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Abstract: Traumatic brain injury (TBI) can cause physical, cognitive, social, and behavioral
changes that can lead to permanent disability or death. After primary brain injury, translocated
free zinc can accumulate in neurons and lead to secondary events such as oxidative stress,
inflammation, edema, swelling, and cognitive impairment. Under pathological conditions, such as
ischemia and TBI, excessive zinc release, and accumulation occurs in neurons. Based on previous
research, it hypothesized that calcium as well as zinc would be influx into the TRPC5 channel.
Therefore, we hypothesized that the suppression of TRPC5 would prevent neuronal cell death by
reducing the influx of zinc and calcium. To test our hypothesis, we used a TBI animal model. After the
TBI, we immediately injected NU6027 (1 mg/kg, intraperitoneal), TRPC5 inhibitor, and then sacrificed
animals 24 h later. We conducted Fluoro-Jade B (FJB) staining to confirm the presence of degenerating
neurons in the hippocampal cornus ammonis 3 (CA3). After the TBI, the degenerating neuronal
cell count was decreased in the NU6027-treated group compared with the vehicle-treated group.
Our findings suggest that the suppression of TRPC5 can open a new therapeutic window for a
reduction of the neuronal death that may occur after TBI.

Keywords: traumatic brain injury; zinc; NU6027; transient receptor potential cation channel 5;
neuronal death

1. Introduction

A traumatic brain injury (TBI) can affect people of all ages, races, and genders [1]. TBI refers to
brain damage caused by external forces, usually caused by sudden blows to the head, most commonly
caused by traffic accidents, violence, or falls [1]. TBI induces brain contusions, lacerations, and focal
or diffuse intracranial hemorrhages, ultimately leading to neuronal death [2]. Primary external
injury is directly related to the immediate physical trauma to brain structures. Secondary injuries,
however, can occur within minutes or some days following the initial impact and are driven by altered
molecular, chemical, and inflammatory cascades [3]. TBI-induced neuronal death is an active and
energy-dependent process resulting from a continuous maladaptive signaling loop that is initiated
following the accumulation of glutamate and zinc [4]. In addition, TBI-induced reactive oxygen species
(ROS) production through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation
triggers lipid peroxidation and protein degradation [5–7].
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Zinc is the most abundant metal ion in the brain and is an essential element for the growth
and division of all cells and the development of tissues [8]. Zinc has a positive effect on bone
metabolism, imitating growth hormone (GH), or insulin-like growth factor 1 (IGF-1) [9]. Zinc is
important for the sequence-specific DNA binding by various proteins that regulate transcription
and DNA synthesis. Zinc is also loosely bound to proteins, acting as a component of the catalytic
region, and controlling the morphological and structural capacity of the enzyme [10,11]. Furthermore,
zinc modulates cellular differentiation and normalizes several physiological functions [10]. Zinc can
be released from presynaptic terminals after epilepsy, cerebral ischemia, and TBI [12–14]. Following
this, zinc is translocated and accumulates in the postsynaptic neurons; this is an important driver of
excitotoxic neuronal injury after injuries [12,15,16]. Accumulation of excessive levels of zinc in the
postsynaptic neuron activates NADPH oxidase, which produces ROS and eventually induces oxidative
stress [17,18]. During oxidative stress, the zinc-binding protein metallothionein-3 releases free zinc
into the cytoplasm, which facilitates neuronal injury [19].

Transient receptor potential (TRP) channels are located throughout the body and have a
non-selective cation permeability. There are seven subtypes of TRP channels: transient receptor potential
cation, transient receptor potential melastatin, transient receptor potential vanilloid, transient receptor
potential ankyrin, transient receptor potential polycystic, Transient receptor potential mucolipin,
and TRPN (the name no mechanoreceptor potential C) [20]. Specifically, TRPC5 is expressed both
in the peripheral sensory nerves and in the central nervous system [21]. TRPCs are located in the
plasma membrane and regulate the influx of calcium and sodium ions [22]. Transient receptor potential
(TRP) channels, TRPC4 and TRPC5 are homogeneous proteins distributed in various regions of
the brain, especially the hippocampus [23]. The TRPC5 channel contributes to the foundation of
spatial working memory and the mechanism that regulates the flexible relearning by promoting
the proper synaptic transmission of hippocampal neurons [24]. However, excessive activation of
the TRPC5 channel under pathological conditions continues to increase the transport of cytotoxic
Ca2+, activating calmodulin-dependent protein kinase, and calpain-caspase, which ultimately leads
to neuronal death [14,25]. It is reported that the TRPC5 channel is similarly activated after epilepsy,
resulting in an increase in neuronal death in the hippocampus [14,26]. TRPC5 KO mice showed
decreased excitability during epilepsy and reduced normal spatial learning, and also showed a
reduction of neuronal death [14,27].

In a previous study, cyclin-dependent kinase (CDK) inhibitor NU6027 was shown to have
a potential protective effect on hydrogen peroxide-induced calcium influx, oxidative damage,
and subsequent cortical neuronal death. It was asserted that NU6027 blocks seizure-induced
hippocampal neuronal death via the inhibition of TRPC5 [14,27]. However, the efficacy of NU6027 on
TBI-induced neuronal death is not yet known.

In the present study, we evaluated our hypothesis that TBI-induced neuronal death is mediated
by TRPC5 activation and that administration of TRPC5 inhibitor can decrease TBI-induced zinc
accumulation, oxidative stress, and, ultimately, neuronal death. To test our hypothesis, we used a
controlled cortical impact injury (CCI) model for TBI using adult rats.

2. Results

2.1. TRPC5 Inhibitor Reduces TBI-Induced Hippocampal Neuronal Death

In this experiment, male rats were used to minimize the error in the experiment by eliminating
the effects of hormones from the female rat menstrual cycle. The NU6027-treated group demonstrated
a dramatically reduced number of degenerating hippocampal neurons. To confirm the presence of
neuronal death, we detected degenerating neurons by Fluoro-Jade B staining in the hippocampal
cornus ammonis 3 (CA3) region 24 h after TBI. (Figure 1A). Comparing the TBI-vehicle group and the
TBI-NU6027 (1 mg/kg) treated group, the number of degenerating neurons was dramatically higher in
the TBI-vehicle group than the TBI-NU6027 (1 mg/kg) treated group. Figure 1B displays the quantified
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FJB (+) neurons in the CA3 region. The NU6027 treated group displayed a reduction of FJB (+) neurons
by around 66% in the CA3 (TBI-vehicle, 139.8 ± 31.1; TBI-NU6027, 47.4 ± 17.3) region compared to the
vehicle-treated group. * p < 0.05 vs. vehicle-treated group.
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hippocampal CA3 region. (TBI-vehicle: n = 6; TBI-NU6027: n = 6). (C) Zinc-specific representative 
image displays TSQ (+) neurons detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide 
(TSQ) from the hippocampal CA3 region 12 h after TBI. (D) The bar graph indicates TSQ (+) neurons 
in the CA3 region (TBI-vehicle, n = 5; TBI-NU6027, n = 5). Data are mean ± S.E.M. * Significantly 
different from the vehicle-treated group, p < 0.05. Scale bar = 100 μm. 
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Figure 1. (A) Fluorescent images display degenerating neurons detected by Fluoro-Jade B (FJB, green
color) from the hippocampal CA3 region 24 h after traumatic brain injury (TBI). NU6027 (1 mg/kg)
post-treatment decreased the degenerating neurons in the hippocampal CA3 region when compared
with the vehicle-treated group. (B) Bar graph indicates the number of degenerating neurons in the
hippocampal CA3 region. (TBI-vehicle: n = 6; TBI-NU6027: n = 6). (C) Zinc-specific representative
image displays TSQ (+) neurons detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ)
from the hippocampal CA3 region 12 h after TBI. (D) The bar graph indicates TSQ (+) neurons in the
CA3 region (TBI-vehicle, n = 5; TBI-NU6027, n = 5). Data are mean ± S.E.M. * Significantly different
from the vehicle-treated group, p < 0.05. Scale bar = 100 µm.

2.2. TRPC5 Inhibitor Reduces TBI-Induced Zinc Accumulation

The NU6027 treated group displayed a dramatically reduced number of zinc-specific TSQ (+)
neurons. To confirm zinc accumulation in hippocampal neurons, we detected zinc-specific TSQ (+)
neurons by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) from the hippocampal CA3
region 12 h after TBI. (Figure 1C). The number of zinc-specific TSQ (+) neurons was higher in the
TBI-vehicle group than the TBI-NU6027 (1 mg/kg) treated group. Figure 1D displays the quantified
TSQ (+) neurons in the CA3 region. The NU6027 treated group displayed a greater reduction of TSQ(+)
neurons (about 56%) in the CA3 (TBI-vehicle, 41.2 ± 5.6; TBI-NU6027, 17.9 ± 3.9) region compared to
the TBI-vehicle group. * p < 0.05 vs. vehicle-treated group.

2.3. TRPC5 Inhibitor Decreases TBI-Induced Hippocampal Dendrite Loss

The NU6027 treatment group displayed a significant reduction in microtubule loss. To confirm
microtubule loss, we detected microtubule-associated protein 2 (MAP2) from the hippocampal cornus
ammonis 3 (CA3) region 24 h after TBI, and this differed significantly between the treatment vs.
the non-treatment groups (Figure 2A). The sham-vehicle and sham-NU6027 groups displayed no
difference in MAP2 fluorescence signals. On the other hand, we found that the group treated with
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NU6027 (1 mg/kg) showed a decreased microtubule intensity in the hippocampal CA3 region compared
to the TBI-vehicle group. Figure 2B displays the MAP2 intensity in the CA3 region. The NU6027
treatment group exhibited an increased MAP2 intensity by about 61% in the CA3 (TBI-vehicle,
11.3 ± 4.9; TBI-NU6027, 29.5 ± 12.9) region compared with the vehicle-treated group. * p < 0.05 vs.
vehicle-treated group.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 18 
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NU6027, n = 5; TBI-vehicle, n = 6; TBI-NU6027, n = 6). Data are mean ± S.E.M. * Significantly different 
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Figure 2. (A) Fluorescent images microtubule displays were detected by microtubule-associated
protein 2 (MAP2, green color) staining from the hippocampal CA3 regions 24 h after TBI. NU6027
post-treatment decreased the intensity of microtubule loss in the hippocampal CA3 region when
compared to the vehicle-treated group. (B) The intensity of dendritic loss in the hippocampal CA3
region. The fluorescence intensity displayed a significant difference between groups. (C) The bar
graph shows the dendritic area percentage in the hippocampal CA3 region (sham-vehicle, n = 5;
sham-NU6027, n = 5; TBI-vehicle, n = 6; TBI-NU6027, n = 6). Data are mean ± S.E.M. * Significantly
different from the vehicle-treated group, p < 0.05.

2.4. TRPC5 Inhibitor Decreased TBI-Induced Oxidative Injury

The NU6027 treatment group displayed a dramatically reduced intensity of oxidative stress.
To confirm the level of oxidative stress, we performed 4-hydroxynonenal (4HNE) from the hippocampal
CA3 region 24 h after TBI, and this differed significantly among groups (Figure 3A). The sham-vehicle
and sham-NU6027 groups displayed no difference in 4HNE fluorescence signals. On the other hand,
we found that the group treated with NU6027 (1 mg/kg) showed a decreased oxidative stress in the
hippocampal CA3 region compared to the TBI-vehicle group. Figure 3B displays the 4HNE intensity
in the CA3 region. The NU6027 treatment group displayed a 71% reduction of 4HNE intensity in the
CA3 (TBI-vehicle, 42.9 ± 21.4; TBI-NU6027, 12.1 ± 6.6) region compared with the vehicle-treated group.
* p < 0.05 vs. vehicle-treated group.
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2.5. TRPC5 Inhibitor Reduces TBI-Induced Hippocampal TRPC5 Channel Expression

The NU6027 treatment group displayed a dramatically reduced TRPC5 channel activation.
To confirm TRPC5 channel activation, we performed TRPC5 staining in the hippocampal CA3 region
24 h after TBI. (Figure 4A). The sham-vehicle and sham-NU6027 groups displayed no difference in
TRPC5 fluorescence signals. On the other hand, we found that the group treated with NU6027 (1 mg/kg)
showed a significant decrease in TRPC5 channel activation in the hippocampal CA3 region compared
to the TBI-vehicle group Figure 4B displays the TRPC5 intensity in the CA3 region. The NU6027-treated
group displayed a 55% reduction of TRPC5 intensity in the CA3 (TBI-vehicle, 36.9 ± 6.1; TBI-NU6027,
16.5 ± 3.3) region compared with the TBI-vehicle group. * p < 0.05 vs. vehicle-treated group.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 5 of 18 
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Figure 3. (A) Fluorescent images show that oxidative damage was detected by 4-hydroxyl-2-nonenal
(4HNE, red color) staining from the hippocampal CA3 region 24 h after TBI. NU6027 post-treatment
decreased the intensity of oxidative injury in the hippocampal CA3 region when compared to the
vehicle-treated group. (B) Bar graph shows the intensity of oxidative injury in the hippocampal CA3
regions. The fluorescence intensity displayed a significant difference between groups (sham-vehicle,
n = 5; sham-NU6027, n = 5; TBI-vehicle, n = 6; TBI-NU6027, n = 6). Data are mean± S.E.M. * Significantly
different from the vehicle-treated group, p < 0.05. Scale bar = 100 µm.

2.6. TRPC5 Inhibitor Reduces TBI-Induced Hippocampal Glial Activation

The NU6027 treatment group displayed significantly reduced glial activation compared to the
other groups. To detect glial activation, we applied Glial fibrillary acidic protein (GFAP) and ionized
calcium-binding adapter molecule 1 (Iba-1) in the hippocampal CA3 region 24 h after TBI (Figure 5A,C).
The sham-vehicle and sham-NU6027 groups displayed no difference in fluorescence signal intensity.
On the other hand, we found that the group treated with NU6027 (1 mg/kg) showed a decreased
glial activation in the hippocampal CA3 region compared to the TBI-vehicle group. Figure 5B,D
displays the GFAP intensity and Iba-1 intensity in the CA3 region. The NU6027 treatment group
displayed a 41% reduction of GFAP intensity in the CA3 (TBI-vehicle, 29.9± 5.4; TBI-NU6027, 17.6 ± 3.4)



Int. J. Mol. Sci. 2020, 21, 8256 6 of 18

region compared with the TBI-vehicle group. Moreover, the NU6027 treatment group displayed a
25% reduction of Iba-1 intensity in the CA3 (TBI-vehicle, 26.7 ± 5.0; TBI-NU6027, 19.8 ± 4.6) region
compared with the TBI-vehicle group. * p < 0.05 vs. vehicle-treated group.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 18 
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intensity of TRPC5 channel expression in the hippocampal CA3 region. The fluorescence intensity 
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5B,D displays the GFAP intensity and Iba-1 intensity in the CA3 region. The NU6027 treatment group 
displayed a 41% reduction of GFAP intensity in the CA3 (TBI-vehicle, 29.9 ± 5.4; TBI-NU6027, 17.6 ± 
3.4) region compared with the TBI-vehicle group. Moreover, the NU6027 treatment group displayed 
a 25% reduction of Iba-1 intensity in the CA3 (TBI-vehicle, 26.7 ± 5.0; TBI-NU6027, 19.8 ± 4.6) region 
compared with the TBI-vehicle group. * p < 0.05 vs. vehicle-treated group. 

Figure 4. (A) Fluorescent images show that the TRPC5 channel expression level was detected by TRPC5
(TRPC5, red color) and counter-staining with neuronal nuclei (NeuN, green color) from the hippocampal
CA3 region 24 h after TBI. NU6027 (1 mg/kg) administration after TBI at 24 h decreased a channel
expression in the hippocampal CA3 region via inhibition of the TRPC5 channel. (B) The intensity of
TRPC5 channel expression in the hippocampal CA3 region. The fluorescence intensity displayed a
significant difference between groups (sham-vehicle, n = 5; sham-NU6027, n = 5; TBI-vehicle, n = 6;
TBI-NU6027, n = 6). Data are mean ± S.E.M. * Significantly different from the vehicle-treated group,
p < 0.05. Scale bar = 100 µm.

2.7. TRPC5 Inhibitor Reduces TBI-Induced Hippocampal Neuron Loss

NU6027 treatment groups exhibited a significant increase in surviving neurons compared with the
other groups. To quantify the live neurons, we applied neuronal nuclei (NeuN) in the hippocampal CA3
region 1 week after TBI (Figure 6A). The sham-vehicle and sham-NU6027 groups displayed no difference
in the number of live neurons but we found that the group treated with NU6027 (1 mg/kg) showed an
increased number of live neurons in the hippocampal CA3 region compared to the TBI-vehicle group.
Figure 6B displays the live neuron count in the CA3 region. The NU6027-treated group increased the
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number of live neurons by about 46% in the CA3 (TBI-vehicle, 24 ± 171.3; TBI-NU6027, 461.9 ± 82.5)
region compared to the TBI-vehicle group. * p < 0.05 vs. vehicle-treated group.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 18 
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group (TBI vehicle: n = 6; TBI NU6027: n = 6). (B) The intensity of astrocyte activation in the 
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groups. (C) Fluorescent images show that microglial activation was detected by Iba-1 staining from 
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(D) The intensity of microglia activation in the hippocampal CA3 region. The fluorescence intensity 
displayed a significant difference between groups (TBI vehicle: n = 6; TBI NU6027: n = 6). Data are 
mean ± S.E.M. * Significantly different from the vehicle-treated group, p < 0.05. Scale bar = 100 μm. 

2.7. TRPC5 Inhibitor Reduces TBI-Induced Hippocampal Neuron Loss 

NU6027 treatment groups exhibited a significant increase in surviving neurons compared with 
the other groups. To quantify the live neurons, we applied neuronal nuclei (NeuN) in the 
hippocampal CA3 region 1 week after TBI (Figure 6A). The sham-vehicle and sham-NU6027 groups 
displayed no difference in the number of live neurons but we found that the group treated with 
NU6027 (1 mg/kg) showed an increased number of live neurons in the hippocampal CA3 region 
compared to the TBI-vehicle group. Figure 6B displays the live neuron count in the CA3 region. The 
NU6027-treated group increased the number of live neurons by about 46% in the CA3 (TBI-vehicle, 
24 ± 171.3; TBI-NU6027, 461.9 ± 82.5) region compared to the TBI-vehicle group. * p < 0.05 vs. vehicle-
treated group. 

Figure 5. (A) Fluorescent images showing that astrocyte activation was detected by GFAP staining from
the hippocampal CA3 regions 24 h after TBI. NU6027 (1 mg/kg) post-treatment decreased the intensity
of astrocyte activation in the hippocampal CA3 region when compared to the vehicle-treated group (TBI
vehicle: n = 6; TBI NU6027: n = 6). (B) The intensity of astrocyte activation in the hippocampal CA3
region. The fluorescence intensity displayed a significant difference between groups. (C) Fluorescent
images show that microglial activation was detected by Iba-1 staining from the hippocampal CA3 region
24 h after TBI. NU6027 (1 mg/kg) post-treatment decreased the intensity of microglia activation in the
hippocampal CA3 region when compared to the vehicle-treated group. (D) The intensity of microglia
activation in the hippocampal CA3 region. The fluorescence intensity displayed a significant difference
between groups (TBI vehicle: n = 6; TBI NU6027: n = 6). Data are mean ± S.E.M. * Significantly different
from the vehicle-treated group, p < 0.05. Scale bar = 100 µm.

2.8. TRPC5 Inhibitor Reduces TBI-Induced Cognitive Impairment

The NU6027 treatment group displayed a significant reduction in symptoms that mimic those seen
in cognitive disorders. To evaluate the neurological function, we carried out a modified neurological
severity score (mNSS) test 1 week after TBI (Figure 7). The sham-vehicle and sham-NU6027 groups
displayed no difference in mNSS score. However, the NU6027 treatment group had a reduced mNSS
score compared to the TBI-vehicle group. * p < 0.05 vs. vehicle-treated group.
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Figure 6. (A) Representative images display live neurons detected by NeuN from the hippocampal
CA3 region 1 week after TBI. NU6027 (1 mg/kg) post-treatment improved the live neurons in the
hippocampal CA3 region when compared to the vehicle-treated group. (B) The number of live neurons
in the hippocampal CA3 regions (sham-vehicle, n = 5; sham-NU6027, n = 5; TBI-vehicle, n = 5;
TBI-NU6027, n = 5). Data are mean ± S.E.M. * Significantly different from the vehicle-treated group,
p < 0.05.
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Figure 7. The mNSS grade 18 means all tasks were failed, and grade 0 mean that all tasks have
been performed successfully. Determined in rats on consecutive days after TBI (sham-vehicle, n = 5;
sham-NU6027, n = 5; TBI-vehicle, n = 5; TBI-NU6027, n = 5). Data are mean ± S.E.M. * Significantly
different from the vehicle-treated group, p < 0.05.

3. Discussion

In the present study, we tested whether NU6027 inhibits TBI-induced neuronal death via inhibition
of transient receptor potential cation channel 5 (TRPC5) channels. TRPC channels are subdivided
into seven isotypes (TRPC1–TRPC7) and, among them, TRPC5 are abundantly expressed in the
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rat brain [23,25,28]. Several studies have demonstrated that TRPC5 over-activation is involved in
seizure-induced neuronal death [14,25,27]. In the present study, in one cohort of adult male rats,
we present evidence that CCI-induced increases in neuronal death, zinc accumulation, dendritic loss,
oxidative damage, TRPC5 expression, and gliosis 24 h after injury are all reduced by post-impact
injection of NU6027. In a second cohort, we show that motor function, as assessed by modified
neurological severity score (mNSS) 1 week after CCI, was improved in NU6027 treated rats.
Therefore, NU6027 may be a potential therapeutic agent for preventing TBI-induced neuronal death.

The mechanisms for TBI-induced brain damage are still not fully understood. However, we suggest
a new means for preventing TBI-induced injury, that is, oxidative stress-related cell death cascades.
When TBI occurs via a severe external force, the primary problem is a brain edema, which causes
increased intracranial pressure and directly contributes to higher mortality observed in severe
TBI-suffered patients [29,30]. TBI-induced primary injury leads to secondary injury, which is
primarily via ROS production through NADPH oxidase activation [7], glial activation [17], loss of
microtubules [31], and the accumulation of zinc in post-synaptic neurons from the excessive release of
vesicular zinc [32,33]. Recently, several studies asserted that a moderate zinc concentration regulates
physiological functions, but that dysregulation of the ionic gradient is devastating to the central
nervous system [34,35]. Besides, oxidative stress has been known as a key aggravator in the acute brain
disease field [36]. Consequently, we recognized that the regulation of zinc and ROS-mediated oxidative
stress was important to alleviate TBI-induced neuronal damage [33]. We investigated whether the
application of the cyclin-dependent kinase inhibitor NU6027 exhibits a neuroprotective effect through
the inhibition of TRPC5 and ROS production after a TBI [14]. (Figure 8).
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Figure 8. When TBI occurs, edema is caused by a primary inflammatory reaction and the secondary
injury oxidative stress occurs, which results in the activation of astrocyte and microglia, loss of many
microtubules, and the accumulation of zinc in the neuron. (A) (1) Vesicular zinc is released from the
presynaptic neuron by TBI [15], and the released vesicular zinc enters the neuron through the TRPC5
channel [14]; (2) NADPH oxidase is activated by vesicular zinc entering the neuron [37,38]; (3) oxidative
stress is increased by NADPH oxidase activated by vesicular zinc [37,39–41] and excessive free zinc
is released into the neuron due to oxidative stress [19,42,43]; (4) TRPC5 channels are activated by the
accumulated free zinc [14] and the excess free zinc released causes injury to neurons [15]; (5) zinc and
calcium influx due to the activated TRPC5 channel [14,44]; (6) neuronal death occurs. (B) (1) Vesicular
zinc is released from the presynaptic neuron by TBI [15]; (2) NU6027 is injected immediately after TBI;
(3) NU6027 prevents the entrance of vesicular zinc from the TRPC5 channel, thus reducing NADPH
oxidase activation and NU6027 also reduces the H2O2, reducing oxidative stress [14]; (4) oxidative
stress is reduced by NU6027, thereby reducing the accumulation of free zinc [14]; (5) the TRPC5 channel
is inhibited by the inhibitor NU6027 and there is a reduction of zinc accumulation in neurons [14];
(6) inhibition of the TRPC5 channel reduces the influx of calcium and zinc; (7) neuron death is limited.
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When a TBI occurs, a huge amount of vesicular zinc is released from the terminal before the
synapse, which is then translocated into neurons through the postsynaptic TRPC5 channel [14,15].
Following this, vesicular zinc is introduced into neurons and protein kinase c (PKC) is activated
by vesicular zinc, and subunits P47 (phox) and P67 (phox) of NADPH are activated by protein
kinase c (PKC) [39–41,45]. The P47 (phox) and p67 (phox) of the NADHPH subunits activated by
PKC stimulate the neuronal membrane to activate gp91 (phox) and p21 (phox), both being present
in the membrane, thereby generating superoxide production and eventually leading to increased
oxidative stress [39–41,46]. It also activates polymerase-1 (PARP-1) in a damaged state, resulting in
severe cellular damage to neurons, as it requires ATP generation and quickly consumes available
supplies [39–41,46]. Ultimately, activated NADPH oxidase increases the overall oxidative stress
levels [15,45]. When oxidative stress occurs, free zinc is liberated from metallothionein, a zinc-binding
protein, and this free zinc again further increases oxidative stress [14,19,34,42,43].

Several TRP channels are regulated by metal ions, of which TRPA1 and TRPC5 channels are
regulated by zinc in metal ions [14,47,48]. The oxidative stress produced by a TBI leads to the
accumulation of large concentrations of free zinc in neurons [49]. Free zinc accumulated in neurons
activates the TRPC5 channel, and this activated TRPC5 channel may increase the influx of toxic
levels of calcium or zinc ions [14,44]. The administration of NU6027 after TBI reduces oxidative
stress, which reduces zinc accumulation [14]. Originally, NU6027 was an inhibitor for ATR and
cyclin-dependent kinase1 and 2, which was mainly used to inhibit the division of cancer cells through
the suppression of cell growth [50,51]. However, in previous studies it has been shown that NU6027
inhibits TRPC5 activity in channels present in cortical neurons that are activated during epilepsy,
reducing calcium influx [14,52]. NU6027 also reduced H2O2 increase in cortical neurons during
epilepsy, indicating that NU6027 has reduced the activity of TRPC5 channels, ultimately reducing
neuronal death. [14]. Therefore, our study demonstrated that following a TBI the activation of TRPC5
channels can be reduced through the administration of NU6027, thus reducing the level of oxidative
stress and reducing the accumulation of free zinc, ultimately leading to enhanced neuronal survival.

The reason why we chose the hippocampal CA3 region in this study is that our CCI TBI model
directly damages the hippocampal CA3 region, which is known to have a high level of TRPC1 and
TRPC5 channel expression [22,53,54]. In this experiment, a male rat was used to minimize the error in
the experiment by eliminating the effects of hormones from the female rat menstrual cycle.

In the present study, we found that the number of degenerating neurons in the hippocampal
CA3 regions was significantly reduced in the group treated with NU6027. The number of neurons
with zinc accumulation in the hippocampal CA3 region was also significantly reduced in the NU6027
treatment group compared to the TBI vehicle group [14]. These results show that NU6027 reduces
the accumulation of vesicular zinc in neurons through the TRPC5 channel, which contributed to the
reduction of neuronal death after TBI. We confirmed that when TBI occurs, free zinc accumulates in
the neuron due to oxidative stress [19,42,43], which activates the TRPC5 channel, causing excessive
cycling of free zinc and calcium entry, eventually leading to neuronal death [14].

TBI damage leads to microtubule loss. We confirmed microtubule loss through MAP2 staining.
The results showed a significant reduction in microtubule loss in the NU6027 treatment group in the
hippocampal CA3 regions, where the microtubule density was confirmed through MAP2 staining.
TBI damage also leads to oxidative stress. We confirmed the presence of oxidative stress through 4HNE
staining. The results showed a significant reduction in oxidative stress via monitoring of the 4HNE
fluorescence signal intensity in the NU6027 treatment group in the hippocampal CA3 region. This is
because free zinc accumulates, damaging the microtubules, and promoting oxidative stress [33,55].
NU6027 blocks zinc from entering through the TRPC5 channel, thereby reducing the occurrence of
zinc-induced microtubule loss and oxidative stress.

The TRPC5 channel is inappropriately activated because of TBI damage. We confirmed TRPC5
channel expression through immuno-staining. The NU6027 treatment group showed a significant
reduction in TRPC5 channel expression in the hippocampal CA3 region. The TRPC5 channel is
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activated by free zinc produced by oxidative stress, which is inhibited by NU6027. Metallothionein,
a zinc-binding protein present in neurons, releases a lot of free zinc when exposed to oxidative stress,
activating the TRPC5 channel. NU6027 not only reduces H2O2, but also reduces oxidative stress and,
as an inhibitor for the TRPC5 channel, it reduces the activity of the TRPC5 channel [14,19,42].

The microglia and astrocyte are activated by TBI injury [56,57]. NADPH oxidase is activated
by TBI to generate ROS, which activates the microglia and astrocyte [58]. We confirmed microglia
activation through Iba-1 staining. The NU6027 treatment group showed a significant reduction in
microglial activation in the hippocampal CA3 region. We confirmed astrocyte activation through
GFAP staining. Once again, the NU6027 treatment group showed a significant reduction in astrocyte
activation in the hippocampal CA3 region. Oxidative damage was reduced by administering NU6027,
reducing the activation of the microglia and astrocyte.

A week after the induction of TBI, we evaluated the number of live neurons through NeuN
staining. The number of NeuN positive neurons in the hippocampal CA3 regions was increased in the
NU6027 treatment group. Thus, we found that the administration of NU6027 improved the survival of
hippocampal neurons a week after a TBI.

The cognitive impairment caused by TBI was evaluated using the modified neurologic severity
scores (mNSS) test. Injury to the CA3 region in the hippocampus by a TBI can cause problems
associated with the encoding, storage, and retrieval of memory [59,60]. The TBI-NU6027 treatment
group performed better in the mNSS test than the TBI-vehicle group, confirming that the score of mNss
was lower. We confirmed that NU6027 improved TBI-induced cognitive impairment.

In the present study, we have demonstrated that the suppression of TRPC5 activity by NU6027
reduces the accumulation of zinc, thereby reducing neuronal death. Therefore, our findings suggest
that NU6027 can be a potential therapeutic tool to prevent TBI-induced neuronal death.

4. Materials and Methods

4.1. Ethics Statement

The present study was performed in accordance with the protocols of the Guidelines for the Use
and Care of Laboratory Animals, allowed by the National Institutes of Health. Animal studies were
conducted in accordance with the guidelines of the Committee on Animal Use for Study and Education
at Hallym University (protocol no. Hallym-2019-68). We sacrificed mice under isoflurane anesthesia to
minimize pain and suffering.

4.2. Experimental Animals

The present study used adult male Sprague-Dawley rats (SD-Rat) (age of 8 weeks, 300–350 g,
DBL Co., Chungcheongbuk-do, Korea). In this experiment, male rats were used to minimize the
error in the experiment by eliminating the effects of hormones from the female rat menstrual cycle.
Rats were housed at three to four rats per cage under conditions of sustained temperature (22 ± 2 ◦C)
and humidity (55 ± 5%). Animal room lights were managed automatically, turned on and off in a 12 h
cycle (on at 6:00 a.m., off at 6:00 p.m.).

4.3. Controlled Cortical Impact Model for TBI

Male Sprague-Dawley rats (SD-Rat) were used as controls. Rats were deeply anesthetized with
1–1.5% isoflurane and a 25:75 mixture of oxygen/nitrous oxide (David Kopf Instruments, Tujunga, CA,
USA). TBI was performed using an electromagnetic (EM) controlled cortical impact device (Impact
One TM Stereotaxic Impactor, Richmond, IL, USA). Craniotomy was carried out using a portable drill
and a 3.0 mm diameter hole was drilled over the right hemisphere (3.0 mm Lambda to the Bregma and
2.8 mm lateral to the midline). A velocity of 5 m/s and a strike depth of 3.0 mm flap tip-impactor was
accolated down. All rats (300–350 g) were maintained at a core temperature of 36–37.5 ◦C during TBI
surgery. Rats were sacrificed 24 h and 1 week after TBI.
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4.4. NU6027 Administration

NU6027-treated groups were administrated NU6027 (1 mg/kg, i.p.) and 0.9% normal saline.
NU6027 injected once immediately intraperitoneal after TBI-induced. NU6027(1 mg/kg, i.p.) was
injected once per day for 1 week, after which animals were sacrificed. The experimental groups were
divided into four groups: (1) sham-vehicle (saline only, n = 5); (2) sham-NU6027 (NU6027 only, n = 5);
(3) TBI-vehicle (TBI + saline, n = 6); (4) TBI-NU6027 (TBI + NU6027, n = 6).

4.5. Brain Sample Preparation

TBI was induced in rats after 24 h and 1 week. They were deeply anesthetized using urethane
(1.5 g/kg, i.p.) and then sacrificed. The animals were perfused transcranially with 0.9% saline,
followed by 4% paraformaldehyde (PFA). Then, we harvested the brain tissue, which was fixed
by 4% paraformaldehyde for 1 h. Fixed brains were moved in a 30% sucrose solution overnight
for cryoprotection. After 2 days, the brains sank to the bottom of the 30% sucrose, and they
were frozen for 10 min on the freezing medium. The brains were cut with cryostats at 30 µm
thickness, and tissues were kept in a storage solution before being used for immunohistochemistry
and immunofluorescence staining.

4.6. Confirmation of Hippocampal Neuron Degeneration

To confirm the degeneration of neurons after the traumatic brain injury (TBI), brain tissue was cut
with cryostats at 30 µm thickness and was attached to gelatin-coated slides (Fisher Scientific, Pittsburgh,
PA, USA). The slides were soaked in 100% ethanol for 3 min. After that, they were soaked in 70%
ethanol for 1 min. The slides were then soaked in 0.06% potassium permanganate for 15 min in the
shade. Slides were soaked in 0.001% FJB (Histo-Chem Inc., Jefferson, AR, USA) for 30 min after that,
we washed brain tissue three times for 10 min in DW. Then, we mounted cover slides on the slides
with DPX (Sigma-Aldrich Co., St. Louis, MO, USA). Brain tissue sections were observed through a
fluorescence microscope (Olympus, Tokyo, Japan) via blue (450–490 nm) excitation light. FJB-positive
cells were observed to locate the hippocampal CA3 region.

4.7. Confirmation of Hippocampal Zinc Accumulation

To confirm intraneuronal zinc accumulation, we performed TSQ staining after TBI. Rats were
deeply anesthetized with 1–1.5% isoflurane and a 25:75 mixture of oxygen/nitrous oxide (David Kopf
Instruments, Tujunga, CA, USA). Then, brain tissues were harvested quickly without perfusion.
Brain tissues were cut with cryostats at 10 µm thickness in a −15 ◦C cryostat, and were then attached
to gelatin-coated slides (Fisher Scientific, Pittsburgh, PA, USA) and dried. After that, slides were
soaked in a solution for 1 min in a solution of 4.5 mmol/L TSQ (Enzo Life Science, Enzo Biochem, Inc.,
Farmingdale, New York, NY, USA, ENZ-52153), and were then washed for 1 min in normal 0.9% saline.
Brain tissue sections were observed through a fluorescence microscope (Olympus, Tokyo, Japan) under
360 nm UV light and a 500 nm long-pass filter. Then, TSQ-positive neurons of the hippocampal region
were counted by blind quantification.

4.8. Confirmation of Hippocampal Microtubule Loss

Microtubule loss was detected by microtubule-associated protein 2 (MAP2, green color)
immunohistochemical staining. Brain tissues were stained with MAP2 antibodies (Alpha Diagnostic
Intl. Inc., San Antonio, TX, USA). We cut the brain tissues and washed them three times for 10 min in
0.01 M PBS. Then, to block intracellular per-oxidase, we cut the brain tissues and they were soaked for
15 min at room temperature in 1.2% hydrogen peroxide. We then cut brain tissues and washed them
three times for 10 min in 0.01 M PBS. Then, we cut the brain tissues and they were soaked in a PBS
containing 0.3% TritonX-100 with polyclonal rabbit anti-MAP2 serum (diluted 1:200, Alpha Diagnostic
Intl. Inc., San Antonio, TX, USA) overnight at 4 ◦C in an incubator. We then cut the brain tissues
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and washed them three times for 10 min in 0.01 M PBS. Then, we cut the brain tissues and they were
immersed for 2 h at room temperature in a solution of Alexa-Fluor-488-conjugated donkey anti-rabbit
IgG (diluted 1:250, Invitrogen, Grand Island, NY, USA) secondary antibody. Finally, we cut the brain
tissues and washed them again, before cover slides were mounted with DPX (Sigma-Aldrich Co.,
St. Louis, MO, USA). The brain tissue was observed through a fluorescence microscope (Olympus,
Japan). We analyzed the results with the Image J program to measure the microtubule damage and
measured the mean gray value.

4.9. Confirmation of Hippocampal Oxidative Stress

Oxidative stress was detected by 4-hydroxyl-2-nonenal (4HNE, red color) immunohistochemical
staining. The cut brain tissues were stained by 4HNE antibodies (Alpha Diagnostic Intl. Inc., San Antonio,
TX, USA). The brain tissues were washed three times for 10 min in 0.01 M PBS. Then, to block
intracellular peroxidase, we cut the brain tissues and they were soaked for 15 min at room temperature
in 1.2% hydrogen peroxide. Brain tissues were then washed three times for 10 min in 0.01 M PBS.
Then, brain tissues were soaked in a PBS containing 0.3% TritonX-100 with polyclonal mouse anti-4HNE
serum (diluted 1:500, Alpha Diagnostic Intl. Inc., San Antonio, TX, USA) overnight in a 4 ◦C incubator.
Brain tissues were then washed three times for 10 min in 0.01 M PBS and were then immersed for 2 h at
room temperature in a solution of Alexa-Fluor-594-conjugated donkey anti-mouse IgG (diluted 1:250,
Invitrogen, Grand Island, NY, USA) secondary antibody. Finally, the brain tissues were washed three
times for 10 min in 0.01 M PBS cover slides were mounted on the slides with DPX (Sigma-Aldrich Co.,
St. Louis, MO, USA). The brain tissue was observed through a fluorescence microscope (Olympus,
Japan), and we analyzed it using the Image J program to measure oxidative stress and measured the
mean gray value.

4.10. Confirmation of Hippocampal TRCP5 Channel Expression Level

TRPC5 channel expression was detected by transient receptor potential channel 5 (TRPC5,
red color) immunohistochemical staining. Brain tissues were stained by TRPC5 antibodies (Alomone
Laboratories, Jerusalem, Israel). The brain tissues were washed three times for 10 min in 0.01 M PBS.
To block intracellular peroxidase, the brain tissues were soaked for 15 min at room temperature in
1.2% hydrogen peroxide. Then, the brain tissues were washed three times for 10 min in 0.01 M PBS.
After this, tissues were soaked in a PBS containing 0.3% TritonX-100 with polyclonal rabbit anti- TRPC5
serum (diluted 1:200, Alomone Laboratories, Jerusalem, Israel) overnight in an incubator at 4 ◦C. After
this, the brain tissues were washed three times for 10 min in 0.01 M PBS and immersed for 2 h at
room temperature in a solution of Alexa-Fluor-594-conjugated donkey anti-rabbit IgG (diluted 1:250,
Invitrogen, Grand Island, NY, USA) secondary antibody. Finally, the brain tissues were washed three
times for 10 min in 0.01 M PBS. Cover slides were mounted on the slides with DPX (Sigma-Aldrich Co.,
St. Louis, MO, USA) and the brain tissue was observed through a fluorescence microscope (Olympus,
Japan). Using the Image J program, we measured the TRPC5 channel expression level and measured
the mean gray value.

4.11. Confirmation of Hippocampal Glial Activation

To confirm glial activation, astroglia were detected by Glial fibrillary acidic protein (GFAP,
green color) immunohistochemical staining, microglia were detected by ionized calcium-binding
adapter molecule 1 (Iba-1, red color) immunohistochemical staining. For brain tissue staining we
used polyclonal goat anti-GFAP serum (diluted 1:1000, Abcam, Cambridge, UK). Microglial activation
was detected by ionized calcium-binding adapter molecule 1 (Iba-1, red color) immunohistochemical
staining. For brain tissue staining we then used polyclonal rabbit anti-Iba-1 serum (diluted 1:500,
Abcam). Sections were washed three times for 10 min in 0.01 M PBS and to block intracellular
peroxidase, sections were then soaked for 15 min at room temperature in 1.2% hydrogen peroxide.
Sections were then washed three times for 10 min in 0.01 M PBS. Sections were then soaked in a
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PBS containing 0.3% TritonX-100 with goat anti-GFAP serum (diluted 1:1000, Abcam) and rabbit
anti-Iba-1 serum (diluted 1:500, Abcam) overnight in an incubator at 4 ◦C. Sections were again washed
three times for 10 min in 0.01 M PBS and immersed for 2 h at room temperature in a solution of
Alexa-Fluor-488-conjugated donkey anti-goat IgG (diluted 1:250, Invitrogen, Grand Island, NY, USA)
secondary antibody and Alexa-Fluor-594-conjugated donkey anti-rabbit IgG (diluted 1:250, Invitrogen,
Grand Island, NY, USA) secondary antibody. Finally, sections were washed three times for 10 min in
0.01 M PBS and covers were mounted on the slides with DPX (Sigma-Aldrich Co., St. Louis, MO, USA).
We observed brain tissue sections using a fluorescence microscope (Olympus, Japan) and analyzed
it using the Image J program to measure astrocyte and microglial activation and measure the mean
gray value.

4.12. Confirmation of Hippocampal Live Neuron

Live neurons were detected by neuronal nuclei (NeuN) immunohistochemical staining. Brain tissue
staining was carried out using NeuN antibodies (Billerica, Millipore Co., Billerica, MA, USA).
Sections were washed three times for 10 min in 0.01 M PBS and then, to block intracellular peroxidase,
sections were soaked for 15 min at room temperature in 1.2% hydrogen peroxide. Then, sections were
washed three times for 10 min in 0.01 M PBS and were soaked in a PBS containing 0.3% TritonX-100 with
polyclonal mouse anti-NeuN serum (diluted 1:500, Alpha Diagnostic Intl. Inc., San Antonio, TX, USA)
overnight in a 4 ◦C incubator. Then, sections were washed three times for 10 min in 0.01 M PBS and
were immersed for 2 h at room temperature in a solution of biotinylated anti-mouse IgG (diluted
1:250, Vector, Burlingame, CA, USA) secondary antibody. Then, sections were washed three times for
10 min in 0.01 M PBS and immersed for 2 h at room temperature in a solution of ABC compounds
(Vector, Burlingame, CA, USA). Following this, sections were washed three times for 10 min in 0.01 M
PBS. To visualize the immune response, sections were soaked in a 0.01 M PBS containing 0.06%
3,3′-diaminobenzidine (DAB ager, Sigma-Aldrich Co., St. Louis, MO, USA). Sections were washed
three times for 10 min in 0.01 M PBS and cover slides were mounted on the slides with Canada balsam.
We observed brain tissue sections using an Olympus IX70 inverted microscope (Olympus Co., Tokyo,
Japan) and counted the live neurons of the hippocampal region, and analyzed the total number of
NeuN-positive cells [61].

4.13. Confirmation of Behavior Test

To confirm that NU6027 treatment rescues TBI-induced neurological deficits, neurological function
tests were conducted using a modified neurological severity score (mNSS) [62]. Tests were conducted
at 1,2,3 and 7 days after TBI and sham control. The mNSS grade 18 means that all tasks failed,
while grade 0 means that all tasks are performed successfully. Detailed descriptions of mNSS grade
tests included (1) raising rats by tail (3 points), (2) placing rat on floor (3 points), (3) sensory tests
(3 point), (4) beam balance tests (6 points), (5) reflex absence and abnormal movements (4 points) [63].
Rats were sacrificed a week after mNSS assessment.

4.14. Statistical Analysis

All the results of the present experimental cohorts were shown as the mean value ± standard error
of mean (SEM). Comparisons between vehicle-treated and NU6027-treated rats were conducted using
the non-parametric Mann–Whitney U test. Statistical significance was set at p < 0.05.

5. Conclusions

The present study suggests that NU6027 can potentially serve as a therapeutic tool for protection
against neuronal death after TBI.
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