
Frontiers in Microbiology 01 frontiersin.org

Temporal proteomic analyses of 
human lung cells distinguish 
high pathogenicity influenza 
viruses and coronaviruses from 
low pathogenicity viruses
Mahamud-ur Rashid 1,2†, Kathleen K. M. Glover 1,2†, Ying Lao 2, 
Victor Spicer 2 and Kevin M. Coombs 1,2,3*
1 Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, 
MB, Canada, 2 Manitoba Center for Proteomics and Systems Biology, Winnipeg, MB, Canada, 
3 Children’s Hospital Research Institute of Manitoba, John Buhler Research Center, Winnipeg, MB, 
Canada

Newly re-emerging viruses are of significant global concern. In late 2019, a 

new coronavirus, SARS-CoV-2, emerged in China and soon spread worldwide, 

causing the COVID-19 pandemic, which to date has caused >6 M deaths. 

There has been a wealth of studies on this new virus since its emergence. The 

coronaviruses consist of many animal and human pathogens, with some of 

the human coronavirus, such as strain OC43, normally causing only mild cold-

like symptoms. Viruses usurp host cellular processes to successfully replicate. 

We used tandem mass tag mass spectrometry-based proteomic analyses of 

human lung MRC-5 cells infected with OC43 for various periods of time to 

delineate virus-induced host cell alterations. Numerous proteins involved in 

lipid metabolism, molecular transport, small molecule biochemistry, cell death 

and survival, humoral immune response, and inflammatory response were 

dysregulated. Comparison of our findings to previous studies that examined a 

range of differentially pathogenic influenza A viruses (IAV), and to SARS-CoV-2 

data, revealed that proteins involved in the cell cycle, cytokine signaling, DNA 

replication, and anti-inflammatory responses were generally similarly affected 

by virtually all tested IAV and CoV. However, proteins involved in necrosis, 

protein metabolism, ECM regulation, and signal transduction were generally 

different. In addition, the more pathogenic CoV and IAV activated Rb-

dependent repression of E2F-mediated transcription, whereas less pathogenic 

influenza and coronaviruses either inhibited or had no effect on this pathway.
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Introduction

Viruses are obligate intracellular parasites that depend upon 
host processes for their replication. During their replication, 
viruses induce profound changes in the host cell’s protein 
repertoire (proteome). Viruses remain responsible for millions 
of deaths annually. In particular, the current COVID-19 
pandemic, caused by the SARS-CoV-2 virus, has killed more 
than 6 million people since it emerged in Wuhan, China in late 
2019. Rapid vaccine development and administration appear to 
have blunted the worst of this pandemic. Vaccines have been 
useful for ameliorating many infectious diseases, including 
smallpox, polio, and influenza (Delany et al., 2014, Nypaver 
et al., 2021). However, mutations that occur within viral and 
bacterial genomes as part of natural evolution can render 
vaccines ineffective. Thus, there is growing interest in 
understanding and exploiting cellular processes that viruses 
require that can be  modulated to protect against these 
pathogenic organisms.

Some previous studies have identified some of the proteomic 
alterations induced by SARS-CoV-2, a BSL-3-level pathogen 
(Bojkova et al., 2020; Bouhaddou et al., 2020; Hekman et al., 
2020; Stukalov et al., 2021). There are numerous other human 
coronaviruses (hCoV) that infect humans. To better understand 
host processes that differentiate between severe SARS-CoV-2 
infection and infection by milder hCoV, we used tandem mass 
tag (TMT)-based mass spectrometry and determined proteomic 
alterations induced by OC43, a BSL-2 hCoV strain responsible 
for mild infections. OC43 infection induced dysregulation of 
several proteins involved in cell death and survival, humoral 
immune response, inflammatory response, lipid metabolism, 
molecular transport, and small molecule biochemistry in 
human lung MRC-5 cells. We also compared our OC43-induced 
proteomic signature to that induced by SARS1 and SARS-
CoV-2  in A549 lung cells (Stukalov et  al., 2021). Some 
dysregulated processes, such as autophagy, cytokine signaling, 
cell cycle, and anti-inflammatory response, were similarly 
affected by the mild hCoV and by the more pathogenic 
hCoV. However, several processes, such as apoptosis, antiviral 
response, cell cycle progression, and lipid and carbohydrate 
metabolism were differentially affected by OC43 and 
SARS-CoV-2.

Materials and methods

Cells and virus

Human lung MRC-5 cells (ATCC® #CCL-171) were 
maintained in Eagle’s medium (EMEM; ATCC #30-2003) 
supplemented with 10% Fetal Bovine Serum (FBS; Invitrogen) 
at 37°C in 5% CO2. Cells were trypsinized and sub-cultured at 
1:4–1:6 ratios three times a week and were used between passage 
# 4 and 12. Human coronavirus OC43 stocks were propagated 

and titrated in MRC-5 cells. Cells were washed 2× in DMEM 
lacking FBS to remove serum and infected with OC43 at a 
multiplicity of infection (MOI) of 0.001 plaque-forming units 
(PFU) per cell. After 1 h adsorption in a 33.5°C incubator with 
periodic rocking, infected cells were overlaid with DMEM 
supplemented with 1 × l-glutamine, 1 × non-essential amino 
acids, 1 × sodium pyruvate, 0.25% BSA, and 1 μg/ml trypsin. 
Cells were incubated at 33.5°C and ¾ of the media were 
replaced 2 days post-infection (2dpi). Incubation continued 
until the cells showed >50% cytopathic effect. Supernatants 
were harvested and clarified of cell debris by centrifugation at 
1,000 × g for 15 min. In some cases, virus was concentrated by 
centrifuging infected culture supernatants at 45,000 × g for 2 h 
in a Beckman JA-25.50 rotor and resuspended in small volumes 
of PBS. Virus titers were determined by immuno-focus assay as 
described (Lambert et al., 2008). Briefly, 50 μl aliquots of 1:10 
dilutions were added to MRC-5 monolayers in 48-well plate. 
After 1 h adsorption in a 33.5°C incubator with periodic 
rocking, infected cells were overlaid with 1% Avicel® in 1× 
Medium 199 (M199) supplemented with 0.25% BSA and 1 μg/
ml trypsin. Overlaid cells were incubated at 33.5°C until 
38–40 hours post-infection (hpi), washed 1× with PBS, and 
fixed in PBS + 3% formaldehyde. After fixation for >6 h, cells 
were lysed with 0.1% NP-40  in TBST, blocked overnight in 
TBST + either 0.3% BSA or 5% skim milk, and probed with 
mouse α-OC43  N protein antibody (Sigma-Aldrich 
#MAB9013). Immune complexes were detected with an 
HRP-conjugated α-mouse 2° antibody (Cell Signaling #7076) 
and TrueBlue® (KPL #5510-0030) peroxidase substrate.

Infection

For proteomic analyses, MRC-5 cells were infected at an MOI 
of 3 PFU per cell to ensure >95% synchronous infection. Virus 
was allowed to adsorb for 2 h before EMEM supplemented with 
5% FBS was added. Mock and time-matched OC43-infected cells 
were harvested at 12, 24, and 48 hpi, to represent early, middle, and 
late events in virus infection, and proteomic analyses were 
performed on cell lysates obtained from three separate 
biological replicates.

Protein quantification

Individual time-matched mock-infected and OC43-infected 
cells were harvested using sterile scrappers. Cells were pelleted by 
centrifugation at 600 × g for 8 min and washed 3× with sterile 1× 
PBS. Washed cells were lysed with 4% SDS in 100 mM HEPES 
buffer pH 8.5. Cell lysates were centrifuged at 14,000 × g for 15 min 
at 11°C to remove insoluble cellular components. Total lysate 
protein concentrations were determined using a commercial 
Bradford total protein estimation method (Pierce Biotechnology, 
Rockford, IL, United States).
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Tandem mass tags mass spectrometry 
analyses

Quantified proteins from 12, 24, and 48 hpi samples were 
digested into peptides using the SP3 (single-pot solid-phase-
enhanced sample preparation) procedure described by Sielaff 
(Sielaff et al., 2017). Briefly, proteins were trypsin digested for 14 h 
at 37°C. Peptides were eluted and immediately submitted for TMT 
MS analysis. TMT labeling was performed as specified by the 
manufacturer (Thermo Scientific), except that TMT labels were 
dissolved in DMSO. Equivalent amounts of labeled samples within 
each TMT set were mixed prior to 2D LC/MS/MS.

An Agilent 1100 series LC system with UV detector (214 nm) 
and 1 mm × 100 mm XTerra C18, 5 μm column (Waters, Ireland) 
was used for pH 10 first dimension reversed-phase separation. A 
gradient of 1.80% acetonitrile per minute (0.1–59.9% acetonitrile 
in 30 min) was delivered at a flow rate of 150 μl/min. Both eluents 
A (water) and B (1:9, water:acetonitrile) contained 20 mM 
ammonium formate at pH 10. Twenty 1-min fractions were 
collected and concatenated into 10 (#1 mixed with # 11, etc.) to 
provide optimal orthogonal separation. These fractions were 
lyophilized and resuspended in 0.1% formic acid for the second 
dimension analysis.

Individual 6-plex TMT labeling was performed at each time 
point such that each 6-plex TMT reaction consisted of the three 
replicates of mock and three replicates of infected. Analyses of 
TMT-labeled peptides were performed on an Orbitrap Q Exactive 
HF-X instrument (Thermo Fisher Scientific, Bremen, Germany). 
The sample was introduced using an Easy-nLC 1,000 system 
(Thermo Fisher Scientific) at 1 μg per injection. Mobile phase A 
was 0.1% (v/v) formic acid and mobile phase B was 0.1% (v/v) 
formic acid in 80% acetonitrile (LC–MS grade). Gradient 
separation of peptides was performed on a C18 [Luna C18(2), 
3 μm particle size (Phenomenex, Torrance, CA, United States)] 
column packed in-house in Pico-Frit (100 μm × 30 cm) capillaries 
(New Objective, Woburn, MA, United  States). Peptides were 
separated by the following gradient: 5% phase B over 2 min, 5–7% 
increase of phase B over 2 min, 7–25% over 60 min, 25–60% over 
15 min, 60–90% over 1 min, with a final elution of 90% B for 
10 min at a flow rate of 300 nl/min.

Data acquisition on the Orbitrap Q Exactive HF-X instrument 
was configured for data-dependent method using the full MS/
DD − MS/MS setup in a positive mode. The instrument is 
calibrated weekly, and polysiloxane (m/z = 445.12003), an internal 
control, is monitored during each run and does not vary more 
than 1 ppm. Spray voltage was set to 1.85 kV, funnel RF level at 40, 
and heated capillary at 275°C. Survey scans covering the mass 
range of 350–1,500 m/z were acquired at a resolution of 120,000 
(at m/z 200), with a maximum ion injection time of 60 
milliseconds, and an automatic gain control (AGC) target value of 
3e6. For MS2 scan triggering, up to 20 of the most abundant ions 
were selected for fragmentation at 32% normalized collision 
energy, with intensity threshold kept at 6.3e4. AGC target values 
for fragment spectra were set at 1e5, which were acquired at a 

resolution of 30,000, with a maximum ion injection time of 80 ms 
and an isolation width set at 1.2 m/z. Dynamic exclusion of 
previously-selected masses was enabled for 20 s, charge state 
filtering was limited to 2–6, peptide match was set to preferred, 
and isotope exclusion was on.

Peptide and protein identification and 
quantification

A database of protein sequences for hCoV and human 
(UniProt 2016; containing 20,168 human protein entries) was 
used for peptide/protein identification. For each time point, every 
1D LC–MS run in the 2D-LC–MS experiment was converted into 
an MGF file using the Proteome Discoverer bundled tool. These 
were then concatenated into a single MGF per time point. These 
three concatenated MFGs files were each searched against the 
database using X!Tandem (cyclone 2012.10.01.1).

Standard peptide identification settings were used: single 
missed cleavage tryptic peptides were permitted, with a parent and 
fragment mass tolerance of 10 ppm. A fixed post-translational 
modification of C + 57.021 was applied, and variable PTMs 
including N-terminal acetylation, deamidation, phosphorylation, 
and oxidation were permitted. Peptide assignment into source 
proteins was managed by X!Tandem.

Peptide level TMT6 reporter tag intensities were integrated 
across a window of ±3 mDa each and corrected for isotopic 
overlap between channels using the supplied batch-specific 
correction matrix. Protein quantitation required at least two 
unique peptides of expectation values log(e) ≤ −1.5 each, yielding 
highly confident protein assignments with false discovery rate 
(FDR) = 0.1%. The sum of peptide level TMT6 reporter tag 
intensities for each protein was converted into a log2 scale for 
simplified differential analysis. Spectra (in MGF format) and an 
overall log2 protein expression matrix are available at the 
University of California, San Diego’s MassIVE archive1 under the 
accession MSV000089582.

Immunoblotting

The levels of dysregulation of several of the identified proteins 
were validated by Western blotting, essentially as previously 
described (Coombs et al., 2010). Briefly, 30–50 μg of cell lysates 
were resolved in 10 or 12% SDS-PAGE, transferred to 0.2 μm 
Immobilon membranes, blocked overnight in TBST +5% skim 
milk, and probed with mouse primary anti-coronavirus OC43 N 
protein (Sigma-Aldrich #MAB9013), anti-CLIC1 (Sigma 
#MABN46), anti-HSPA5 (Sigma #MABC675), or rabbit anti-β-
actin (Cell Signaling # 4970), anti-FHAD1 (OriGene 
#AP51667PU-N), anti-HLA-A (Genetex #GTX114080), 

1 massive.ucsd.edu
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anti-PSMA2 (Cell Signaling #2455), and anti-ZSWIM8 (Abbexa 
#ABX126815). Immune complexes were detected with secondary 
HRP-conjugated anti-mouse (Cell Signaling #7076) or anti-rabbit 
(Cell Signaling #7074) antibodies, and visualized on a GE 
Amersham Imager 680.

Statistical and bioinformatics analyses

Individual protein differences between non-infected and each 
time-matched infected sample were converted to fold-changes and 
p values were calculated using Student’s T-test for grouped data to 
determine the level of significance. Z-scores for each replicate 
across all time points were calculated to classify proteins which 
were not considered significant by T-test. A value of p of <0.05 was 
used to select significantly dysregulated proteins and Z-score 
values of ≥ +1.96σ and ≤ −1.96σ were considered valid criteria for 
up- and downregulation. We  use the term “up-regulated” to 
indicate proteins whose quantities are greater in the infected 
samples than in the mock non-infected samples, and may include 
proteins whose synthesis is increased, or whose turnover and loss 
are decreased, and/or a combination of the two processes. 
Similarly, “down-regulation” indicates proteins whose synthesis is 
decreased, or whose turnover and loss are increased, and/or a 
combination of the two processes.

Time-point-specific datasets containing protein IDs, fold-
changes compared to mock-infected cells, and p values were 
uploaded into and analyzed by Ingenuity Pathway Analysis (IPA) 
software. The IPA database was used to classify all significantly 
regulated proteins based on protein type and subcellular location. 
Graphic representation of the distribution of molecules in 
different cellular compartments was done by manually modifying 
cell graphic vector downloaded from the IPA pathway designer 
tool. Information regarding the top affected bio-functions, 
canonical pathways, upstream molecules, and interconnecting 
networks were exported by performing a core analysis in IPA.

Results

OC43 causes specific temporal changes 
in the cellular proteome

We performed a non-biased 6-plex TMT mass 
spectrometry (MS)-based analysis of OC43-infected human 
lung MRC-5 cells, which led to the identification and 
measurement of 8,357 cellular proteins; 7,370 at 12 hpi, 7,344 
at 24 hpi, and 7,246 at 48 hpi (Figure  1A). Of these, 1,510 
proteins were considered significantly dysregulated at any of 
the three time points (Table  1). Many reported proteomic 
studies use protein cutoff values between ±1.25–2. As seen in 
Table 1, 317 proteins were significantly dysregulated >1.25-
fold or < 0.8-fold (= 1/1.25), whereas only 11 proteins were 
significantly dysregulated >2-fold or < 0.5-fold (=1/2). Thus, 

we imposed a fold-change cutoff of ±1.33, which resulted in 
identification of 133 significantly dysregulated proteins, to 
enable meaningful bioinformatics analyses. The majority of 
proteins (27 at 12 hpi, 14 at 24 hpi, and 77 at 48 hpi) were 
upregulated. As indicated above, we  use “up-regulated” to 
indicate proteins whose quantities are greater in the infected 
samples than in the mock non-infected samples, which may 
include proteins whose synthesis is increased, or whose 
turnover and loss are decreased, and/or a combination of the 
two processes. Similarly, “down-regulation” indicates proteins 
whose synthesis is decreased, or whose turnover and loss are 
increased, and/or a combination of the two processes. There 
were eight downregulated proteins at 12 hpi, nine at 24 hpi, 
and eight at 48 hpi (Table  1; Figure  1B). To validate the 
TMT-mass spectrometry results, we collected parallel mock- 
and OC43-infected cell lysates, resolved proteins by 
SDS-PAGE, and immunoprobed for several proteins 
(Figure 1C). Most of the highly dysregulated proteins were 
similarly regulated as measured both by Western blotting and 
by mass spectrometry. For example, FHAD1 was upregulated 
>1.7-fold at 24 hpi as measured by both methods and ZSWIM8 
was downregulated >2.3-fold at both 24 and 48 hpi as 
measured by both methods. Many of the proteins were 
upregulated as measured by Western blot (i.e., HSPA5 at all 
time points, and CLIC1 and HLA-A at 24 and 48 hpi), but were 
not significantly dysregulated as measured by mass 
spectrometry, but this may relate to differences in techniques 
and what are measured (intact proteins by Western blot and 
tryptic fragments by mass spectrometry). Importantly, no 
proteins were significantly dysregulated in one direction by 
one method but significantly dysregulated in the opposite 
direction by the other method. Many more proteins and 
bio-functions were dysregulated at 48 hpi than at earlier time 
points (Figure 1D), and by 48 hpi these represented more than 
a dozen processes (Figure 1E). Enzymes were over-represented 
among the significantly upregulated proteins at all time points 
(Figure  1F). Cytokines were over-represented among the 
significantly upregulated proteins at 12 hpi, peptidases were 
over-represented among the significantly upregulated proteins 
at 24 and 48 hpi, and growth factors were over-represented 
among the significantly upregulated proteins at 48 hpi. Some 
of the most dysregulated proteins, with fold-change > ± 2, were 
CASP8AP2, CEP128, RSAD1, and ATP2A3 at 12 hpi, MYH3 
and FHAD1 at 24 hpi, and SAMD8, HERV-K104, and ZSWIM8 
at 48 hpi (Table  2). All of these except ZSWIM8 were 
upregulated. In addition, ACTR3 was upregulated >1.7-fold at 
all time points.

Cellular networks affected by OC43 
infection

We uploaded the datasets of proteins and their levels of 
abundance into Ingenuity Pathway Analysis (IPA) to map 
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networks predicted to be affected by OC43 infection and to 
observe temporal alterations in protein expressions. Only two 
networks were identified at 12 hpi with scores of 25 or more. 

One of these was the “cardiovascular disease, hematological 
disease, and metabolic disease” network (Figure  2A; 
Supplementary Table S1), with an IPA score of 43. This 

A

C

D

F

E

B

FIGURE 1

Tandem mass tag (TMT)-Mass spectrometry characterization of OC43-infected MRC-5 cells. (A) Venn diagram of numbers of proteins identified at 
each time point. (B) Volcano plots of dysregulated proteins. Horizontal dashed line indicates value of p of 0.05. (C) Western blot validation of 
protein dysregulation levels. The horizontal dashed lines represent ±1.4-fold-change cutoffs corresponding to Table 2. (D) Ingenuity Pathway 
Analysis (IPA)-predicted overall diseases and functions at each time point. (E) Major affected functions at 48 hours post-infection (hpi). (F) Gene 
ontologies of up- and downregulated processes.
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network was identified and built from 18 identified 
significantly dysregulated proteins. Fifteen of the proteins 
(ALB, ALKBH5, ATP2A3, BST1, DKK3, EXT1, HMGCR, 
HMOX1, LDL, PHLPP1, RAG1, SCD, SQLE, TBC1D8, and 
TMUB1) were significantly upregulated (Figure  2A, red) 
whereas only three (FRY, JPT1, and MAP4) were significantly 
downregulated (Figure  2A, green). The other network was 
“carbohydrate metabolism, lipid metabolism, and small 
molecule biochemistry” with a score of 25; seven proteins in 
this network were upregulated (ARFRP1, CASP8AP2, COX7C, 
FGFR1OP2, RSAD1, RTTN, and ZNF227), and four proteins 
(ANKS1A, CCDC146, ITIH6, and TCEAL5) were 
downregulated (Figure  2B). Several proteins within these 
networks were significantly upregulated at 12 hpi and 
remained so at later times post-infection [i.e., squalene 
monooxygenase (SQLE) and serum albumin (ALB)], whereas 
most proteins significantly dysregulated at 12 hpi were not 
significantly dysregulated at later time points (Figure  2). 
Similarly, two networks were identified at 24 hpi with IPA 
scores of 27 or more (Supplementary Table S1). One of these 
was “amino acid metabolism, increased albumin levels, and 
molecular transport” with a score of 30 (Figure 3A) and the 
other was “cancer, hematological disease, and immunological 
disease” with a score of 27 (Figure 3B). ALB and SQLE were 
upregulated in the “amino acid metabolism, increased albumin 
levels, and molecular transport” network at all time points, 
and actin-related protein 3B (ACTR3B) was upregulated in 
the  “cancer, hematological disease, and immunological 

disease” network at all time points. Several proteins 
downregulated at 24 hpi [i.e., upstream stimulatory factor 1 
(USF1) and zinc finger protein 2 (ZNF2)] were not 
dysregulated at earlier or later time points, whereas zinc finger 
SWIM domain-containing protein 8 (ZSWIM8) was 
downregulated at both 24 and 48 hpi. Myosin-3 (MYH3) and 
interferon-induced GTP-binding protein Mx1 (MX1) were 
upregulated at 24 hpi but not dysregulated at earlier or later 
time points, and RING finger protein 24 (RNF24) was 
upregulated at both 24 and 48 hpi (Figure 3). Four networks 
were identified at 48 hpi with scores of 22 or more and all 
contained 12 or more identified significantly dysregulated 
proteins. These networks were “lipid metabolism, molecular 
transport and small molecule biochemistry” with an IPA score 
of 32 (Figure 4A), “cell death and survival, humoral immune 
response, and inflammatory response” with a score of 30 
(Figure  4B), “dermatological diseases and conditions, 
inflammatory response, and organismal injury and 
abnormalities” with a score of 27, and “metabolic disease, 
organismal injury, and abnormalities and renal and urological 
disease” with a score of 22. Several proteins in the “lipid 
metabolism, molecular transport, and small molecule 
biochemistry” network (i.e., HDL and LDL) were upregulated 
at all time points, whereas most dysregulated proteins [i.e., 
mitochondrial superoxide dismutase (SOD2), 
6-phosphogluconate dehydrogenase, decarboxylating (PGD), 
midkine (MDK), and tissue-type plasminogen activator 
(PLAT)] were only dysregulated (up) at 48 hpi (Figure 4).

TABLE 1 Numbers of significantly dysregulated OC43-infected MRC-5 proteins.

Total unique 12 hpi 24 hpi 48 hpi

Total proteins 8,357 7,370 7,344 7,246

Number significantly dysregulated

and F.C. > 1.000 1,510 38 79 1,061

and F.C. < 1.000 37 236 155

and F.C. > 1.100 1,327 38 70 949

and F.C. < 0.90909 37 205 111

and F.C. > 1.250 317 36 30 219

and F.C. < 0.8000 22 19 15

and F.C. > 1.333 133 27 14 77

and F.C. < 0.750 8 9 8

and F.C. > 1.400 77 21 10 42

and F.C. < 0.71429 3 3 6

and F.C. > 1.500 36 15 6 12

and F.C. < 0.6667 1 3 2

and F.C. > 1.750 15 8 3 3

and F.C. < 0.5714 0 2 1

and F.C. > 2.000 11 5 2 2

and F.C. < 0.5000 0 2 1

Significance was determined by T-test and Z-score as detailed in Materials and Methods from three biological replicates. Bold indicates proteins identified in Table 2. hpi, hours post-
infection.
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TABLE 2 MRC-5 proteins dysregulated ≥1.4-fold by OC43 infection.

12 h 24 h 48 h

Gene Protein Fold-change p value Fold-change p value Fold-change p value

CASP8AP2 CASP8-associated protein 2 3.32 2.3E−30

CEP128 Centrosomal protein of 128 kDa 3.27 2.4E−29 1.02 0.815 1.09 0.075

COX7C Cytochrome c oxidase subunit 

7C, mitochondrial

2.45 0.012 1.03 0.704

RSAD1 Radical S-adenosyl methionine 

domain-containing protein 1, 

mitochondrial

2.35 3.7E−19 1.07 0.329

ATP2A3 Sarcoplasmic/endoplasmic 

reticulum calcium ATPase 3

2.13 2.3E−12 1.01 0.856 1.28 0.016

TMUB1 Transmembrane and ubiquitin-

like domain-containing protein 

1

1.96 3.9E−10 0.83 0.049 1.22 0.247

RTTN Rotatin 1.83 3.7E−08

ACTR3B Actin-related protein 3B 1.81 9.8E−08 1.82 5.1E-11 1.73 3.2E-05

ALB Serum albumin 1.75 3.6E−07 1.33 0.002 1.48 0.006

ZNF227 Zinc finger protein 227 1.70 1.3E−06

RAG1 V(D)J recombination-activating 

protein 1

1.63 1.1E−05

EXT1 Exostosin-1 1.54 1.0E−04 1.05 0.514 1.11 0.113

TBC1D8 TBC1 domain family member 8 1.52 1.1E−04

ALKBH5 RNA demethylase ALKBH5 1.51 1.8E−04 1.10 0.194 1.06 0.423

DHX40 Probable ATP-dependent RNA 

helicase DHX40

1.51 2.3E−04

SCD Acyl-CoA desaturase 1.47 0.021 1.30 0.012 1.61 0.001

SQLE Squalene monooxygenase 1.46 0.022 1.41 0.006 1.60 0.0003

BST1 Bone marrow stromal antigen 1 1.44 7.1E-04 1.11 0.267 1.13 0.021

ISOC2 Isochorismatase domain-

containing protein 2

1.44 8.6E−04 1.07 0.293 1.25 0.054

ARFRP1 ADP-ribosylation factor-related 

protein 1

1.43 0.021 1.07 0.166 0.97 0.411

C17orf80 Uncharacterized protein 

C17orf80

1.40 0.002 1.10 0.235 1.25 0.083

MSMO1 Methylsterol monooxygenase 1 1.33 0.010 1.30 0.023 1.41 0.006

TMEM119 Transmembrane protein 119 1.24 0.049 1.04 0.604 1.41 0.001

RNF24 RING finger protein 24 1.21 0.049 1.59 0.030 1.65 0.038

CDC20 Cell division cycle protein 20 

homolog

0.71 3.7E−04

FRY Protein furry homolog 0.69 9.0E−05 0.98 0.703 1.15 0.180

CCDC146 Coiled-coil domain-containing 

protein 146

0.63 0.035 0.89 0.091 0.96 0.158

MYH3 Myosin-3 2.15 3.3E-17

FHAD1 Forkhead-associated domain-

containing protein 1

2.05 1.4E-14

MAP4K3 Mitogen-activated protein 

kinase 3

1.02 0.833 1.56 9.2E-07 1.08 0.209

MX1 Interferon-induced GTP-

binding protein Mx1

1.53 0.002

THY1 Thy-1 membrane glycoprotein 1.48 0.200 1.49 3.1E-05 1.54 0.093

(Continued)
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TABLE 2 (Continued)

12 h 24 h 48 h

Gene Protein Fold-change p value Fold-change p value Fold-change p value

RNF130 E3 ubiquitin-protein ligase 

RNF130

1.43 0.014 1.33 0.011

DDAH2 N(G),N(G)-dimethylarginine 

dimethylaminohydrolase 2

1.09 0.355 1.27 0.029 1.48 0.001

FABP3 Fatty acid-binding protein, heart 0.96 0.637 1.27 0.006 1.52 0.008

SQSTM1 Sequestosome-1 1.19 0.080 1.22 0.008 1.42 0.001

FASN Fatty acid synthase 0.98 0.805 1.19 0.041 1.42 0.011

ARL2BP ADP-ribosylation factor-like 

protein 2-binding protein

0.98 0.881 1.04 0.033 1.44 0.020

TCEAL7 Transcription elongation factor 

A protein-like 7

0.90 0.124 0.74 0.007

ZNF132 Zinc finger protein 132 0.73 0.014 0.71 0.034

DEF6 Differentially expressed in 

FDCP 6 homolog

0.75 0.241 0.66 0.014

APOBEC3D DNA dC- > dU-editing enzyme 

APOBEC-3D

0.40 1.4E-20

ZSWIM8 Zinc finger SWIM domain-

containing protein 8

1.11 0.300 0.36 5.0E-26 0.39 1.9E-20

SAMD8 Sterile alpha motif domain-

containing 8

1.04 0.648 2.63 0.0001

HERV-K104 Endogenous retrovirus group K 

member 104 Rec protein

2.08 1.8E-09

KDM6A Lysine-specific demethylase 6A 1.09 0.467 1.14 0.555 1.75 1.3E-05

TAF6L TAF6-like RNA polymerase II 

p300/CBP-associated factor-

associated factor 65 kDa subunit 

6 l

1.25 0.138 1.44 0.179 1.70 9.8E-05

AKR1C1 Aldo-keto reductase family 1 

member C1

1.05 0.431 1.02 0.803 1.62 0.008

SECTM1 Secreted and transmembrane 

protein 1

1.58 0.001

PDCD4 Programmed cell death protein 4 1.04 0.496 1.51 0.026

RFTN2 Raftlin-2 1.02 0.821 1.49 0.002

PSMB3 Proteasome subunit beta type-3 1.07 0.519 1.06 0.385 1.49 0.015

AGT Angiotensinogen 1.48 0.012

PEX13 Peroxisomal membrane protein 

PEX13

1.03 0.709 1.03 0.601 1.46 0.004

CD320 CD320 antigen 1.18 0.134 1.46 0.001

NQO1 NAD(P)H dehydrogenase 

[quinone] 1

0.94 0.511 1.07 0.445 1.46 0.013

HBA1 Hemoglobin subunit alpha 1.18 0.257 0.97 0.835 1.45 0.049

SOD2 Superoxide dismutase [Mn], 

mitochondrial

1.31 0.114 1.10 0.355 1.45 0.013

AKR1B1 Aldose reductase 0.97 0.748 1.09 0.412 1.44 0.012

HSPB1 Heat shock protein beta-1 0.89 0.241 1.08 0.299 1.43 0.021

PKM Pyruvate kinase PKM 1.00 1.000 1.16 0.151 1.43 0.022

UBE2O (E3-independent) E2 ubiquitin-

conjugating enzyme

1.02 0.873 1.04 0.612 1.42 0.017

(Continued)

https://doi.org/10.3389/fmicb.2022.994512
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Rashid et al. 10.3389/fmicb.2022.994512

Frontiers in Microbiology 09 frontiersin.org

Cellular diseases, functions, and 
pathways affected by OC43 infection

The identities and abundance levels of the significantly 
dysregulated proteins we observed also allowed IPA to predict 
various cellular processes, canonical pathways, and upstream 
regulators affected by OC43 infection (Figure 5). Some of the most 
significantly dysregulated canonical pathways were NRF2-
mediated oxidative stress response, oxytocin signaling pathway, 
and superpathway of cholesterol biosynthesis, each with a 
predicted Z-score of >1.96σ (Figure  5A). Multiple upstream 
regulators of transcription, kinases, other enzymes, cytokines, and 
growth factors also were predicted to be affected (Figure 5B). For 
example, sterol regulatory element binding transcription factor 1 
(SREBF1) and SREBF2 were predicted to be  upregulated 
transcription factors at all time points post-infection whereas the 
vast majority of these regulators were predicted only to be up- or 
downregulated at late time points post-infection. The combined 
effects of the various upregulated and downregulated proteins 
we identified and measured led IPA to predict inhibition of 14 
specific diseases/functions in eight categories (Figure  5C; 
Supplementary Table S2). For example, significant upregulation of 
15 proteins (ACLY, ASS1, FADS2, FASN, G6PD, HSPB1, NAMPT, 
NQO1, PDCD4, PLIN2, SCD, SOD2, SQSTM1, TKT, and TXN, 
all of which were upregulated ≥1.33-fold), combined with 
significant downregulation of INCENP and TOP2A, both of 

which were downregulated ≥1.33-fold, combined with 18 other 
proteins being significantly dysregulated ≥1.25-fold 
(Supplementary Table S2), contributed to the identification of the 
“organismal death” disease/function in the “organismal survival” 
category. Similarly, the combined effects of the various upregulated 
and downregulated proteins we identified and measured led IPA 
to predict activation of more than 20 specific diseases/functions 
in more than eight categories (Figure 5D; Supplementary Table S2). 
Many of these significantly dysregulated proteins play important 
roles in several disease/functional processes. For example, 
upregulation of NQO1 (NAD(P)H dehydrogenase [quinone] 1) 
contributed to prediction that lymphoma incidence, anemia, ROS 
quantity, and other processes were inhibited, whereas carbohydrate 
metabolism, nitric oxide synthesis, RNA virus infection, fatty acid 
metabolism, and other processes were predicted to be activated 
(Supplementary Table S2).

Discussion

We used non-biased quantitative mass spectrometry to 
measure more than 8,300 cellular proteins across three time 
points. This led to the identification of >1,500 significantly 
dysregulated proteins at any time point (p < 0.05). This strategy has 
been useful in identifying alterations induced in cellular proteins 
after infection by numerous viruses, including HIV (Greenwood 
et al., 2016), influenza viruses (Vester et al., 2009; Coombs et al., 

TABLE 2 (Continued)

12 h 24 h 48 h

Gene Protein Fold-change p value Fold-change p value Fold-change p value

KIAA0513 Uncharacterized protein 

KIAA0513

1.06 0.556 1.42 0.027

CYP1B1 Cytochrome P450 1B1 1.18 0.195 1.13 0.081 1.42 0.002

SAR1A GTP-binding protein SAR1a 1.01 0.913 1.11 0.276 1.42 0.034

GSTM2 Glutathione S-transferase Mu 2 0.95 0.592 1.04 0.577 1.41 0.020

PIR Pirin 0.99 0.923 1.17 0.081 1.41 0.020

NFATC4 Nuclear factor of activated 

T-cells, cytoplasmic 4

1.01 0.868 0.93 0.208 1.41 0.021

RPAP1 RNA polymerase II-associated 

protein 1

1.01 0.935 1.16 0.116 1.41 0.033

PLIN2 Perilipin-2 0.85 0.131 1.02 0.640 1.41 0.004

KIAA1467 Uncharacterized protein 

KIAA1467

1.02 0.649 1.41 0.023

LPIN1 Phosphatidate phosphatase 

LPIN1

1.11 0.343 1.11 0.083 1.41 0.006

TKT Transketolase 0.92 0.436 1.07 0.408 1.40 0.018

TOP2A DNA topoisomerase 2-alpha 1.06 0.653 0.91 0.354 0.71 0.004

PTX3 Pentraxin-related protein PTX3 1.11 0.286 0.99 0.859 0.70 0.001

INCENP Inner centromere protein 1.03 0.800 0.93 0.278 0.69 0.002

KRT9 Keratin, type I cytoskeletal 9 0.81 0.184 1.13 0.594 0.66 1.6E-05

Values determined from three replicates. Values ranked in descending order and from 12 to 48 h. Bold indicates proteins significantly (p < 0.05) dysregulated ≥ 1.40-fold, or ≤ 0.714.

https://doi.org/10.3389/fmicb.2022.994512
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Rashid et al. 10.3389/fmicb.2022.994512

Frontiers in Microbiology 10 frontiersin.org

2010; Ranadheera et al., 2018), herpesvirus (Berard et al., 2015a; 
Wan et al., 2019), and Zika virus (Xin et al., 2017; Srivastava et al., 
2020; Rashid et  al., 2022). Some of the proteins considered 
significantly dysregulated by either T-test or Z-score analysis were 
only altered in quantity by as little as 5%. For example, 1,510 
proteins were significantly dysregulated at any time point, but 
almost 200 of them were dysregulated 10% or less. Numerous 
studies have used various fold-change cutoffs ranging from as low 
as 5% to as much as 2-fold or more. However, we noted that only 

11 MRC-5 proteins were dysregulated by OC43 2-fold or more, 
far too few for meaningful downstream pathway analyses. Thus, 
we chose a fold-change cutoff of 1.33 for IPA pathway analyses to 
have a reasonable number to analyze while still maintaining some 
stringency. As seen in several other studies (Coombs et al., 2010; 
Berard et al., 2015b; Glover et al., 2019; Rashid et al., 2022), the 
numbers and types of affected proteins and networks increased as 
time progressed. At the earliest time point examined (12 hpi), 27 
proteins were significantly upregulated ≥1.33-fold and eight were 

A

B

FIGURE 2

Top MRC-5 pathways affected by OC43 infection at 12  hpi. Proteins and their levels of dysregulation were uploaded into Ingenuity Pathway 
Analysis (IPA) and top pathways constructed. (A) The “cardiovascular disease, hematological disease, and metabolic disease” network. (B) The 
“carbohydrate metabolism, lipid metabolism, and small molecule biochemistry” network. Protein levels at 24 and at 48  hpi were overlaid onto 
these pathways (smaller diagrams at right). Upregulated proteins depicted in red, downregulated in green, insignificantly regulated in gray, direct 
interactions shown with solid lines, and indirect interactions depicted with dashed lines. Molecular types as indicated in key.
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significantly downregulated ≥1.33-fold (Table 1). These proteins 
led to IPA-predicted construction of two networks; the 
cardiovascular disease, hematological disease, and metabolic 
disease network (Figure 2A); and the carbohydrate metabolism, 
lipid metabolism, and small molecule biochemistry network 
(Figure  2B). While a few of the upregulated proteins [i.e., 
ACTR3B, Acyl-CoA desaturase (SCD) and SQLE] also were 
upregulated at later time points (Figure 2; Table 2), the majority of 
the proteins either upregulated or downregulated at 12 hpi were 

not dysregulated at later times, implying they are altered soon after 
OC43 infection. Fewer proteins (14 up and 9 down) were 
significantly dysregulated at 24 hpi and these also fit into two 
IPA-predicted networks: the amino acid metabolism, increased 
albumin levels, and molecular transport network (Figure 3A) and 
the cancer, hematological disease, and immunological disease 
network (Figure  3B). None of the proteins significantly 
upregulated ≥1.33-fold at 24 hpi (except for ACTR3B, SQLE, and 
RNF24) were significantly upregulated at other time points, and 

A

B

FIGURE 3

Top MRC-5 pathways affected by OC43 infection at 24  hpi. Proteins and their levels of dysregulation were uploaded into Ingenuity Pathway 
Analysis (IPA) and top pathways constructed. (A) The “amino acid metabolism, increased albumin levels, and molecular transport” network. (B) The 
“cancer, hematological disease and immunological disease” network. Protein levels at 12 and 48  hpi were overlaid onto these pathways (smaller 
diagrams at right). Upregulated proteins depicted in red, downregulated in green, insignificantly regulated in gray, direct interactions shown with 
solid lines and indirect interactions depicted with dashed lines. Molecular types as indicated in key.
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only ZSWIM8, which was significantly downregulated was so at 
24 and 48 hpi. Thus, the majority of 24 hpi dysregulated proteins 
and networks appear to be  transiently affected. Many more 
proteins and network pathways were predicted by IPA to 
be affected by 48 hpi (Tables 1, 2; Figure 4). These were the lipid 
metabolism, molecular transport, and small molecule 
biochemistry network (Figure 4A), the cell death and survival, 

humoral immune response, and inflammatory response network 
(Figure  4B), the dermatological diseases and conditions, 
inflammatory response and organismal injury and abnormalities 
network, and the metabolic disease, organismal injury, and 
abnormalities, and renal and urological disease network.

Some of the most highly dysregulated proteins identified were 
ACTR3, ATP2A3, CASP8AP2, CEP128, FHAD1, HERV-K104, 

A

B

FIGURE 4

Top MRC-5 pathways affected by OC43 infection at 48  hpi. Proteins and their levels of dysregulation were uploaded into Ingenuity Pathway 
Analysis (IPA) and top pathways constructed. (A) The “lipid metabolism, molecular transport, and small molecule biochemistry” network. (B) The 
“cell death and survival, humoral immune response, and inflammatory response” network. Only the top two networks are shown. Additional 
networks, and their associated proteins, are listed in Supplementary Table S1. Protein levels at 12 and 24  hpi were overlaid onto these pathways 
(smaller diagrams at right). Upregulated proteins depicted in red, downregulated in green, insignificantly regulated in gray, direct interactions 
shown with solid lines, and indirect interactions depicted with dashed lines. Molecular types as indicated in key.
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MYH3, RSAD1, and SAMD8, all of which were upregulated, and 
ZSWIM8, which was downregulated. ACTR3B (actin-related 
protein 3B) protein expression has been linked to colorectal 
cancer invasion and proliferation (Yu and Zhang, 2020), it is part 
of a complex with CAPG and CD3D that interacts with several 
HIV proteins (Zhang et al., 2019) and its expression aids SARS-
CoV-2 binding and intracellular processing (Kalejaiye et al., 2022). 
Sarcoplasmic/endoplasmic reticulum calcium ATPase 3 (ATP2A3) 
is involved in numerous cancers (Korosec et al., 2009; Flores-
Peredo et al., 2017; Izquierdo-Torres et al., 2017), but we are not 
aware of any association with virus infection. CASP8-associated 
protein 2 (CASP8AP2) is involved in apoptosis and autophagy 

(Wu et al., 2021) and in leukemia (Mei et al., 2017; Dos Santos 
et al., 2018). Centrosomal protein of 128 kDa (CEP128) plays a 
role in bladder cancer (Wu et al., 2018) and autoimmune thyroid 
disease (Wang et  al., 2019). Forkhead-associated domain-
containing protein 1 (FHAD1) has been identified as a possible 
biomarker for prostate cancer (Zhao et al., 2017). Mutations in 
myosin heavy chain 3 (MYH3) are associated with numerous 
autosomal-dominant defects (Chong et  al., 2015). Radical 
S-adenosyl methionine domain-containing protein 1, 
mitochondrial (RSAD1) is a heme chaperone that inserts heme 
into respiratory protein targets (Haskamp et al., 2018). Many of 
the above-noted proteins have not yet been associated with viral 

A C

B D

FIGURE 5

(A) IPA predicted activation and inhibition of canonical pathways by OC43 infection at 48  hpi. Green bars represent numbers of molecules 
significantly dysregulated in each pathway, with Z-score (orange) threshold set at +1.96σ. (B) IPA predicted activation and inhibition of upstream 
regulators, with heatmap of different types of upstream regulators indicated at various time post-infection. (C) Significantly inhibited diseases and 
functions. Green bars are numbers of molecules significantly dysregulated in each disease/function, with Z-score (blue) threshold set at −1.96σ. 
(D) Significantly activated diseases and functions. Green bars are numbers of molecules significantly dysregulated in each disease/function, with 
Z-score (orange) threshold set at +1.96σ. Specific proteins associated with each category are listed in Supplementary Table S2.
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infection, but Sterile alpha motif domain-containing 9 (SAMD9) 
has antiviral properties (Liu and McFadden, 2015; Mekhedov 
et  al., 2017). Zinc finger SWIM domain-containing protein 8 
(ZSWIM) mediates target-directed mRNA degradation (Han 
et al., 2020; Shi et al., 2020).

Bioinformatic analyses to place the large amount of data 
generated in studies such as this provides useful information that 
must be carefully considered. For example, IPA has a bias toward 
cancer processes (Edlow et  al., 2015). Thus, despite apparent 
identification of specific diseases such as “cell proliferation of 
breast cancer cell lines” and “cell movement of cervical cancer cell 
lines” (Figure 5D; Supplementary Table S2), these processes are 
likely irrelevant in the diploid MRC-5 lung cells we used. However, 
many of the IPA-predicted diseases, functions, and networks are 
highly relevant within the context of viral-infected lung cells. For 
example, six proteins: hemoglobin subunit alpha (HBA1/HBA2), 
interferon-induced 35 kDa protein (IFI35), nicotinamide 
phosphoribosyltransferase (NAMPT), NQO1, poly [ADP-ribose] 
polymerase 9 (PARP9), and tripartite motif-containing protein 5 
(TRIM5) were significantly upregulated ≥1.33-fold, DNA 
topoisomerase 2-alpha (TOP2A) was significantly downregulated 
≥1.33-fold, and an additional 20 proteins were significantly 
dysregulated ≥1.25-fold (Supplementary Table S2), contributing 
to identification of the “infection by RNA virus” disease function. 
Since OC43 and other CoV are RNA viruses, downregulation of 
TOP2A, and upregulation of various RNA metabolic enzymes 
likely makes sense. Likewise, many viruses induce interferon-
stimulated and interferon-response genes. Similarly, many of the 
significantly dysregulated proteins [i.e., ATP-citrate synthase 
(ACLY), fatty acid synthase (FASN), glucose-6-phosphate 
1-dehydrogenase (G6PD), perilipin-2 (PLIN2), and others] are 
involved in activation of small molecule biochemistry and lipid 
metabolism. These processes are expected to be activated during 
infection by an enveloped virus such as CoV since the virus takes 
over cellular metabolic processes and reorganizes cellular lipids 
and fatty acids to promote synthesis and maturation of hundreds 
of copies of itself in each cell.

A primary purpose for performing these studies was to 
identify cellular proteins, pathways, and processes that are similar 
or different between the CL2-level OC43 coronavirus that causes 
mild cold-like symptoms, and more pathogenic coronaviruses 
such as SARS1 and SARS-CoV-2. Similar non-biased proteomic 
studies have been reported for the more pathogenic coronaviruses, 
including by Bojkova and colleagues who examined SARS-CoV-
2-induced alterations in human intestinal Caco-2 cells (Bojkova 
et al., 2020), Bouhaddou et al. who examined phosphoproteomic 
alterations in African green monkey VeroE6 cells (Bouhaddou 
et al., 2020), Hekman and colleagues who examined SARS-CoV-
2-induced alterations in human alveolar type 2 cells (Hekman 
et al., 2020), and Stukalov et al. who examined SARS1- and SARS-
CoV-2-induced protein alterations in human lung A549 cells 
(Stukalov et al., 2021). Therefore, we compared our results to those 
of Stukalov and colleagues who measured SARS1- and SARS-
CoV-2-induced alterations in another human lung cell type. 

Several proteins (i.e., FADS2 – fatty acid desaturase 2; CKB – 
creatine kinase B) were differentially regulated, being upregulated 
by OC43 at all tested time points, and being downregulated by 
SARS1 and SARS-CoV-2 at all tested time points (Figure 6A). 
These differences in protein dysregulation led to substantial 
differences in predicted pathways, particularly in comparing the 
milder OD43 to the more pathogenic SARS-CoV-2. For example, 
numerous proteins in the cell death and survival, lipid metabolism, 
and small molecule biochemistry pathways were upregulated, 
whereas many of these same proteins were downregulated by 
SARS-CoV-2 (Figures 6B–D). Interestingly, SARS1 had similar 
effects upon most of these proteins as OC43, potentially reflecting 
that while SARS1 is pathogenic, it appears to be less so than SARS-
CoV-2. Similarly, OC43 and SARS1 infection were predicted to 
inhibit apoptosis and necrosis, whereas infection by the more 
pathogenic SARS-CoV-2 was predicted to activate necrosis and 
apoptosis (Figure  7A). All viruses were predicted to activate 
autophagy (Figure 7B). Apoptosis and necroptosis (the regulated 
form of necrosis), the two major processes of programmed cell 
death (PCD), protect cells against intracellular infection 
(Doerflinger et al., 2020). They can also trigger innate and adaptive 
immunological responses, as well as inflammation (Bedoui et al., 
2020). PCD can help the host by eliminating virus-infected cells 
and initiating immune response, but uncontrolled activation of 
the pathways can cause severe tissue damage. Recent studies have 
found that activation of apoptosis and necroptosis is associated 
with the severe outcome of COVID-19 disease (Lee et al., 2020; 
Bader et al., 2022; Da Silva et al., 2022). However, the apoptosis 
and necroptosis pathways were inhibited during OC43 infection 
(Figure 7A), causing a milder type of disease. Thus, PCD pathways 
could be a potential target for therapeutic drug development for 
the treatment of severe COVID-19 disease. However, the 
autophagy pathway plays a critical role in SARS-CoV-2 
pathogenesis (Gassen et al., 2021; Maity and Saha, 2021; Vanhook, 
2021). As all three coronavirus strains activated autophagy, this 
pathway could be a universal target for antiviral development.

We (Coombs et al., 2010, 2017; Simon et al., 2015; Ranadheera 
et al., 2018) and others (Liu et al., 2008; Vester et al., 2009; Dove 
et al., 2012) also have examined quantitative proteomic alterations 
induced by various influenza viruses, another common respiratory 
virus also responsible for numerous recent pandemics. Therefore, 
we compared these multiple datasets to identify common and 
virus-specific proteomic signatures (Figure 8). Numerous proteins 
involved in the cell cycle, cytokine signaling, DNA replication, and 
anti-inflammatory responses were generally similarly affected by 
virtually all IAV and CoV tested, irrespective of whether the 
IAV and CoV were mildly or highly pathogenic (Figure 8A, left). 
For example, GFPT1 (glucosamine—fructose-6-phosphate 
aminotransferase isomerizing 1) and PSMD6 (proteasome 26S 
subunit, non-ATPase 6) were upregulated by all tested IAV and 
CoV, and NOSIP (nitric oxide synthase interacting protein) and 
P4HA2 (prolyl 4-hydroxylase subunit alpha-2) were 
downregulated by most viruses (with the relatively milder IAV 
pdm09 and CoV OC43 being lone exceptions). These results 
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suggest some common cellular pathways that might represent 
targets for a “universal” anti-viral strategy. Conversely, levels of 
proteins involved in necrosis, protein metabolism, ECM 
regulation, and signal transduction were generally differentially 
affected by IAV and by CoV (Figure  8B, right). For example, 
CD151 (cluster of differentiation 151, a tetraspanin membrane 
protein) and LAMC1 (laminin subunit gamma 1, a constituent of 
basement membranes) were upregulated by all CoV but unaffected 

or downregulated by all IAV. CLIC1 (chloride intracellular channel 
protein 1, which regulates important cellular processes such as 
maintenance of intracellular pH, regulation of cell volume, 
stabilization of cell membrane potential, and transepithelial 
transport) and PGAM1 (phosphoglycerate mutase 1, which is 
involved in protein kinase binding and Menkes Disease and 
myoglobinuria) were downregulated only by the more pathogenic 
SARS-COV-2 but upregulated by virtually all other viruses. These 

A

C

D

B

FIGURE 6

(A) Proteins significantly dysregulated by OC43, SARS-1, and SARS-CoV-2 (SARS-2). (B) Proteins in “A” are primarily associated with the” cell death 
and survival” network. (C) Differential oxytocin signaling pathway. (D) Differential expression of proteins associated with synthesis and metabolism 
of lipid and carbohydrate, cellular lipid concentration, and energy generation. Red and green colors represent up- and downregulation of proteins, 
respectively, whereas orange and blue depict pathway activation and inhibition, respectively.
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results indicate CoV and IAV affect these tested lung cells in 
different ways.

The quantitative differences in protein levels in CoV- and 
IAV-infected lung cells also led to IPA predicting significant 
differences in Rb-dependent repression of E2F-mediated 
transcription, with the more pathogenic CoV and IAV 
predicted to activate this checkpoint whereas less pathogenic 
CoV and IAV either had no effect or were predicted to inhibit 
this checkpoint (Figure 8B). In general, the less pathogenic 

PR8, RV733, pdm09, and OC43 viruses inhibited TP53, 
CDKN1A, CDKN1B, and SMAD4 and activated CDC25A, 
Cyclin D, CDK2, and MYC, whereas the more pathogenic 
H5N1, H7N9, 1918 and SARS-CoV-2 had the opposite effect 
upon these molecules. The retinoblastoma-dependent 
repression of E2F-mediated transcription checkpoint is highly 
involved in the cell cycle and in cancer. Thus, it plays an 
intimate role in cell death and survival. Intriguingly, SARS-
CoV-2 appeared to have a temporal effect on this pathway, 

A

B

FIGURE 7

(A) OC43 and SARS-1 infection inhibits apoptosis and necrosis, but SARS-CoV-2 (SARS-2) infection activates apoptosis and necrosis. (B) All viruses 
activate autophagy. Red and green colors represent up- and downregulation of proteins, respectively.
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predicted to activate it early in infection but to inhibit it later 
in infection. Thus, the G1/S checkpoint might be an attractive 
anti-viral target, and drug repurposing to overcome the 
activation caused by the pathogenic viruses may attenuate  
disease.

One of the limitations of these IAV and CoV comparative 
studies relates to cell lines used. The A549 cells are transformed 
adenocarcinoma human lung cells amenable to infection by many 
viruses and were used by us in previous IAV studies (Coombs 
et al., 2010, 2017; Simon et al., 2015; Ranadheera et al., 2018). 
This cell type also was used by Stukalov and colleagues to 
examine SARS-CoV-2-induced dysregulation (Bojkova et  al., 
2020). Unfortunately, we were unable to grow OC43 in these cells. 
OC43 grows well in human diploid MRC-5 cells so these were 
used. These different cell types could explain some of the 
differences seen in how the various viruses induced proteomic 

responses, but despite this, it remains remarkable that the 
Rb-dependent repression of E2F-mediated transcription 
checkpoint appears to distinguish high-pathogenicity viruses 
from low-pathogenicity viruses.

Conclusion

Non-biased TMT-based proteomics of OC43-infected 
human lung cells identified large numbers of dysregulated 
cellular proteins. These proteins are involved in a plethora of 
cellular processes, including cell death and survival, humoral 
immune responses, inflammatory responses, lipid metabolism, 
molecular transport, and small molecule biochemistry. 
Comparisons of these data with our, and others, data using 
similar methods to examine influenza virus- and 

A

B

FIGURE 8

(A) Various influenza A viruses and coronaviruses (CoV) have similar (left) and dissimilar (right) effects on several human lung cell proteins. (B) The 
highly pathogenic IAV and CoV (left) activate Rb-dependent repression of E2F-mediated transcription whereas lower pathogenic IAV and CoV 
(right) either have no effect (PR8 and OC43) or inhibit the pathway. Red and green colors represent up- and downregulation of proteins, 
respectively and orange and blue depict activation and inhibition, respectively.
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SARS-CoV-2-induced cellular protein dysregulation revealed 
numerous proteins and cell pathways affected similarly by 
both types of viruses as well as virus-specific protein and 
pathway alterations. Interestingly, analyses of IAV and CoV of 
different pathogenicities suggested that the more pathogenic 
viruses could activate the Rb-dependent repression of 
E2F-mediated transcription checkpoint, whereas less 
pathogenic viruses either had no effect or inhibited this 
checkpoint. Furthermore, while many of these studies were 
performed in cell culture models, it would be worthwhile for 
follow-up studies to examine the roles of these proteins and 
pathways in natural infections.
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