 0.00 for PE (95% CI: 0.00-0.01) and 0.07 for mortality (95% CI: 0.03-0.11). Our meta-analysis of 6 studies comparing the risk of complications and PE related to CDT with those related to anticoagulation showed that CDT was associated with an increased risk of complications (OR=4.36; 95% CI: 2.94-6.47) and PE (OR=1.57; 95% CI: 1.37-1.79).

Conclusion: Acute lower extremity DVT patients receiving CDT are associated with a low risk of complications. However, compared with anticoagulation, CDT is associated with a higher risk of complications and PE. Rare mortality related to thrombolytic therapy was reported. More evidence should be accumulated to prove the safety of CDT.

Abbreviations: CDT = catheter-directed thrombolysis, CI = confidence interval, DVT = deep vein thrombosis, OR = odds ratio, PE = pulmonary embolism, RCT = randomized clinical trial, VTE = venous thromboembolism.

Keywords: catheter-directed thrombolysis, meta-analysis, safety, systematic review, venous thrombosis

1. Introduction

Deep vein thrombosis (DVT) is widely prevalent, and the incidence of DVT in the leg is between 48 and 182 per 100,000 in

Editor: Lei Huang.

WL and ZC contributed equally to this work.

Funding/support: This study was supported by the First Affiliated Hospital of Chongqing Medical University Hospital subject (HLJJ 2016-01).

* Correspondence: Shaoyu Mu, School of Nursing, Chongqing Medical University, No. 1 Yi-Xue-Yuan Rd, Yuzhong District, Chongqing 400016, PR China (e-mail: mushaoyu1966@126.com).

Copyright © 2017 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the Creative Commons Attribution-NoDerivatives License 4.0, which allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author.

Medicine (2017) 96:35(e7922)

Received: 11 May 2017 / Received in final form: 24 July 2017 / Accepted: 2 August 2017

http://dx.doi.org/10.1097/MD.000000000007922

the population each year.^[1] As the population ages, the incidence of DVT is steadily increasing.^[2] Additionally, approximately one-third of patients with primary DVT may develop asymptomatic (silent) pulmonary embolism (PE).^[3,4] Venous thromboembolism (VTE) is related to significant morbidity and mortality, not only because DVT can exert a great influence on treatment and prognosis for patients but also because it represents a significant clinical and economic disease burden on healthcare systems.^[5] Hence, the importance of treatment for DVT cannot be overemphasized. The immediate goals of the successful management of DVT is essential to minimize the risk of PE, mortality, and recurrent DVT in the short-term with acceptable complication rates, including those of bleeding.^[6]

Anticoagulation treatment is mainly aimed at the prevention of PE and recurrent DVT.^[7] Regrettably, over half of DVT patients will develop some degree of postthrombotic syndrome (PTS) in the follow-up of posttherapy.^[8] Elastic compression stockings are recommended for the prevention of PTS in DVT patients by previous guidelines^[9,10]; unfortunately, a recent meta-analysis of 6 randomized controlled trials including 1462 patients reported no use of elastic compression stockings to prevent PTS.^[5] Catheter-directed thrombolysis (CDT) uses the local delivery of plasminogen-activating agents directly into the thrombus, with an effective result to prevent PTS for acute lower extremity DVT

The authors have no conflicts of interest to disclose.

^a School of Nursing, Chongqing Medical University, ^b Intensive Care Unit, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China, ^c Johns Hopkins School of Nursing, Baltimore, MD, USA, ^d School of Nursing, Chongqing Medical and Pharmaceutical College, Chongqing, PR China.

patients, has been suggested by the American College of Chest Physicians antithrombotic therapy for VTE disease chest guideline; however, the recommendation based on low-quality evidence, making it weak.^[7] The safety of the patients is of great concern with measures to reduce bleeding complications and prevent PE.^[11] To address this dilemma, we performed this systematic review and meta-analysis to assess the safety of CDT including the incidence of PE, complication, and mortality after incident acute lower extremity DVT.

2. Methods

2.1. Data source and searches

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement for reporting in this metaanalysis.^[12] The literature search was performed using Ovid MEDLINE (1946 to January 2017), PubMed (January 31, 2017), Embase (1974 to January 2017), Cochrane Library (2016), and Scopus (1960 to January 2017). Boolean logic was used with search terms, including "catheter-directed thrombolysis" OR "catheterdirected therapy" OR "catheter-directed treatment" AND "deep vein thrombosis" OR "venous thromboembolism" (see example search in Table 1). Additional studies identified through the reference list from the selected articles were reviewed. Endnote software was used to manage citations obtained through the database search.

2.2. Selection standards

Two authors (WL, ZCL) independently established the study eligibility; any difference in opinion concerning eligibility was resolved by discussion or by consulting the corresponding author (MSY) and research team. All abstracts were reviewed using inclusion and exclusion criteria to narrow the selection of studies considered for the systematic review and meta-analysis. The studies had to meet the following criteria: studies about CDT to treat acute lower extremity DVT or studies compared CDT plus anticoagulation with anticoagulation alone; randomized clinical trials (RCTs), nonrandomized comparative studies, and case series studies; studies reporting the data on one or more study outcomes (PE, mortality, complication); patients ≥ 18 years old; sample size \geq 10 patients; and articles published in peer-reviewed English studies. Studies were excluded if they were studies irrelevant to CDT; studies that reported chronic or upper DVT; studies that provided no useful data; and studies that were case reports or duplicate articles.

2.3. Data extraction

Data were extracted from all included studies by 2 independent reviewers (WL, ZCL). Disagreements about discrepancy were resolved by consulting the corresponding author. We extracted the first author, publication year, study design, region, mean age, the ratio of men to women, treatment method, thrombolytic

Table 1

The example search in PubMed used the search terms below. #1 Catheter-directed thrombolysis #2 Catheter-directed therapy #3 Catheter-directed treatment #4 Deep vein thrombosis #5 Venous thromboembolism #6 #1 OR #2 OR #3 #7 #4 OR #5 #8 #6 AND #7 agent, safety outcomes (PE, mortality, and complication), the time of follow-up, and method of DVT diagnosis.

2.4. Assessment of bias risk

Assessment of the bias risk of the included studies was independently performed by 2 investigators. The quality of the included RCT studies was assessed using the Jadad scale, and the quality items scored were as follows: studies' description of randomization (2 points), blinding (2 points), and attrition information (1 point). Scores ≤ 2 were divided into low-quality literature and ≥ 3 were divided into high-quality literature.^[13] All included nonrandomized comparative and case series studies were appraised by The Newcastle–Ottawa scale.^[14] The quality of a study was judged on the selection of the study groups, comparability of the groups, and ascertainment of the outcomes. High quality was judged if studies received a star in every domain.

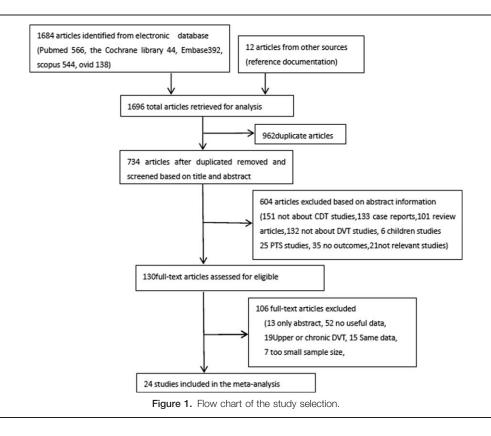
2.5. Definition of safety outcomes

The safety outcomes were the occurrence of PE, complication, and mortality.

- (1) PE: the occurrence of PE was based on the reports of computed tomography pulmonary angiography
- (2) Complications: the outcomes of major and minor complications were defined as follows: minor complication – if no therapy or nominal therapy was required and included overnight admission for observation; major complication – required therapy, longer hospitalization, or caused permanent adverse sequelae or death
- (3) Mortality: the rate of death related to thrombolytic treatment

2.6. Statistical analysis

We used the software Stata 12.0 (Stata Corporation, College Station, TX) to perform the meta-analysis. The data on the safety outcomes in the case series studies were pooled proportions, and the data in RCT or nonrandomized comparative studies were extracted to calculate odds ratios (ORs) and associated 95% confidence intervals (CIs). All meta-analyses were performed using both fixed- and random-effects models for combining proportions. Cochrane Q statistic and I^2 were statistics calculated to provide information about heterogeneity between studies. I^2 statistic <25% was considered as low heterogeneity, and I^2 statistic >50% was considered as high heterogeneity, according to the method suggested by Higgins et al.^[15] The publication bias was tested using the Egger regression asymmetry test^[16] and Begg-adjusted rank correlation test.^[17] Additionally, we performed subgroup analyses based on the thrombolytic agent and study design. Several sensitivity analyses were performed to test the robustness of our findings. All statistical tests were 2 tailed.


2.7. Ethics approval

The ethical approval was not necessary in our study because of the meta-analysis study design.

3. Results

3.1. Literature search

After the database searches, 1684 articles were retrieved and a further 12 potential articles were identified from citations. In total, 734 unique citations were identified by our electronic

searches after the deletion of duplicate publications by screening the study titles and abstracts. After applying the inclusion and exclusion criteria, 24 articles were considered for our metaanalysis, among which 18 case series articles^[18–35] involving 1538 patients and another 6 were articles^[36–41] comparing CDT with anticoagulation involving 7619 patients fulfilled the eligibility criteria. The data abstraction process is shown in Fig. 1.

3.2. Study characteristics

Eighteen case series articles including 8 prospective^[18–20,23, 24,26,28,31] and 10 retrospective studies^[21,22,25,27,29,30,32–35] and 6 comparison articles including 3 RCTs^[38–40] and 3 nonrandomized comparative articles^[36,37,41] were all published in peer-reviewed journals. Except for 1 study^[30] that did not describe the method of DVT diagnosis, the others confirmed the presence of DVT using Duplex ultrasound or venography. When CDT was performed, rt-PA, Urokinase, Alteplase, or Retavase was infused. The characteristics of the included studies are summarized in Table 2.

3.3. Meta-analysis of studies comparing CDT with an anticoagulation group

3.3.1. Complications. All 6 comparative studies^[36–41] reported complications posttreatment.

Compared with anticoagulation, CDT showed a significant increase in the occurrence of complications (OR=4.36; 95% CI: 2.94–6.47; P < .001; $I^2 = 28.7\%$) (Fig. 2): 3 studies^[36,40,41] reported minor and major bleeding, and the pooled results showed the same results that CDT had a significant increase in the occurrence of minor (OR=2.01; 95% CI: 0.87–4.66; P=.104; $I^2=0.0\%$) (Fig. 3) and major bleeding (OR=3.19; 95% CI: 0.76–13.42; P=.113; $I^2=0.0\%$) (Fig. 4) compared with anticoagulation.

3.3.2. *PE.* Among 6 studies, $^{[36-41]}$ 3 studies $^{[39-41]}$ were eliminated because there were no events in both groups. Patients treated with CDT were significantly more likely to experience PE (OR = 1.57; 95% CI: 1.37–1.79; P < .001; $I^2 = 0.0\%$) (Fig. 5).

3.3.3. *Mortality.* Five studies^[36,38–41] reported no deaths in both groups; only 1 study^[37] with a large sample size recorded inhospital mortality in the 2 groups (CDT vs anticoagulation: 1.2% vs 0.9%, respectively).

3.4. Meta-analysis of case series studies on CDT

3.4.1. Complications. Fourteen case series studies^[19–24, 26–29,32–35] reported complication outcomes posttreatment, in which 3 studies^[20,24,35] and 2 studies^[22,34] reported no events for major and minor complications, respectively. The complication rate ranged from 6% to 25% after CDT. The pooled data showed that the rate of total complications, minor complications, and major complications from high to low were 0.09 (95% CI: 0.08–0.11), 0.07 (95% CI: 0.05–0.08), and 0.03 (95% CI: 0.02–0.04), respectively. Moderate heterogeneity was detected for all 3 complication analyses (Figs. 6–8).

3.4.2. PE. Twelve studies^[18,19,21,23,25–31,33] were involved for PE data. Two of them^[18,19] only reported suspected PE, and 4 studies^[25,26,29,31] were excluded due to no events; thus, 6 studies^[21,23,27,28,30,33] were eventually included. Patients treated with CDT showed a zero rate of PE (0.00, 0.01). High heterogeneity (I^2 =0.807; P=.000) was detected among the included studies (Fig. 9).

3.4.3. Mortality. Two studies^[19,35] reported mortality not related to the thrombolytic therapy, 3 studies^[18,25,31] reported no mortality during follow-up, and 3 studies^[28–30] reported

L5A47 $21/30$ $CDT+AA (13)$ $u S AA (33)Unokinase rt-PAMajor complications, PTS, pateroy rate5 yL5A533640,325.89u S AA (33)UT+AA (16)u S AA (13)UT+AA (16)u S AA (13)UnokinaseETS, completely sist6 moL6pt4611/2402t+AA (16)u S AA (17)SteppolinaseFTS, contract 016 moMowey521197001t+AA (16)u S AA (17)AtteplasePTS, counted the pateroy, venue stepution5 yNowey5264/39uSA (17)u S AA (17)UnokinasePTS, counted the pateroy, venue stepution5 yNowey5327/26001 +AA (50)u S AA (17)UnokinasePTS, counted the pateroy rate5 yDemmark29207/78001 +AA (20)100PTS, counted the pateroy rate1 yDemmark29207/78001 +AA (20)100PTS, counted the pateroy rate1 yDemmark29207/78001 +AA (20)100100100100Demmark29207/78001 +AB (20)100100100Demmark29207/78001 +AA (20)100100100Demmark29207/78001 +AB (20)100100100Demmark29207/7810001000100010001000Demmark29207/78100010001000$	Study	Design	Region	Mean age, y	Male/ female (no)	Treatment method (no)	Thrombolytic agent	Outcomes	Follow-up	Method of DVT diagnosis
ISA 47 21/30 C0T+AA (18) (a, AA (33)) Undenses rFAA Major completations, PTS, patenty rate 5 y Eggdt 46 11/24 C0T+AA (834), (a, AA (7)) Xet A3(34), (a, AA (7)) Xet A3(35), (a, AA (7)) Xet A3(35), (a, AA (7)) Xet A3(35), (a, AA (7)) Xet A3(25), (a, AA (7)) Xet A3(25), (a, AA (7)) Xet A4(7), (a, AA (7)) <td>Studies compared CDT with</td> <td>anticoagulation</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Studies compared CDT with	anticoagulation								
List 33 $3640,533$ $CDT+AR(33)$ NA Denti, P.E. hematoma, langth of 6 6 Epott 46 11/24 $CDT+AR(33)$ Streptions PTS, complete lysis 6 6 Norwery 52 119/70 $CDT+AR(33)$ Streptions PTS, complete lysis 6 7 Norwery 22 119/70 $CDT+AR(30)$ Attraptase PTS, complete lysis 6 7 Norwery 22 61/4A/R27 Undrinase PTS, complete lysis 6 7 List 53 27/26 $CDT+AR(27)$ Undrinase PTS, complete lysis 6 7 Dentrack 23 27/26 $CDT(10)$ r.P.A Veh lettuk, PTS, retromotiosis, ef y 7 5 9 Using a transmember of the matoma langth patrony rate, montality with montase transmember of the matoma langth patrony rate, montality with montase transmember of the matoma langth patrony rate, retromotase, ef y 5 9 Link 27 Undrinase Complete lysis, patrony rate, PTS, complete lysis, patrony rate, PTS, complete lysis, patrony rate, retromotase, the montality with montase	AbuRahma et al 2001	prospective	NSA	47	21/30	CDT + AA (18)	Urokinase rt-PA	Major complications, PTS, patency rate	5 y	Venous duplex imaging/
Retrospective USA 53 364,9353, 354 NA Death TF, hendrona, length of 6 y a AU (1) 6 y a AU (1) RCT Egyt 46 11/24 C0T+AA (30) Steptokinsea PS, complete lysis 6 mo RCT, multicenter Novay 52 119/70 C0T+AA (30) Attentions PS, complete lysis 6 mo RCT, multicenter Novay 52 119/70 C0T+AA (30) Attentions PS, complete lysis 6 mo RCT, multicenter Novay 52 21/26 C0T+AA (20) Attentions 6 mo Retrospective USA 53 27/26 C0T (4A) Natestand 6 mo Retrospective USA 53 27/75 Unointease Complete lysis, paterory rate 5 y Retrospective Exa 41/4 Na C0T (4A) Unointease Complete lysis, paterory rate 5 y Retrospective Exa National exart NX Variandons, paterory rate 5 y 7 y Retrospective Exa Vari exant VVV						vs AA (33)				iliofemoral phlebography
Egyt 46 11/24 0/34 (359) (37 + A) (30) Streptokinase PTS, complete lysis 6 mo Noway 52 64/39 0/1 + A/ (60) Atteplase PTS, complete lysis 6 mo Noway 52 64/39 0/1 + A/ (50) Atteplase PTS, complete lysis 6 mo USA 53 27/26 0/1 + A/ (50) Atteplase Patency rate, complications, PTS, informations, informatio	Bashir et al 2014	Retrospective	NSA	53	3649/3539	CDT + AA (3594)	NA	Death, PE, hematoma, length of	6 y	Principal discharge diagnosis
Egyct 46 11/24 CDT-AM (13) Steptokinase PTS, complete lysis 6 mo Noway 52 119/70 $\alpha_{AA}(17)$ Atteplase Complete lysis 6 mo Noway 52 119/70 $\alpha_{AA}(19)$ Atteplase Complete lysis 6 mo Noway 52 64/39 CDT+AA (50) Atteplase Complete lysis 6 mo Usis 53 27/26 CDT (10) rLPA Nones function 6 mo Lennark 29 23/78 CDT (10) rLPA Ven relive, PTS, returning teteroy, rate 5 y Dermark 29 23/76 CDT (77) Unokinase Complete lysis, rethronhosis, patency rate 5 y Brain 41/4 NR CDT (20) Unokinase Complete lysis, rethronhosis, patency rate 5 y Solution 55 Unconfere 5 y Ven relive, PTS, rethronhosis, PTS, ethorhonics, patency rate 2 y China 55 207(105) Unokinase Complete lysis, rethronhosis, pteteroy rate 2 y						vs AA (3594)		stay, charges		
Norway 52 119/10 0// M (17) 0// M (53) Am (17) Alteplase Complications, patency, rate 2 y Norway 52 64/39 C0T+AA (50) 0T+AA (53) Alteplase Philicity, recurrent DVI (14) 2 Ush 53 27/26 C0T+AA (53) 0T+AA (53) Unokinase Patency rate, complications, PTS, returnent DVI works (14) 6 2 Demmark 29 23/78 C0T (10) rt-PA Vain reture, PTS, returnent DVI works (14) 15 mo Using 47 27/50 C0T (10) rt-PA Vain reture, PTS, returnontosis, e1 y 2 Unication 66 49/67 C0T (10) Unokinase Complication, FE 1 1 Solutation 66 29 207/220 C0T (427) Unokinase 2 2 2 Solutation 66 27 Unokinase Complication, retinortation, retinor	Elsharawy et al 2002	RCT	Egypt	46	11/24	CDT+AA (18)	Streptokinase	PTS, complete lysis	6 mo	Color duplex ascending
Noway 52 1197/0 C0T+A (50) is AA (53) Alteplase Complications, patency, rate 2 y Noway 52 64/39 001+AA (53) is AA (53) Heplase Informations, patency and, onditions, patency and, ondition is AA (53) Alteplase Informations, patency and, onditions, patency and, ondition is AA (53) Unokinase Patency rate, complications, PTS, returnentosis, 6 y Demmark 29 23778 C0T (10) rt-PA Vein reflux, PTS, returnentosis, 6 y Brazai 4/14 NR C0T (13) rt-PA Vein reflux, PTS, returnentosis, 1 y China 59 207720 C0T (13) rt-PA Vein reflux, PTS, returnentosis, 1 y China 59 207720 C0T (13) rt-PA Completel sys, returnitosis, 1 y China 56 4957 C0T (10) Unokinase Completel sys, returnitosis, 1 y Uk 35 NR Unokinase Completel sys, returnitosis, 1 y Switzarland 46 357 Unokinase Completel sys, returnitosis, 1 y UK 37 NR Unokinase Comple						vs AA (17)				venography
Nonwey 52 64/39 vs.AA (59) vs.AA (26) Nteplase PTS, recurrent DVT vs.AA (25) PTS, recurrent DVT vs.AA (25) PTS, recurrent DVT vs.AA (25) PTS, recurrent DVT vs.AA (25) T5 mo Demmark 29 23778 C0T (101) rt-PA Venous trunction 6 m Lish 29 23778 C0T (101) rt-PA Venous trunction 6 y Lish 47 27560 C0T (77) Unokinase PTS, rethrombosis, venous trunction 6 y Lish 47 27560 C0T (77) Unokinase Completelysis, rethrombosis, patency rate, profile 5 y China 59 207220 C0T (20) Unokinase Completelysis, rethrombosis, patency rate, PTS, patency rate, PTS, patency rate, PTS, patency ra	Enden et al 2012	RCT, multicenter	Norway	52	119/70	CDT + AA (90)	Alteplase	Complications, patency rate	2 y	Routine ultrasound, or by
Nomay52 $64/39$ $C0T+AA/50$ AlterbaseInformoral patency, venous obstruction6 moLSA53 $27/26$ $C0T+AA/73$ UrokinasePatency rate, complications, PTS, 15 mo $s AA(26)$ Demmark29 $23/78$ $C0T (101)$ $t+PA$ Ven reflux, PTS, refluctionosis, 6 y $s AA(26)$ Demmark29 $23/78$ $C0T (101)$ $t+PA$ Ven reflux, PTS, refluctionosis, 6 y $s AA(26)$ Usia4/14NR $C0T (101)$ $t+PA$ Ven reflux, PTS, refluctionosis, 6 y $s AA(26)$ Usia4/14NR $C0T (10)$ $t+PA$ Ven reflux, PTS, refluctionosis, 6 y $s AA(26)$ China59 $207/220$ $C0T (106)$ $t+PA$ Ven reflux, PTS, refluctionosis, 6 y $s Y$ China59 $207/220$ $C0T (106)$ $t+PA$ Ven reflux, PTS, refluctionosis, 6 y $s Y$ Switzerland46 $35/52$ $UACDT (87)$ $t+PA$ Ven reflux, reflux on pleatency rate, PTS, 7 $s Y$ Switzerland46 $307/23$ $C0T (26)$ $UrokinaseComplete tysis, patency rate, PE, mortality, 15 moSweeken3111/74C0T (26)UrokinaseComplete tysis, patency rate, PE, mortality, 15 moSweeken3111/76C0T + stent (37)AlteplaseComplete tysis, patency rate, PE, mortality, 15 moSweeken3111/76C0T (26)UrokinaseComplete tysis, patency rate, PE, mortality, 15 moSweeken3111/76C0T (26)Urokinase<$						vs AA (99)		PTS, recurrent DVT		venography or CT
USA53 $27/26$ $CUT + AA (E7)$ or $AA (E6)$ UnokinasePatency rate, complications, PTS, rethrombosis, patency rate, mortality15 moDemmark29 $23/78$ $CUT (101)$ rt-PAVein reflux, PTS, rethrombosis, patency rate, mortality6 yUSA47 $27/50$ $CUT (10)$ rt-PAVein reflux, PTS, rethrombosis, patency rate, mortality6 yUSA47 $27/50$ $CUT (10)$ rt-PAVein reflux, PTS, rethrombosis, patency rate, patency rate, PTS, baceding, enous reflux5 yChina59 $207/220$ $CUT (105)$ $UrokinaseComplication, reflux, complication, rate,patency rate, PTS,baceding, enous reflux2 yChina59207/220CUT (105)UrokinaseComplication, rate, PTS,baceding, enous reflux2 yUK35NRUrokinaseComplication, reflux, complication, rate,patency rate, PTS, vein reflux, complication, rate,pTS, reflexing rate, PTS, vein reflux, complication, reflux2 yUK35NRVRComplication, reflux, reflux, reflux, reflux2 ySweden3111/14CUT (26)UrokinaseComplication, reflux, reflux, reflux2 ySweden3111/126CUT + stentCOT (26)UrokinaseComplication, reflux, reflux2 yChina4633/73CUT + stentCT (23)UrokinaseComplication, reflux2 ySweden3111/126CUT (26)UrokinaseComplication, reflux<$	Enden et al 2009	RCT, multicenter	Norway	52	64/39	CDT+AA (50)	Alteplase	lliofemoral patency, venous obstruction	6 mo	Routine ultrasound, or by
USA 53 27/26 CDT+AA (27) Unokinase Patency rate, complications, PTS, 15 mo Denmark 29 237/8 CDT (101) rt-PA Vein reflux, PTS, rethrombosis, 6 y USA 47 27/50 CDT (101) rt-PA Vein reflux, PTS, rentrambosis, 6 y USA 47 27/50 CDT (101) rt-PA Vein reflux, PTS, rentrambosis, 5 y UR CD1 (27) Unokinase Completation, remonainty patency rate, 5 y China 59 207/220 CDT (427) Unokinase Completation, reflux, completances, patency rate, 1 y China 59 207/220 CDT (427) Unokinase Completation, reflux, completances, 1 y 1 y UK 35 NR CDT (28) Unokinase Completation, reflux, completances, 1 y 2 y UK 35 NR CDT (28) Unokinase Completation, reflux, completation, reflux, completation 2 y UK 35 UR CDT (28) Unokinase Completation, reflux, reflux, completation 2 y UK 35 UN CDT						vs AA (53)				venography or CT
Instruction vs. AA (26) vs. AA (26) venous function Demmark 29 23/78 CDT (101) rt-PA Vein reflux, PTS, rethronhosis, 6 y USA 47 27560 CDT (77) Unokinase Complete ysis, rethronhosis, 6 y Brazili 474 Nin CDT (17) Unokinase Complete ysis, rethronhosis, 5 y China 59 207/220 CDT (427) Unokinase Complete ysis, rethronhosis, 1 y China 59 207/220 CDT (427) Unokinase Complete ysis, rethronhosis, 1 y China 59 207/220 CDT (427) Unokinase Complete ysis, rethronhosis, 1 y Switzerland 46 35/52 UACDT (67) Unokinase Complete ysis, rethronhosis, 1 y Switzerland 46 35/73 CDT (28) Unokinase Complete ysis, rethronhosis, 1 y China 51 Unokinase Complete ysis, rethronhosis, 2 y 2 y Switzerland 46	Lee et al 2013	Retrospective	NSA	53	27/26	CDT + AA (27)	Urokinase	Patency rate, complications, PTS,	15 mo	Venography ultrasound
Dermark29 $23/78$ $CDT (101)$ rt-PAVein reflux, PTS, rethrombosis,6 yUSA 47 $27/50$ $CDT (77)$ UrokinaseComplication, PE, montality patency rate5 yURA 47 $27/50$ $CDT (77)$ UrokinaseComplication, PE, montality patency rate5 yChina59 $207/220$ $CDT (427)$ UrokinaseComplication, PE, montality patency rate5 yChina59 $207/220$ $CDT (427)$ UrokinaseComplication, rethrombosis, and the complication, rethrombosis, and						vs AA (26)		venous function		
10 Prospective Dennark 29 23/18 C01 (10) rT-A Vention relux, relation relux, relationsis, ley patency rate, by respective 6 y 97 Prospective USA 47 27/50 C01 (13) rt-A Vention relux, relation relux, rounding patency rate, by respective 5 y 917 Prospective USA 47 27/50 C01 (13) rt-A Vention relux, relux, relix, patency rate, by relation, relux, rounding network, relix, relix, relix, rounding network, relix, rounding network, relix, relix, relix, rounding network, relix, roundire network, relix, roundirek network, relix, roundire n	Case series studies without a	comparison group		;						
97 Prospective LSA 47 Z750 C0T (77) Unkinase Dealeroy rate, mortality Prospective Bazil 4/14 NR C0T (18) ri-PA Complete lysis, rethonolisis, patency rate, prix, beeding, wenus, retux 1 Retrospective China 59 207/220 C0T (18) ri-PA Complete lysis, patency rate, prix, complete lysis, prix, prix	Baekgaard et al 2010	Prospective	Denmark	29	23/78	CDT (101)	rt-PA	Vein reflux, PTS, rethrombosis,	6 y	Ultrasonography
M Prospective USA 4/1 Z/N0 U1 (7/1) Unownase Complication, PL, mortality patency rate 5 yr Prospective Bazia 4/14 NR C0T (18) rt-PA Complication, PL 5 yr Retrospective China 59 207/220 C0T (16) Unokinase Complication, rethrombosis, patency rate, PTs, complete lysis, patency rate, PT, complete lysis, patency, rate, PT, complete lysis, PT, complete lysis, PT, complete lysis, PT, complete lysis, PT, complete		:	- -	į	1 0	I HOO		patency rate, mortality	ι	
Prospective Brazil 4/14 NR CDT (18) rt-PA Complete lysis, rethrombosis, 1 y Retrospective China 59 207/220 CDT (427) Unoknase Complete lysis, rethrombosis, 1 y Retrospective China 59 207/220 CDT (427) Unoknase Completelysis, rethrombosis, patency rates, PTS, 2 y Retrospective China 65 49/57 CDT (106) Unoknase Completelysis, patency, rates, PTS, 2 y Retrospective UK 35/52 UACDT (87) rt-PA PTS, vein reflux, complication, ethnombosis, 1 y Retrospective UK CDT (28) Unoknase Completelysis, PTS, vein reflux, complication 2 y Retrospective Switzer A CDT (265) Unoknase Completelysis, patency, rate, PS, mortality 15 mo Retrospective China 46 33/73 CDT (265) Unoknase Completelysis, patency, 3 mo Retrospective Kentospective Use Completelysis, patency 2 mo mo	Bjarnason et al 1997	Prospective	USA	4/	21/50	(//) ICD	Urokinase	Complication, PE, mortality patency rate	ζç	Duplex ultrasound
Retrospective Clina 59 207/220 CDT (427) Unokinase Deleding, wnous crefux 2 y 2014 Prospective China 65 49/57 CDT (106) Unokinase Complication, rethrombosis, patency rate, 2 y 2 y 2014 Prospective China 65 49/57 CDT (106) Unokinase Complication, rethrombosis, patency rate 2 y 2014 Prospective UK 35 NR CDT (24) Unokinase Complication, rethrombosis, patency rate 2 y 201 Prospective UK 35 NR CDT (23) Unokinase Complication, rethrombosis, patency rate 2 y 201 Prospective UK 31 11/14 CDT (28) Unokinase Complication, rethrombosis, patency rate 2 y 201 Prospective Sweden 31 11/14 CDT (28) Unokinase Complication, rethrombosis, patency rate 2 y 21 Prospective Finand 46 93/173 CDT (26) Unokinase rt-PA Complication, re	Casella et al 2007	Prospective	Brazil	4/14	NR	CDT (18)	rt-PA	Complete lysis, rethrombosis,	1 y	Duplex-scan
Retrospective Chira 59 207/220 CDT (427) Urokinase Complication, PE 2 y Retrospective Chira 65 49/57 CDT (106) Urokinase Complication, PE 2 y Retrospective Switzerland 46 55/52 UACDT (87) rt-PA Prospective Thombication, rethrombosis, 1 y Prospective UK 35 NR CDT (24) Urokinase Complication, rethrombosis, 1 y Prospective UK 35 NR CDT (28) Urokinase Complete lysis, pris, vein reflux, complication 2 y Prospective UK 31 11/26 CDT + stent (37) Alteplace Complete lysis, pris, vein reflux, complication 2 y 12 Prospective Uniokinase Complication patency rate, PE, mortality 15 mortality								bleeding, venous reflux		
Retrospective Complication, PE complication, rethrombots, patency rate 2 y 2014 Prospective Switzerland 65 49/57 UCDT (87) rt-PA PTS, patency cuthors, patency rate 2 y 2014 Prospective UK 35 NR CDT (24) Unokinase Complication, rethrombots, patency rate 2 y 2 Prospective UK 35 NR CDT (28) Unokinase Completel ysis, patency rate 2 y 2 Prospective UK 31 11/26 CDT + stent (37) Alteblase Completel ysis, patency rate, PE, mortality 15 mortality 12 Prospective Einland 48 26/30 CDT (26) Urokinase Complication, completel ysis, patency, rate 2 mortality 12 Prospective Finland 48 26/30 CDT (26) Urokinase PE, pompletel ysis, patency, rate 2 mortality 1 mortality	Du et al 2015	Retrospective	China	59	207/220	CDT (427)	Urokinase	Complete lysis, patency rates, PTS,	2 y	Ultrasound or digital
Retrospective Chira 65 49/57 CDT (106) Unokinase Complication, rethrombosis, patency rate 2 y 2014 Prospective Switzerland 46 35/52 UACDT (87) rt-PA PE, complete lysis, patency rate 2 y 5 Retrospective UK 35 NR CDT (28) Unokinase Complete lysis, patency rate 2 y 5 Retrospective UK 31 11/26 CDT (28) Unokinase Complete lysis, patency rate 2 y 7 Retrospective Sweden 31 11/26 CDT (28) Unokinase Complete lysis, patency rate 2 y 7 Retrospective Sweden 31 11/26 CDT (48) Unokinase Complete lysis, patency, rate, PE, mortality 15 mo 12 Prospective Trind 46 33/173 CDT (26) Unokinase Complete lysis, patency, rate, PE, mortality 3.5 y 12 Prospective Tinind 48 26/30 CDT (26) Unokinase Complete lysis, pretrock								complication, PE		subtraction angiography
Old Prospective Switzerland 46 35/52 UACDT (87) rt-PA PTS, patency, complication, rethrombosis, 1 yrst Frospective UK 35 NR C0T (24) Urokinase Complete lysis, PTS, wein reflux, complication 2 y Frospective UK 35 NR C0T (28) Urokinase Complete lysis, pTS, wein reflux, complication 2 y Prospective UK 31 11/26 C0T (266) Urokinase Complication patency 27 mo 12 Prospective Finland 48 26/30 C0T (266) Urokinase Complication, complication, complication 2 y 12 Prospective Finland 48 26/30 C0T (366) Urokinase Complication, complication, complete lysis, patency, rate, PE, mortality 16 mo 12 Prospective Kentospective Korea 55 10/24 C0T (36) rt-PA PE, hortality 16 mo 13 Retrospective USA 48 2/742 C0T (69) rt-PA PE, hortality 2.1 y 14 Retrospective USA 48 2	Duan et al 2015	Retrospective	China	65	49/57	CDT (106)	Urokinase	Complication, rethrombosis, patency rate	2 y	Conventional venography
Frespective UK 35 NR CDT (24) Urokinase PE, complete lysis PTs, wein reflux, complication 2 y Frospective USA NR 14/14 CDT (28) Urokinase Complete lysis, PTS, vein reflux, complication 2 y Prospective Sweden 31 11/26 CDT +stent (37) Atteplase Complete lysis, patency rate, PE, mortality 15 mo 12 Prospective Sweden 31 11/26 CDT (56) Urokinase Complete lysis, patency rate, PE, mortality 15 mo 12 Prospective Finlend 48 26/30 CDT (56) Urokinase Complication, complete lysis, patency, rate, PE, mortality 15 mo 12 Prospective Kentospective Korea 55 10/24 CDT (34) Urokinase Complete lysis, patency, rate, PE, mortality 27 mo 13 Retrospective Korea 55 10/24 CDT (35) r-PA PTS, PE, mortality 10 14 Retrospective US 48 2/142 CDT (33) r-PA<	Enaelberaer et al 2014	Prospective	Switzerland	46	35/52	UACDT (87)	rt-PA	PTS. patency. complication. rethrombosis.		Duplex sonography
Prospective UK 35 NR CDT (24) Unokinase Complete lysis, PTS, vein reflux, complication 2 y Retrospective USA NR 14/14 CDT (28) Urokinase Complete lysis, patency rate, PE, mortality 15 mo Prospective Sweden 31 11/26 CDT +stent (37) Alteplase Complete lysis, patency rate, PE, mortality 15 mo 12 Prospective China 46 93/173 CDT (56) Urokinase Complete lysis, patency, rate, PE, mortality 27 mo 12 Prospective Entrospective Korea 55 10/24 CDT (34) Urokinase Complication, complete lysis, patency, rate, PE, mortality 35 y 12 Prospective Use 55 Urokinase Complication, complete lysis, patency, rate, PE, mortality 16 mo 12 Prospective Use 55 Urokinase Complication, complete lysis, patency, rate,				2				PE, complete lvsis	Ċ.	
5 Retrospective 0.0 14/14 0.01 (28) Unokinase Complete lysis, patency rate, pt, montality 15 0 12 Prospective Sweden 31 11/26 0.01 + stent (37) Alteplase Complete lysis, patency, rate, pt, montality 15 0 12 Prospective Sweden 31 11/26 0.01 + stent (37) Alteplase Complication patency 27 montange	Fiendo et al 2015	Prosnective	ШК	35	NR	CDT (24)	l Irokinase	Complete liveis PTS vielin reflux complication	2 \	Illtrasolind Donnler
Transpondent Complication patency Complication complete lysis Complete lysis Complication complete lysis Complication Complete lysis Completelysis Completelysis	lackson et al 2005.	Retrosnective	LISA	NB	14/14	CDT (28)	Urnkinase	Complete livels natency rate PE mortality	15 mo	Illtrasound
Prospective Sweden 31 11/26 CDT + stent (37) Attendase Complication patency 27 mo 12 Prospective China 46 93/173 CDT (266) Urokinase Pc. bleeding, complication complete lysis 27 mo 12 Prospective Finland 48 26/30 CDT (56) Urokinase Complication, complete lysis, patency, 3.5 y 12 Prospective Korea 55 10/24 CDT (34) Urokinase Complication, complete lysis, patency, 3.5 y 13 Retrospective USA 55 10/24 CDT (34) Urokinase Complication, PE mortality 2.1 y 13 Retrospective USA 52 19/14 CDT (33) rt-PA Retrombolysis, complete lysis, PE, mortality 2.1 y 14 Retrospective USA 52 19/14 CDT (33) rt-PA Retrombolysis, complication, PE wortality 2.1 y 15 Retrospective USA 52 19/14 CDT (33) rt-PA Retrory rate, complete lysis,			50	-	-	(01) 100	e C	comprove spores parceled races	2	
Trospective Diversion Diversion <td>Kälhal at al 2007</td> <td>Drocoortivo</td> <td>Cuindan</td> <td>54</td> <td>11/76</td> <td>CDT etent /27)</td> <td>S</td> <td>Complication potency</td> <td>07 mo</td> <td>Venoeraphy color Donnler scan</td>	Kälhal at al 2007	Drocoortivo	Cuindan	54	11/76	CDT etent /27)	S	Complication potency	07 mo	Venoeraphy color Donnler scan
Hetrospective Unita 40 93/1/3 UU (200) Unokinase PF, Decunity, Complication, complete lysis, patency, 3.5 y Prospective Finland 48 26/30 CDT (56) Urokinase Complete lysis, patency, 3.5 y PTS, PE, mortality 3.5 y PTS, PE, mortality 16 mo complexe tive USA 55 10/24 CDT (34) Urokinase Complete lysis, recurrence, PTS, 16 mo complexetive USA 48 27/42 CDT (69) rt-PA Retrospective USA 52 19/14 CDT (33) rt-PA Retromolysis, complete lysis, PE, mortality 2.1 y Prospective USA 52 19/14 CDT (33) rt-PA Complexe lysis, PE, mortality 2.1 y Retrospective Denmark 31 7/38 CDT (45) Alteplase Complication, PE mortality, complete lysis, complete lysis, complication 22 mo complexetive USA 43 9/23 CDT (45) Alteplase Complexe lysis, complexe lysis, complexe lysis, retromolosis 1 y Retrospective USA 43 9/23 CDT (45) Alteplase Complexe lysis, complexe lysis, complexe lysis, retromolosis 1 y retrospective USA 43 9/23 CDT (37) Urokinase rt-PA Patency rate, complexe lysis, complications, 1 y retrospective USA 43 9/23 CDT + stent (32) Alteplase Complexe lysis, complexe lysis, complications, 1 y			OFine	- (07/11					
2012ProspectiveFinland4826/30CDT (56)UrokinaseComplication, complete lysis, patency, PTS, PE, mortality3.5 y07RetrospectiveKorea5510/24CDT (34)UrokinaseComplete lysis, recurrence, PTS, nomblete lysis, recurrence, PTS,16 mo07RetrospectiveUSA4827/42CDT (69)rt-PARetromolysis, complete lysis, recurrence, PTS, complete lysis, recurrence, PTS,16 mo05RetrospectiveUSA5219/14CDT (33)rt-PARetromolysis, complete lysis, retromolosis, complete lysis, retromolosis, complete lysis, retromolosis2.1 y012RetrospectiveDemmark317/38CDT (45)AlteplaseComplete lysis, complete lysis,	LI EL AL ZUID	Heliospeciive	UIIIIa	40	93/1/3	(007) IM	ULUKIIIASE	re, breeding, complication complete lysis	YIN .	Computed tormography vehography
2012 Prospective Finland 48 26/30 0.01 (56) Urokinase Complication, complete lysis, patency, 3.5 y Retrospective Korea 55 10/24 0.01 (34) Urokinase Complication, complete lysis, patency, 3.5 y 07 Retrospective USA 48 27/42 0.01 (34) Urokinase Complication, PE mortality 16 mo 07 Retrospective USA 48 27/42 0.01 (69) rt-PA Retrombolysis, complete lysis, PE, mortality 2.1 y 05 Retrospective USA 52 19/14 0.01 (33) rt-PA complication, PE mortality 2.1 y 012 Retrospective Uson 42 18/19 USCDT (37) Urokinase rt-PA Patency rate, complete lysis, complications, 1 y 13 Retrospective USA 43 9/23 CDT+stent (32) Alteplase Complication, PE wortality, complications, 1 y 13 Retrospective USA 43 9/23 CDT+stent (32) Alteplase Complication, PE wortality, complications, 1 y			· ·	!			:			
Retrospective Korea 55 10/24 ODT (34) Urokinase Complete lysis, recurrence, PTS, 16 mo 07 Retrospective USA 48 27/42 ODT (69) rt-PA Rethrombolysis, complete lysis, recurrence, PTS, 16 mo 05 Retrospective USA 52 19/14 ODT (33) rt-PA Rethrombolysis, complete lysis, PE, mortality 2.1 y 05 Retrospective Usa 52 19/14 ODT (45) Atteplase Complete lysis, complete lysis, rethrombosis 1 y 012 Retrospective Denmark 31 7/38 ODT (45) Atteplase Complication, PE wortality, complication 22 mo 012 Retrospective Germany 42 18/19 UscDT (37) Urokinase rt-PA Patency rate, complete lysis, complications, 1 y 13 Retrospective USA 43 9/23 CDT+stent (32) Atteplase Complication, PE wortality, complications, 1 y	Manninen et al 2012	Prospective	Finland	48	26/30	(D1 (56)	Urokinase	Complication, complete lysis, patency,	3.5 y	Ultrasound venography
Hetrospective Korea 55 10/24 0.01 (34) Unokinase Complete lysis, recurrence, PTS, 16 mo 07 Retrospective USA 48 27/42 0.01 (69) rt-PA Retrombolysis, remortality 2.1 y 3 Prospective USA 52 19/14 0.01 (33) rt-PA Retrombolysis, complete lysis, PE, mortality 2.1 y 05 Retrospective Usmark 31 7/38 0.01 (45) Atteplase Complication, PE wortality, complication 22 mo 012 Retrospective Denmark 31 7/38 0.01 (45) Atteplase Complication, PE win reflux, rethrombosis 1 y 012 Retrospective Germany 42 18/19 USCDT (37) Urokinase rt-PA Patency rate, complications, 1 y 1 13 Retrospective USA 43 9/23 CDT+stent (32) Atteplase Complication, pe wincitations, 1 y 1										
07 Retrospective USA 48 27/42 CDT (69) rt-PA Retrombolysis, complete lysis, PE, mortality 2.1 y 3 Prospective USA 52 19/14 CDT (33) rt-PA Retrombolysis, complete lysis, PE, mortality 2.1 y 05 Retrospective Denmark 31 7/38 CDT (45) Atteplase Complication, PE wein reflux, retrombosis 1 y 012 Retrospective Germany 42 18/19 USCDT (37) Urokinase rt-PA Patency rate, complete lysis, complications, 1 y 1 y 13 Retrospective USA 43 9/23 CDT+stent (32) Atteplase Complication, PE wein reflux, rethrombosis 1 y	Park et al 2008	Retrospective	Korea	55	10/24	CDT (34)	Urokinase	Complete lysis, recurrence, PTS,	16 mo	Duplex scan computed
07 Retrospective USA 48 27/42 CDT (69) rt-PA Retrrombolysis, complete lysis, PE, mortality 2.1 y 3 Prospective USA 52 19/14 CDT (33) rt-PA complete lysis, PE, mortality, complication 22 mo 05 Retrospective Denmark 31 7/38 CDT (45) Alteplase Complication, PE vein reflux, rethrombosis 1 y 012 Retrospective Germany 42 18/19 USCDT (37) Urokinase rt-PA Patency rate, complications, 1 y 1 y 13 Retrospective USA 43 9/23 CDT+stent (32) Alteplase Complication, patency rate, complications, 1 y								complication, PE mortality		venography
3 Prospective USA 52 19/14 CDT (33) rt-PA complete lysis, PE, mortality, complication 22 mo 005 Retrospective Denmark 31 7/38 CDT (45) Alteplase Complication, PE vein reflux, rethrombosis 1 y 012 Retrospective Germany 42 18/19 USCDT (37) Urokinase rt-PA Patency rate, complete lysis, complications, 1 y 1 y 13 Retrospective USA 43 9/23 CDT+stent (32) Alteplase Complication, patency rate 29 mo	Protack et al 2007	Retrospective	USA	48	27/42	CDT (69)	rt-PA	Rethrombolysis, complete lysis, PE, mortality	2.1 y	NR
005 Retrospective Denmark 31 7/38 CDT (45) Alteplase Complication, PE vein reflux, rethrombosis 1 y 012 Retrospective Germany 42 18/19 USCDT (37) Urokinase rt-PA Patency rate, complete lysis, complications, 1 y 13 Retrospective USA 43 9/23 CDT + stent (32) Alteplase Complication, patency rate 29 mo	Sharifi et al 2013	Prospective	USA	52	19/14	CDT (33)	rt-PA	complete lysis, PE, mortality, complication	22 mo	Venous duplex imaging.
 Betrospective Germany 42 18/19 USCDT (37) Urokinase rt-PA Patency rate, complete lysis, complications, 1 y Retrospective USA 43 9/23 CDT+stent (32) Alteplase Complication, patency rate 29 mo 	Sillesen et al 2005	Retrospective	Denmark	31	7/38	CDT (45)	Alteplase	Complication, PE vein reflux, rethrombosis	1 <	Doppler ultrasound
13 Retrospective USA 43 9/23 CDT+stent (32) Alteplase Complication, patency rate 29 mo	Strijkers et al 2012	Retrospective	Germany	42	18/19	USCDT (37)	Urokinase rt-PA	Patency rate, complete lysis, complications,	1 <	Duplex sonography
13 Retrospective USA 43 9/23 CDT+stent (32) Alteplase Complication, patency rate 29 mo		·						rethrombosis		
	Warner et al 2013	Retrospective	USA	43	9/23	CDT + stent (32)	Alteplase	Complication. patency rate	29 mo	Venous duplex ultrasonography
Retrospective China 64 25/36 CDT+stent (61) Urokinase Patencv. mortality. PTS complication 5 v	Xue et al 2014	Retrospective	China	64	25/36	CDT + stent (61)	Urokinase	Patency. mortality. PTS complication	5 v	duplex

Table 2

4

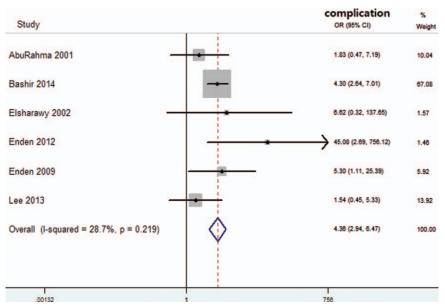


Figure 2. Forest plot showing pooled complication after CDT and CIs from CDT compared with that from anticoagulation. CDT = catheter-directed thrombolysis, CI = confidence interval.

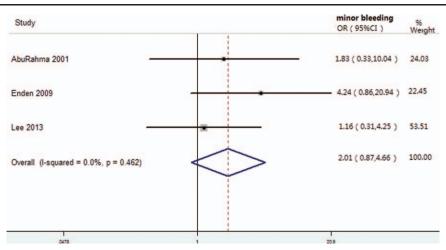


Figure 3. Forest plot showing pooled minor bleeding after CDT and CIs from CDT compared with that from anticoagulation. CDT = catheter-directed thrombolysis, CI = confidence interval.

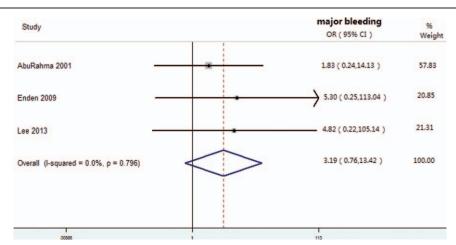
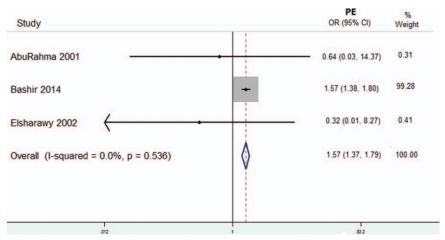



Figure 4. Forest plot showing pooled major bleeding after CDT and CIs from CDT compared with that from anticoagulation. CDT = catheter-directed thrombolysis, CI = confidence interval.

mortality posttreatment. The pooled mortality rate was 0.07 (95% CI: 0.03–0.11); I^2 was 63.8% (P=.063), indicating high heterogeneity.

3.5. Subgroup analyses

Subgroup analyses were performed to assess the outcomes by study design (Table 3) and use of different thrombolytic agent (Table 4). Regarding the rate of PE, that in the prospective studies was slightly lower than that in the retrospective studies. However, the rate of complication was higher in prospective studies than in retrospective studies (Table 3). Subgroup analyses stratified by thrombolytic agent showed that the frequency of complication was lowest in urokinase studies, and PE occurred at a slightly lower frequency in rt-PA studies.

3.6. Publication bias

No significant publication bias was conducted on complications. Publication bias evaluation on the 2 endpoints (PE and mortality) was not detected due to the limited number of studies involved^[42] (Table 5).

Study	complication (95% Cl)	% Weight
Bjarnason(1997)	• 0.25 (0.15, 0.35)	2.63
Du(2015)	0.10 (0.07, 0.13)	30.33
Duan (2015)	0.09 (0.04, 0.14)	8.27
Li(2015)	0.06 (0.03, 0.09)	30.15
Manninen (2012)	0.13 (0.04, 0.22)	3.17
park(2008)	0.06 (-0.02, 0.14)	3.85
Sillesen(2005)	0.16 (0.05, 0.27)	2.14
Casella(2007)	• 0.22 (0.03, 0.41)	0.67
Kolbel (2007)	0.16 (0.04, 0.28)	1.76
Warner(2013)	0.16 (0.03, 0.29)	1.52
Xue(2014)	0.07 (0.01, 0.13)	5.99
Engelberger(2014)	0.11 (0.04, 0.18)	5.68
Strijkers(2012)	0.16 (0.04, 0.28)	1.76
Fiengo(2015)	0.08 (-0.03, 0.19)	2.08
Overall (I-squared = 46.6%, p = 0.028)	0.09 (0.08, 0.11)	100.00
-411 0	411	

Figure 6. Forest plot showing pooled complication rates after CDT and CIs from the case series studies CDT = catheter-directed thrombolysis, CI = confidence interval.

6-10/10-401	minor complication %
Study	(95% CI) Weight
Casella(2007)	a 0.22 (0.03, 0.41) 0.56
Du(2015) -	- 0.07 (0.05, 0.09) 35.16
Fiengo(2015)	0.08 (-0.03, 0.19) 1.75
Li(2015) -	0.05 (0.02, 0.08) 30.02
Manninen (2012)	0.05 (-0.01, 0.11) 6.32
park(2008)	- 0.03 (-0.03, 0.09) 6.26
Sillesen(2005)	0.13 (0.03, 0.23) 2.13
Kolbel (2007)	0.11 (0.01, 0.21) 2.03
Xue(2014)	0.08 (0.01, 0.15) 4.44
Engelberger(2014)	• 0.09 (0.03, 0.15) 5.69
Strijkers(2012)	0.08 (-0.01, 0.17) 2.70
Bjarnason(1997)	0.17 (0.09, 0.25) 2.93
Overall (I-squared = 26.5%, p = 0.184)	0.07 (0.05, 0.08) 100.0
-411 0	.411

Figure 7. Forest plot showing pooled minor complication rates after CDT and CIs from the case series studies. CDT = catheter-directed thrombolysis, CI = confidence interval.

3.7. Quality assessment

When assessing RCTs by the Jadad score, all 3 RCTs^[38–40] had an adequate description for randomization and showed blinded assessment of outcomes. The information was provided in all RCTs. Therefore, the 3 RCTs were generally of high quality (Table 6). All nonrandomized comparative and case series studies were assessed by the Newcastle–Ottawa scale. Of the 11 studies^[18–21,23,26,29,30,32,33,36] that were generally of high quality, 4 studies^[24,27,35,37] had an outcome present at the start of the study, 2 studies^[24,31] had no assessment of outcome, and 5 studies^[22,25,28,34,41] had no adequate follow-up; 1 study^[27] had no report of the length of follow-up. Ten studies^[22,24,25,27,28,31,34,35,37,41] were generally of low quality (Table 7).

4. Discussion

CDT has been developed as an alternative therapy in patients with lower extremity DVT since the early 1990s^[43] because the advantages include rapid venous thrombolysis, a minimally invasive character, quicker symptomatic relief, and prevention of PTS. However, the safety of the DVT patients is of great concern with measures to reduce complications and mortality and prevent PE. The latest Antithrombotic Therapy for VTE Disease CHEST Guideline notes that the balance of the risks and benefits with CDT is uncertain.^[7] In our meta-analysis, patients with acute lower extremity DVT receiving CDT are associated with a high risk of complications and PE than those receiving anticoagulation. However, in our case series pooled results, CDT is associated with a low risk of complication.

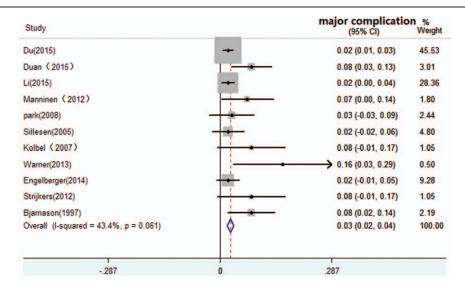


Figure 8. Forest plot showing pooled major complication rates after CDT and CIs from the case series studies. CDT = catheter-directed thrombolysis, CI = confidence interval.

study		PE (95%CI)	% weight
Li(2015)		0.05 (0.02, 0.08)	2.41
Manninen (2012)	•	0.07 (0.00, 0.14)	0.37
Protack(2007)		0.04 (-0.01, 0.09)	0.77
Strijkers(2012)		0.03 (-0.02, 0.08)	0.55
Engelberger(2014)		0.01 (-0.01, 0.03)	3.78
Du(2015)	+	0.00 (-0.00, 0.01)	92.11
Overall (I-squared = 74.9%, p = 0.001)	\Diamond	0.00 (0.00, 0.01)	100.00
137	0	.137	

Figure 9. Forest plot showing pooled PE rates after CDT and CIs from the case series studies. CDT = catheter-directed thrombolysis, CI = confidence interval, PE = pulmonary embolism.

Table 3

Subgroup of prospective and retrospective study design.

		Prospectiv	e			Retrospect	ive	
	Ν	Rate (95% CI)	ľ%	Р	Ν	Rate (95% CI)	ľ%	Р
Complication	6	0.14 (0.10,0.18)	35.5	.171	8	0.08 (0.07,0.10)	25.6	.225
PE	2	0.03 (-0.02,0.09)	64.5	.093	5	0.04 (0.00,0.08)	85.2	.000

N, the number of studies; P, P for heterogeneity. Cl=confidence interval, PE=pulmonary embolism.

Table 4		
Subaroup	analyses of urokinase, rt-PA, alteplase, and more than or equal to 2 thro	mbolytic agents.

		Urokinase)			rt-PA				Alteplase	e			\geq 2 Thrombolytic a	agents	
	Ν	Rate (95%)	ŕ%	Р	Ν	Rate (95%)	ŕ%	Р	N	Rate (95%)	ľ%	Р	Ν	Rate (95%)	ľ%	Р
Complication PE	8 3	0.09 (0.07,0.10) 0.03 (-0.01,0.08)	58.3 87.8	.019 .000		(11.9 25.5	.287 .247	3 1	0.16 (0.09,0.23) 0.22 (0.09,0.35)	0.0 NA	1.000 NA	1 1	0.16 (0.04,0.28) 0.03 (-0.02,0.08)	NA NA	NA NA

N, the number of studies; P, P for heterogeneity. Cl=confidence interval, NA=not applicable, PE=pulmonary embolism.

Complications include major bleeding, minor bleeding, fever, hematoma, and pain in all of the included studies. The pooled results of major complications (0.03) from case series studies were under the suggested threshold made by the Society of Interventional Radiology.^[44] No threshold value was found for the minor bleeding rates, which should be as minimal as possible.^[44] Rigorous acute lower extremity DVT inclusion criteria may explain the good safety outcome of complications. However, in our findings, compared with anticoagulation CDT, there was a nearly 3-fold increased likelihood of major bleeding. A systematic review that included 9 trials of anticoagulation and thrombolysis reported higher rates of bleeding among patients

Table 5Publication bias.		
	Begg test	Egger test
Complication	0.337	0.715

treated with thrombolytic agents (RR, 2.23; 95% CI, 1.41–3.52).^[45] Another meta-analysis showed that, compared with anticoagulation alone, CDT was also associated with a significant increase in the occurrence of major bleeding events (OR: 2.06; 95% CI: 1.62–2.62).^[46] Several reasons could explain the raised risk of bleeding with CDT. For example, an older age of treated people in our comparative studies (the average age ranged from 46 to 53 years) (Table 1), a longer duration of thrombolysis

Table 6

Jadad scale for randomized clinical trials (RCTs) quality assessment.

Study	Description of randomization	Blinding	Attrition information	Overall quality
Elsharawy et al 2002	2	2	1	High
Enden et al 2012	2	2	1	High
Enden et al 2009	2	2	1	High

Table 7

The Newcastle–Ottawa scale for non-RCTs and noncomparison studies quality assessment.

	Selection	of exposed and	d nonexposed co	horts	Comparability	Outcome of interest			
		Selection of		Outcome			Length	Adequate	
Study	Representativeness of exposed cohort	nonexposed cohort	Ascertainment of exposure	present at start of study	Comparability of cohorts	Assessment of outcome	of follow-up	of follow-up	Overall quality
Studies with a comparison	group								
AbuRahma et al 2001	*	*	*	*	*	*	*	*	High
Bashir et al 2014	*	*	*	NA	*	*	*	*	Low
Lee et al 2013	*	*	*	*	*	*	*	Ν	Low
Studies without a comparis	on group								
Baekgaard et al 2010	*	NA	*	*	NA	*	*	*	High
Bjarnason et al 1997	*	NA	*	*	NA	*	*	*	High
Casella et al 2007	*	NA	*	*	NA	*	*	*	High
Du et al 2015	*	NA	*	*	NA	*	*	*	High
Duan et al 2015	*	NA	*	*	NA	*	*	NR	Low
Engelberger et al 2014	*	NA	*	*	NA	*	*	*	High
Fiengo et al 2015	*	NA	*	NA	NA	NR	*	*	Low
Jackson et al 2005	*	NA	*	*	NA	*	*	NR	Low
Kölbel et al 2007	*	NA	*	*	NA	*	*	*	High
Li et al 2015	*	NA	*	NA	NA	*	NR	*	Low
Manninen et al 2012	*	NA	*	*	NA	*	*	NR	Low
Park et al 2008	*	NA	*	*	NA	*	*	*	High
Protack et al 2007	*	NA	*	*	NA	*	*	*	High
Sharifi et al 2013	*	NA	*	*	NA	NR	*	*	Low
Sillesen et al 2005	*	NA	*	*	NA	*	*	*	High
Strijkers et al 2012	*	NA	*	*	NA	*	*	*	High
Warner et al 2013	*	NA	*	*	NA	*	*	NR	Low
Xue et al 2014	*	NA	*	NA	NA	*	*	*	Low

Only comparison studies with stars in all domains were considered high quality. In noncomparison studies, the comparability of cohort was excluded given study design. Only studies that had stars in all domains asides from comparability were considered high quality. Retrospective studies were all assumed to have adequate follow-up. NA=not applicable, NR=not reported, RCT=randomized clinical trial. *Meet the quality assessment.

therapy (more than 24 hours).^[36,40,41] The saphenous vein or popliteal vein was the common puncture site in our included studies, and most bleeding complications were puncture-related bleeding episodes, with few distant bleeding complications. We inferred that CDT performed by experienced endovascular surgeons or interventional radiologists would be beneficial for the reduction of puncture-related bleedings.

The risk of PE was markedly increased in patients with previous asymptomatic PE and heart disease,[11] and inferior vena cava filters are recommended in such patients to prevent the passage of the thrombus to the pulmonary arteries and have been gaining popularity.^[27] Regarding the results of the case series meta-analysis, the pooled incidence of PE (0.00) was under a suggested threshold occurrence (<2%) for symptomatic PE.^[44] Almost no PE occurred because half of the included case series studies involved the use of inferior vena cava filters during lysis. A summary review about symptomatic PE during CDT has been reported in approximately 1%, and fatal PE is also rare.^[47] However, the low incidence of PE may be effected by underreported for drug use during CDT interventional procedure in retrospective or prospective trail, so the results are only for reference. Compared with anticoagulation therapy, CDT was associated with an increase in PE (1.5-fold)^[48]; the large sample size in our included studies may be the reason for the increased incidence.^[37] A systematic review of percutaneous mechanical thrombectomy (PMT) in the treatment of DVT that included 16 retrospective case series of 481 patients have reported a ${<}1\%$ incidence of symptomatic PE.^[49] Future studies comparing CDT with PMT are expected to provide more safety results.

No threshold value was found regarding mortality. However, in our paper, the pooled mortality rate was high (0.07) because

13% of patients from one of the included studies had a malignancy.^[30] Hence, the mortality outcomes should be considered cautiously when interpreting the findings from our meta-analysis. In the CaVenT study, 3 deaths occurred in the CDT group (3/90) compared with anticoagulation therapy, which was associated with a decrease in mortality (RR: 0.36; 95% CI: 0.10–1.30).^[50] No procedure-related deaths were reported from the systematic review of PMT in patients with DVT.^[49] Until now, it is very difficult to compare results from studies that report data about overall mortality with those reporting DVT-specific mortality, which need more research during interventional procedure.

Although CDT has an effective result to prevent PTS for acute lower extremity DVT patients,^[7] PTS as an efficacy outcome is not discussed in this study.

Our subgroup analyses presented a larger difference in complications between prospective (0.14) and retrospective studies (0.08). The reasons to explain the result could be that, in the original prospective studies: there was a small sample size and there was incomplete standardization of the assay procedures, increasing the study complications.^[19,20] Subgroup analyses stratified by thrombolytic agent showed that urokinase had comprehensively better safety than others to reduce the risk of complications and PE. However, urokinase has a 4-fold longer half-life than rt-PA.^[11]

Several limitations should be acknowledged when interpreting the findings from our meta-analysis. First, almost half of the studies were retrospective studies; thus, that recall bias cannot be ruled out. Second, only peer-reviewed English studies were included; non-English language journals had been neglected. Nevertheless, our study also has strength because we comprehensively analyzed the safety results of CDT treatment, providing available evidence concerning the safety of CDT.

5. Conclusion

Our meta-analysis indicates that the use of CDT is associated with a low risk of complications. However, compared with anticoagulation, CDT shows a significant increase in complications and PE. Pharmacomechanical CDT, ultrasound-accelerated CDT, and a combination with other assistive technology are thoughtful considerations to reduce the disadvantages of CDT. Furthermore, more well-designed RCTs to clarify and improve the safety of CDT treatment are needed.

References

- [1] Khanbhai M, Hansrani V, Burke J, et al. The early management of DVT in the North West of England: a nation-wide problem? Thromb Res 2015;136:76–86.
- [2] Di Nisio M, van Es N, Buller HR. Deep vein thrombosis and pulmonary embolism. Lancet 2017;388:3060–73.
- [3] Boc A, Vene N, Stalc M, et al. Unprovoked proximal venous thrombosis is associated with an increased risk of asymptomatic pulmonary embolism. Thromb Res 2014;133:1011–5.
- [4] Li FH, Zhao Y, Wang XH, et al. Risk factors associated with the occurrence of silent pulmonary embolism in patients with deep venous thrombosis of the lower limb. Phlebology 2014;29:442–6.
- [5] Subbiah R, Aggarwal V, Zhao H, et al. Effect of compression stockings on post thrombotic syndrome in patients with deep vein thrombosis: a meta-analysis of randomised controlled trials. Lancet Haematol 2016;3: e293–300.
- [6] Dolovich LR, Ginsberg JS, Douketis JD, et al. A meta-analysis comparing low-molecular-weight heparins with unfractionated heparin in the treatment of venous thromboembolism: examining some unanswered questions regarding location of treatment, product type, and dosing frequency. Arch Intern Med 2000;160:181–8.
- [7] Kearon C, Akl EA, Ornelas J, et al. Antithrombotic therapy for VTE disease: CHEST Guideline and Expert Panel Report. Chest 2016;149:315–52.
- [8] Baldwin MJ, Moore HM, Rudarakanchana N, et al. Post-thrombotic syndrome: a clinical review. J Thromb Haemost 2013;11:795–805.
- [9] Meissner MH, Gloviczki P, Comerota AJ, et al. Early thrombus removal strategies for acute deep venous thrombosis: clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum. J Vasc Surg 2012;55:1449–62.
- [10] Kearon C, Akl EA, Comerota AJ, et al. Antithrombotic therapy for VTE disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012;141:e419S–96S.
- [11] Baekgaard N, Klitfod L, Jorgensen M, et al. Should catheter-directed thrombolysis be monitored? Phlebology 2016;31:5–10.
- [12] Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009;6:e1000100.
- [13] Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996;17:1–2.
- [14] Wells G, Shea B, O'Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2012; Available from http://www.ohri.ca/programs/clinical_epidemiol ogy/oxford.asp.
- [15] Higgins JP, Higgins JP, Thompson SG, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
- [16] Egger M, Davey SG, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
- [17] Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50:1088–101.
- [18] Baekgaard N, Broholm R, Just S, et al. Long-term results using catheterdirected thrombolysis in 103 lower limbs with acute iliofemoral venous thrombosis. Eur J Vasc Endovasc Surg 2010;39:112–7.

- [19] Bjarnason H, Kruse JR, Asinger DA, et al. Iliofemoral deep venous thrombosis: safety and efficacy outcome during 5 years of catheterdirected thrombolytic therapy. J Vasc Interven Radiol 1997;8:405–18.
- [20] Casella IB, Presti C, Aun R, et al. Late results of catheter-directed recombinant tissue plasminogen activator fibrinolytic therapy of iliofemoral deep venous thrombosis. Clinics (Sao Paulo) 2007;62:31–40.
- [21] Du XL, Kong LS, Meng QY, et al. Safety and efficacy of low dosage of urokinase for catheter-directed thrombolysis of deep venous thrombosis. Chin Med J (Engl) 2015;128:1787–92.
- [22] Duan PF, Ni CF. Randomized study of different approaches for catheterdirected thrombolysis for lower-extremity acute deep venous thrombosis. J Formos Med Assoc 2016;115:652–7.
- [23] Engelberger RP, Fahrni J, Willenberg T, et al. Fixed low-dose ultrasoundassisted catheter-directed thrombolysis followed by routine stenting of residual stenosis for acute ilio-femoral deep-vein thrombosis. Thromb Haemost 2014;111:1153–60.
- [24] Fiengo L, Bucci F, Khalil E, et al. Original approach for thrombolytic therapy in patients with Ilio-femoral deep vein thrombosis: 2 years follow-up. Thromb J 2015;13:40.
- [25] Jackson LS, Wang XJ, Dudrick SJ, et al. Catheter-directed thrombolysis and/or thrombectomy with selective endovascular stenting as alternatives to systemic anticoagulation for treatment of acute deep vein thrombosis. Am J Surg 2005;190:864–8.
- [26] Kolbel T, Lindh M, Holst J, et al. Extensive acute deep vein thrombosis of the iliocaval segment: midterm results of thrombolysis and stent placement. J Vasc Interv Radiol 2007;18:243–50.
- [27] Li FH, Zhao Y, Wang XH, et al. Risk factors associated with symptomatic pulmonary embolism of catheter directed thrombolysis for lower extremity deep venous thrombosis. Eur J Vasc Endovasc Surg 2015;50:658–63.
- [28] Manninen H, Juutilainen A, Kaukanen E, et al. Catheter-directed thrombolysis of proximal lower extremity deep vein thrombosis: a prospective trial with venographic and clinical follow-up. Eur J Radiol 2012;81:1197–202.
- [29] Park YJ, Choi JY, Min SK, et al. Restoration of patency in iliofemoral deep vein thrombosis with catheter-directed thrombolysis does not always prevent post-thrombotic damage. Eur J Vasc Endovasc Surg 2008;36:725–30.
- [30] Protack CD, Bakken AM, Patel N, et al. Long-term outcomes of catheter directed thrombolysis for lower extremity deep venous thrombosis without prophylactic inferior vena cava filter placement. J Vasc Surg 2007;45:992–7. discussion 997.
- [31] Sharifi M, Bay C, Nowroozi S, et al. Catheter-directed thrombolysis with argatroban and tPA for massive iliac and femoropopliteal vein thrombosis. Cardiovasc Intervent Radiol 2013;36:1586–90.
- [32] Sillesen H, Just S, Jorgensen M, et al. Catheter directed thrombolysis for treatment of ilio-femoral deep venous thrombosis is durable, preserves venous valve function and may prevent chronic venous insufficiency. Eur J Vasc Endovasc Surg 2005;30:556–62.
- [33] Strijkers RH, Just S, Jorgensen M, et al. Ultrasound-accelerated catheterdirected thrombolysis in acute iliofemoral deep venous thrombosis. J Vasc Surg Venous Lymphat Disord 2013;1:225–30.
- [34] Warner CJ, Goodney PP, Wallaert JB, et al. Functional outcomes following catheter-based iliac vein stent placement. Vasc Endovascular Surg 2013;47:331–4.
- [35] Xue GH, Huang XZ, Ye M, et al. Catheter-directed thrombolysis and stenting in the treatment of iliac vein compression syndrome with acute iliofemoral deep vein thrombosis: outcome and follow-up. Ann Vasc Surg 2014;28:957–63.
- [36] AbuRahma AF, Perkins SE, Wulu JT, et al. Iliofemoral deep vein thrombosis: conventional therapy versus lysis and percutaneous transluminal angioplasty and stenting. Ann Surg 2001;233:752–60.
- [37] Bashir R. Comparative outcomes of catheter-directed thrombolysis plus anticoagulation vs anticoagulation alone to treat lower-extremity proximal deep vein thrombosis. JAMA Intern Med 2014;174:1494–501.
- [38] Elsharawy M, Elzayat E. Early results of thrombolysis vs anticoagulation in iliofemoral venous thrombosis. A randomised clinical trial. Eur J Vasc Endovasc Surg 2002;24:209–14.
- [39] Enden T, Haig Y, Klow NE, et al. Long-term outcome after additional catheter-directed thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): a randomised controlled trial. Lancet 2012;379:31–8.
- [40] Enden T, Klow NE, Sandvik L, et al. Catheter-directed thrombolysis vs. anticoagulant therapy alone in deep vein thrombosis: results of an open randomized, controlled trial reporting on short-term patency. J Thromb Haemost 2009;7:1268–75.

- [41] Lee CY, Lai ST, Shih CC, et al. Short-term results of catheter-directed intrathrombus thrombolysis versus anticoagulation in acute proximal deep vein thrombosis. J Chin Med Assoc 2013;76:265–70.
- [42] Lau J, Ioannidis JP, Terrin N, et al. The case of the misleading funnel plot. BMJ 2006;333:597–600.
- [43] Semba CP, Dake MD. Iliofemoral deep venous thrombosis: aggressive therapy with catheter-directed thrombolysis. Radiology 1994;191:487–94.
- [44] Vedantham S, Sista AK, Klein SJ, et al. Quality improvement guidelines for the treatment of lower-extremity deep vein thrombosis with use of endovascular thrombus removal. J Vasc Interv Radiol 2014;25:1317–25.
- [45] Watson L, Broderick C, Armon MP. Thrombolysis for acute deep vein thrombosis. Cochrane Database Syst Rev 2016;DOI: 10.1002/ 14651858.CD002783.pub4.
- [46] Du GC, Zhang MC, Zhao JC. Catheter-directed thrombolysis plus anticoagulation versus anticoagulation alone in the treatment of

proximal deep vein thrombosis – a meta-analysis. Vasa 2015;44: 195–202.

- [47] Comerota AJ. Thrombolysis for deep venous thrombosis. J Vasc Surg 2012;55:607–11.
- [48] Bashir R, Zack CJ, Zhao H, et al. Comparative outcomes of catheterdirected thrombolysis plus anticoagulation vs anticoagulation alone to treat lower-extremity proximal deep vein thrombosis. JAMA Intern Med 2014;174:1494–501.
- [49] Karthikesalingam A, Young EL, Hinchliffe RJ, et al. A systematic review of percutaneous mechanical thrombectomy in the treatment of deep venous thrombosis. Eur J Vasc Endovasc Surg 2011;41:554–65.
- [50] Enden T, Haig Y, Klow NE, et al. Long-term outcome after additional catheter-directed thrombolysis versus standard treatment for acute iliofemoral deep vein thrombosis (the CaVenT study): a randomised controlled trial. Lancet 2012;379:31–8.