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Neuroimaging biomarkers that distinguish between changes due to typical brain ageing and Alzheimer’s disease are valuable for de-
termining how much each contributes to cognitive decline. Supervised machine learning models can derive multivariate patterns of
brain change related to the two processes, including the Spatial Patterns of Atrophy for Recognition of Alzheimer’s Disease
(SPARE-AD) and of Brain Aging (SPARE-BA) scores investigated herein. However, the substantial overlap between brain regions af-
fected in the two processes confounds measuring them independently. We present a methodology, and associated results, towards dis-
entangling the two.

T1-weightedMRI scans of 4054participants (48–95 years)withAlzheimer’s disease,mild cognitive impairment (MCI), or cognitive-
ly normal (CN) diagnoses from the Imaging-based coordinate SysTem for AGIng and NeurodeGenerative diseases (iSTAGING) con-
sortium were analysed. Multiple sets of SPARE scores were investigated, in order to probe imaging signatures of certain clinically or
molecularly defined sub-cohorts. First, a subset of clinical Alzheimer’s disease patients (n= 718) and age- and sex-matched CN adults
(n=718) were selected based purely on clinical diagnoses to train SPARE-BA1 (regression of age using CN individuals) and SPARE-
AD1 (classification of CN versus Alzheimer’s disease) models. Second, analogous groupswere selected based on clinical andmolecular
markers to train SPARE-BA2 and SPARE-AD2models: amyloid-positive Alzheimer’s disease continuum group (n=718; consisting of
amyloid-positive Alzheimer’s disease, amyloid-positive MCI, amyloid- and tau-positive CN individuals) and amyloid-negative CN
group (n= 718). Finally, the combined group of the Alzheimer’s disease continuum and amyloid-negative CN individuals was used
to train SPARE-BA3 model, with the intention to estimate brain age regardless of Alzheimer’s disease-related brain changes.

The disentangled SPARE models, SPARE-AD2 and SPARE-BA3, derived brain patterns that were more specific to the two types of
brain changes. The correlation between the SPARE-BA Gap (SPARE-BA minus chronological age) and SPARE-AD was significantly
reduced after the decoupling (r= 0.56–0.06). The correlation of disentangled SPARE-ADwas non-inferior to amyloid- and tau-related
measurements and to the number of APOE e4 alleles but was lower to Alzheimer’s disease-related psychometric test scores, suggesting
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the contribution of advanced brain ageing to the latter. The disentangled SPARE-BAwas consistently less correlated with Alzheimer’s
disease-related clinical, molecular and genetic variables.

By employing conservativemolecular diagnoses and introducingAlzheimer’s disease continuumcases to the SPARE-BAmodel train-
ing, we achieved more dissociable neuroanatomical biomarkers of typical brain ageing and Alzheimer’s disease.

1 Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
2 Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
3 Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio,

San Antonio, TX, USA
4 Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School

of Medicine, University of Pennsylvania, Philadelphia, PA, USA
5 Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
6 Department of Radiology, Washington University in St Louis, St Louis, MO, USA
7 Department of Neurology, Washington University in St Louis, St Louis, MO, USA
8 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
9 Department of Diagnostic Medicine, University of Texas, Austin, TX, USA
10 Department of Neurology and Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA

Correspondence to: Gyujoon Hwang, PhD
3700 Hamilton Walk, Philadelphia
PA 19104, USA
E-mail: gyujoon.hwang@pennmedicine.upenn.edu

Correspondence may also be addressed to: David A. Wolk, PhD
3615 Chestnut Street, Philadelphia
PA 19104, USA
E-mail: david.wolk@uphs.upenn.edu

Keywords: Alzheimer’s disease; brain ageing; MRI biomarker; amyloid; machine learning

Graphical Abstract

Introduction
Ageing is a complex process that can be broadly defined as
progressive loss of physiological integrity or gradual accu-
mulation of deleterious biological changes accompanying
loss of function.1,2 While many methods for developing bio-
markers of brain ageing have been proposed,3 markers based
on structural MRI (commonly known as the ‘brain age’)

show less inter-individual variability and methodological
variations of measurements relative to other modalities.4,5

Generally, brain age is computed by training a multi-
dimensional regression model with structural brain features
(region- or voxel-based) to predict the chronological ages of
healthy individuals.6 This model then looks for the learned
structural patterns in an unseen brain to predict the age.
The difference between the predicted brain age and the
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actual chronological age, often known as the ‘brain age gap’,
‘brain age gap estimation’, ‘brain age delta’, or ‘predicted age
difference’, can be used to assess whether the brain looks ap-
propriate for the chronological age or displays deviance from
expectation.7,8

A similar approach can be employed to find structural pat-
terns for other types of brain changes. For example, a ma-
chine learning-based score known as the Spatial Pattern of
Atrophy for Recognition of Alzheimer’s Disease
(SPARE-AD) captures multivariate brain changes of
Alzheimer’s disease and has been extensively validated.9,10

It is computed by training a support vector machine (SVM)
classification model11 to separate between cognitively nor-
mal (CN) and Alzheimer’s disease populations using struc-
tural brain features and then by measuring the distance of
the data points (where each point represents a brain) away
from the separating hyperplane.

Summary scores like the SPARE-AD or SPARE-BA, an
analogous score for Brain Aging derived using support vector
regression (SVR),12 provide expressive markers that reflect
complex brain changes associated with these conditions. As
typical brain ageing processes and neurodegeneration due to
Alzheimer’s disease can both affect an individual to varying
degrees and account for their cognitive status, one could con-
sider these measures as two axes on a 2D coordinate system
where each axis reflects an aspect of structural brain integrity
and where each brain can be represented as a point. For ex-
ample, someone with a similar amount of Alzheimer’s disease
pathology may be more or less impaired by the degree to
which they experience advanced or normal brain ageing in
this context. Information on which direction on the coordin-
ate system a point deviates from the normmay then be useful.

One caveat with this approach when it comes to
Alzheimer’s disease is that many brain regions that are asso-
ciated with Alzheimer’s disease are also associated with typ-
ical brain ageing,13,14 which creates an inherent correlation
between the two scores. We refer to it here as an ‘entangle-
ment’ of the multivariate brain patterns captured by the
SPARE-BA and SPARE-AD models or simply an ‘entangle-
ment’ of the two corresponding axes (Fig. 1). For example,
brain volumes of regions such as inferior lateral ventricles
or middle temporal gyri correlate both with age and the pres-
ence of Alzheimer’s disease (Fig. 2A). Therefore, volume
changes in these regions would similarly affect both
SPARE-BA and SPARE-AD scores, resulting in bias and cor-
relation of the two scores. Indeed, there are numerous re-
ports of increased brain age in Alzheimer’s disease
patients4,5,15,16 and increased SPARE-ADwith age in CN in-
dividuals,9,10,17 but to our knowledge, this is the first work to
systematically address these confounds.

Another potential contributor to this unwanted correl-
ation between the two SPARE scores is the low sensitivity
and specificity of the diagnosis of Alzheimer’s disease.18

The low sensitivity results in individuals with asymptomatic
Alzheimer’s disease pathology grouped together with CN
individuals when training the SPARE-BA model.19 As the
proportion of CN individuals with Alzheimer’s disease

pathology increases with age, this confound is likely to be
more pronounced in the older age range.20 In this regard, a
recent publication suggested that restricting the training
sample of a brain age model to only amyloid-negative CN in-
dividuals could improve its performance as a biomarker.21

On the other hand, low specificity results in cognitively im-
paired individuals with non-Alzheimer’s disease pathologies
being included in the Alzheimer’s disease group,22 reducing
the ability of the SPARE-AD model to detect Alzheimer’s
disease-specific brain changes. We hypothesized that a care-
ful selection of the training samples using molecular biomar-
kers specific to Alzheimer’s disease23–25 may reduce the
correlation between the two SPARE scores.

While Alzheimer’s disease and brain ageing do display
overlap in regions of atrophy, there are also reported differ-
ences in the two structural patterns.13,14 Thus, if we can train
the SPARE-BA model such that it learns patterns from out-
side of the Alzheimer’s disease-related brain regions (such
as regions in Fig. 2B, instead of in Fig. 2A), the correlation
may be reduced. For example, instead of training the
SPARE-BA model using only cognitive normal individuals,
which is the usual procedure, we can include individuals
with Alzheimer’s disease. We hypothesized that this hetero-
geneous presence of Alzheimer’s disease across the sample
would increase variability in Alzheimer’s disease-related
brain region volumes, reducing the strength of their age cor-
relations and making these regions less useful in the age
model.

Figure 1 Hypothetical SPARE scores of two individuals.
The dot on the top left corner represents a person suffering from
Alzheimer’s disease, with little advanced brain ageing. The dot on
the bottom right corner represents a person suffering from
advanced brain ageing, with little Alzheimer’s disease pathology. If
the SPARE-AD and SPARE-BA are correlated or ‘entangled’, both
individuals would receive elevated SPARE-AD and SPARE-BA Gap
(SPARE-BA minus chronological age, capturing ‘advanced’ brain
ageing). The two cases would be better differentiated with
orthogonalized or ‘disentangled’ SPARE scores.
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If the axes of SPARE-BAand SPARE-AD can be realigned so
that they are least affected by the counterpart, they would con-
struct a better coordinate system where each dimension cap-
tures more unique patterns of neurodegeneration. The two
axes would together be able to detect individuals with
Alzheimer’s disease but with an otherwise typical brain ageing
and individualswith advanced brain ageing, presumably due to
other pathologies, but without Alzheimer’s disease. When the
two measures are entangled, clinical interpretation of both is
more challenging. Thus, a disentangled understanding of an
ageingbrainusing thesemeasureswouldaid clinicians inunder-
standing the severity of Alzheimer’s disease-specific neurode-
generation and in potentially detecting comorbidities if they
can be captured by the disentangled SPARE-BA. It would also
be helpful in research settings for monitoring outcomes of ther-
apies directed specifically at either sourceofneurodegeneration.

Therefore, the goal of the present study was to derive more
disentangled SPARE-BA and SPARE-AD scores by testing the
following two approaches: (i) refine the training samples for
bothmachine learning models by implementing strict molecu-
lar diagnostic criteria using amyloid and tau measurements
and (ii) add Alzheimer’s disease brains in the training of the
SPARE-BA model, which would lead the model to learn age-
ing patterns with brain features least affected by Alzheimer’s
disease. Next, the disentangled SPARE scores were evaluated
based on their correlations with demographic, clinical, mo-
lecular and genetic variables related to Alzheimer’s disease.

Materials and methods
iSTAGING consortium
Imaging-based coordinate SysTem for AGing and
NeurodeGenerative diseases (iSTAGING) is a collection of

multi-modal neuroimaging data from more than 10 major
studies, initiated with the goal of finding reliable and gener-
alizable coordinate systems to capture human brain hetero-
geneity across a wide range of the age spectrum.26

Individuals from four studies in the iSTAGING consortium
with amyloid status data were investigated: the Alzheimer’s
Disease Neuroimaging Initiative (ADNI; n= 1767),27,28

Biomarkers of Cognitive Decline Among Normal
Individuals (BIOCARD; n= 279),29 the Baltimore
Longitudinal Study of Aging (BLSA; n= 980),30 and the
Open Access Series of Imaging Studies (OASIS; n=
1028).31,32 Only participants 48 years or older were in-
cluded, as the youngest participant with Alzheimer’s disease
was 48 years old. Only participants who were classified as
CN, mild cognitive impairment (MCI), or Alzheimer’s dis-
ease from the originating studies were included in the current
analysis. The clinical diagnostic criteria were broadly similar
across the studies and were described in Supplementary
Table 1.

The supervisory committee of each study approved its in-
clusion in this analysis, and this project was approved by the
institutional review board of the University of Pennsylvania.
All participants gave written informed consent to each study
for data acquisition and analyses according to the
Declaration of Helsinki. More detail on each of the four
studies can be found in Supplementary Methods 1.

Image preprocessing and
harmonization
A fully automated processing pipeline was applied to each
T1-weighted scan. It involved correction of magnetic field in-
tensity inhomogeneity33 and multi-atlas skull-stripping

Figure 2 Examples of brain regions associated with typical ageing. Some regions are further influenced by Alzheimer’s disease status
(A), while others look similar in clinical Alzheimer’s disease patients relative to cognitively normal participants (B). For the SPARE-BA and
SPARE-AD scores to be disentangled, we want the SPARE-BA model to be trained with features in (B), which would most likely be ignored by the
SPARE-AD model whose objective is to differentiate between the two groups. L, left hemisphere; R, right hemisphere.
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using study-specific atlases.34 Then, 145 brain regions of
interest (ROIs) consisting of grey matter, white matter and
ventricular CSF were extracted for each scan with a multi-
atlas non-linear region segmentation method known as
MUSE (MUlti-atlas region Segmentation utilizing
Ensembles), which has been validated for its robustness to
inter-scanner variabilities.35,36 Names of the ROIs are listed
in Supplementary Table 2.

Significant study-wise effects are inevitable when pooling
a diverse dataset due to a lack of standardization in scan ac-
quisition protocols and scanner types.37 Differences in sam-
ple demographics, as well as batch effects, also confound the
analyses. Therefore, a systematic quality control and har-
monization of the ROIs were performed.38 This harmoniza-
tion adjusted the ROI volumes for study-wise differences
while preserving non-linear trends related to age and sex
learned from CN individuals only. This procedure is based
on the methods described in detail by Pomponio et al.38

and has been validated in another work.26 After the study-
wise effects were removed, sex-wise differences were cor-
rected per ROI volume, based on CN individuals. For cross-
validation, the harmonization was performed first on the
training sample, then separately on the testing sample by
combining the two samples to prevent information leakage.

Research design and sample selection
Three different versions of SPARE-BA and SPARE-ADmod-
els were designed and were differentiated by suffixes, with
each version designed to offer SPARE scores that are more
disentangled from the counterpart compared with the pre-
ceding version. All versions of SPARE-BA (-BA1, -BA2,
-BA3) scores were derived using single linear SVR models,
differing only in the training samples. A SPARE-BA score
is essentially an age predicted by the SVR model using struc-
tural brain features (same as ‘brain age’ in the literature).7

Likewise, SPARE-AD1 and SPARE-AD2 scores were derived
using single linear SVM classification models, differing only
in the training samples.10 Only one scan per participant was
used as a training sample per model.

For SPARE-AD1 and SPARE-BA1, participants were
screened into two groups using diagnostic criteria from the ori-
ginating studies based solely on their clinical symptoms: those
who were labelled as having Alzheimer’s disease (‘Clinical
Alzheimer’s disease’ group; n= 718), and those labelled as
being ‘CN’group (n= 718).Therefore, theSPARE-BA1regres-
sion model was trained with the CN group, and the
SPARE-AD1 classification model was trained to separate be-
tween the CN and Clinical Alzheimer’s disease groups.

For SPARE-AD2 and SPARE-BA2, participants were
screened into two groups using conservative amyloid and
tau cutoffs. CSF β-amyloid 1–42 (Aβ42; provided by ADNI
and BIOCARD),39,40 Pittsburgh compound B ([11C]PiB;
provided by ADNI, BLSA and OASIS),41–43 and [18F]florbe-
tapir (also known as [18F]AV45; provided by ADNI and
OASIS)44 were used as measures of amyloid, and CSF total
tau (provided by ADNI and BIOCARD)39 was used as a
measure of tau. CSF total phosphorylated tau (pTau; pro-
vided by ADNI and BIOCARD)45 was also available but
was preserved for validation of the results. Conservative cut-
offs were used to better assure ‘positive’ and ‘negative’ sta-
tus, and the methods to define them for each measure per
study are detailed in Supplementary Methods 2. The
‘Alzheimer’s disease Continuum’ group included partici-
pants with amyloid-positive (A+) results, regardless of their
clinical diagnoses: cognitively normal, MCI, or Alzheimer’s
disease. However, the A+ cognitively normal participants
were further required to have an elevated CSF total tau
(T+) to increase the likelihood that these individuals were
displaying downstream pathology of Alzheimer’s disease
and neurodegeneration. Therefore, the Alzheimer’s disease
Continuum group (n= 718 in total) consisted of A+

Table 1 Demographic summary of all samples

By clinical diagnosis By molecular diagnosis

Groups
Clinical Alzheimer’s
disease (n= 718) CN (n= 718)

Alzheimer’s disease
Continuum (n=718) A−−−−−/CN (n= 718)

n
Clinical diagnosis (Alzheimer’s disease/MCI/CN) 718/0/0 0/0/718 290/387/41 0/0/718
Molecular diagnosis (A+/A−/unclear/no data) 359/14/11/334 47/124/101/446 718/0/0/0 0/718/0/0
Study (ADNI/BIOCARD/BLSA/OASIS) 476/1/17/224 195/135/194/194 621/18/15/64 250/100/118/250
Demographics
Age (years) (mean+ SD/range) 74.1+ 7.6/50–95 73.5+ 9.3/48–95 73.6+ 7.6/48–94 73.0+ 8.8/49–95
Sex (male/female) 389/329 367/351 389/329 367/351
Clinical
MMSE [mean+ SD (n)] 23.1+ 3.5 (619) 29.0+ 1.2 (582) 25.8+ 3.5 (649) 29.0+ 1.3 (470)
Amyloid
CSF β-amyloid 42a [range (n)] 78–275 (128) 37–268 (98) 37–178b (238) 200b–305 (173)
[11C]PiB SUVRa [range (n)] 0.71–5.42 (77) 0.92–3.97 (79) 1.54b–5.42 (96) 0.50–1.25b (288)
[18F]Florbetapir SUVR [range (n)] 0.81–3.41 (219) 0.71–2.67 (118) 1.15b–3.41 (427) 0.55–1.05b (310)

SD, standard deviation.
aThese measurements were harmonized (see Supplementary Methods 1).
bThese numbers were thresholded.
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Alzheimer’s disease (n= 290), A+ MCI (n= 387) and
A+T+ cognitively normal (n= 41) individuals. The control
group included cognitively normal participants who were
amyloid negative (‘A−/CN’ group; n= 718). Therefore, the
SPARE-BA2 model was trained with the A−/CN group,
and the SPARE-AD2 model was trained to separate between
the A−/CN and Alzheimer’s disease Continuum groups. To
minimize biases, the four groups—CN, Clinical Alzheimer’s
disease, A−/CN and Alzheimer’s disease Continuum—were
statistically matched for the sample size, mean age and sex
ratio (P. 0.2) (Table 1).

During the sample selection, if multiple scans were avail-
able per participant, the last scan with the CN label (or
A−/CN), or the first scan with the Clinical Alzheimer’s dis-
ease label (or Alzheimer’s disease Continuum) was selected.
This procedure was done (i) to achieve better age matching
between the control and the affected groups and (ii) to tight-
en the SVM separating boundaries by rendering more diffi-
cult classification tasks (introducing more borderline cases
that serve as ‘support vectors’).11

SPARE-BA3 model (SVR) was trained with the combined
group of A−/CN and Alzheimer’s disease Continuum (n=
1436). As discussed earlier, we hypothesized that introducing
Alzheimer’s disease cases to the training set would lead to a
model that captures brain changes that are least affected by
Alzheimer’s disease, thereby reducing the correlation between
the two SPARE scores. Then, assuming that SPARE-BA3 was
a measure of brain age that was as little associated with
Alzheimer’s disease pathology as possible, SPARE-AD3 score
was computed by regressing out SPARE-BA3 from
SPARE-AD2 score to further reduce the influence of brain age-
ing on the latter. A flowchart depicting the entire sample selec-
tion process is found in Supplementary Fig. 1.

Model training and testing
All SPARE models were trained using a 10-fold cross-
validation. The 145 ROI volumes whose study- and sex-wise
differences had been harmonized were normalized to
z-scores within each fold, based on the control group.
Details on the model training and hyperparameter settings
can be found in Supplementary Method 3. After the cross-
validation, SPARE scores for scans of participants who did
not enter the training were estimated by applying all 10
cross-validated models and averaging the scores.

The model fit was assessed using root-mean-square error
(RMSE), mean absolute error (MAE) and R2. For the
SPARE-AD classification models, the area-under-the-curve
(AUC) and classification accuracy were used. Finally,
SPARE-BA3 scores were linearly regressed out from the
SPARE-AD2 scores using a 10-fold cross-validation for the
creation of SPARE-AD3.

Disentangling the SPARE scores
Whether the SPARE-BA and SPARE-AD scores were disen-
tangled was assessed in three steps. First, the correlation

between the SPARE-BAGap (SPARE-BAminus chronological
age) and SPARE-AD was computed using all participants
(n= 4054). If multiple scans were available per participant,
then only one was selected randomly, while favouring scans
that were labelled clinically as Alzheimer’s disease over MCI
over cognitively normal. Decreased correlation of these two
SPARE scores was considered as evidence of disentanglement.
Second, the ability of the SPARE-BA Gap and SPARE-AD to
separate betweenCNandClinical Alzheimer’s disease and be-
tweenA−/CNandAlzheimer’s diseaseContinuumwas tested.
We hypothesized that the disentanglement would significantly
decrease this separability using SPARE-BAGap as it would be
less sensitive to Alzheimer’s disease-related changes, which
was the desired goal.

Third, the weights assigned to the 145 brain ROIs by each
machine learning model as well as the correlations between
the brain volumes and the SPARE scores were compared be-
tween models to assess how much of the patterns found by
the two SPAREmodels overlapped. To examine the statistical
significance of the weights, a permutation test was performed
by retraining each version of the model 5000 times with the
labels shuffled (chronological ages in the SVR models, and
the group memberships in the SVM models). The null distri-
bution of theweights was comparedwith the 10weights from
the cross-validation per ROI using two-tailed t-tests.46

Clinical, molecular and genetic
associations
The correlations between the SPARE scores and the molecu-
lar measures were computed. In addition to the amyloid and
tau measures used for diagnosis, CSF total pTau was exam-
ined. Since there existed large study-wise differences in mea-
surements, only one study with the largest sample was
analysed per variable. To examine more localized tau path-
ology, tau PET measurements, available only in a subset of
participants in ADNI,47 from entorhinal area and inferior
temporal gyrus were also correlated with the SPARE scores.

We also computed correlations between the SPARE scores
and clinical test scores related to Alzheimer’s disease, which
included Mini-Mental State Examination (MMSE),48

Montreal Cognitive Assessment (MoCA),49 Alzheimer’s
Disease Assessment Scale-Cognitive Subscale
(ADAS-Cog),50,51 Logical Memory,52 and Trail Making
Test.53 To examine whether the disentangled SPARE-BA
contributed to the variance in these scores in patients beyond
SPARE-Alzheimer’s disease, nested multivariate linear re-
gression models were trained, first with SPARE-BA3,
SPARE-BA3 Gap and SPARE-AD3 as predictors, and subse-
quently with excluding one predictor at a time. The correla-
tions between the SPARE scores and the number of APOE e4
alleles54 were also computed.

Statistical analysis
Two-sample t-tests were used to examine if themean age was
matched between the four groups—CN,Clinical Alzheimer’s
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disease, A−/CN and Alzheimer’s disease Continuum (raw
P. 0.2). χ2 tests were used to examine if the sex ratio was
matched between the groups (raw P. 0.2).

All P-values were adjusted for multiple comparisons using
Benjamini–Hochberg correction when establishing signifi-
cance. Pearson correlation was used to compute correlations
between the SPARE scores. Spearman correlation was used
to compute correlations between the SPARE scores and clin-
ical, molecular, or genetic variables, as some variables were
non-normally distributed (e.g. MMSE score with the cap at
30) or discretized (e.g. number of APOE e4 alleles). When
checking for changes in correlation between SPARE-BA
Gap and SPARE-AD, the significance of difference between
the two coefficients was determined with the F-statistic com-
puted on Fisher z-transformed coefficients. When comparing
two nested models, the likelihood ratio test55 was used to as-
sess the goodness of fit.

Data availability
RawMRI scans as well as all demographic, clinical and gen-
etic information used in this analysis can be obtained from
databases of each of the four studies with a reasonable re-
quest upon approval. Population-based results from the
iSTAGING consortium including the SPARE models are
projected to be available in 2022.

Results
Molecular diagnosis
1810 out of 3257 (56%) scans labelled as cognitively normal
and with amyloid measurements passed our conservative
amyloid cutoffs to be included in the A−/CN group. 688
out of 814 (85%) scans labelled as Alzheimer’s disease and
with amyloid measurements, 926 out of 1798 (52%) scans
labelled as MCI, and 78 out of 3257 (2%) scans labelled as
cognitively normal filled our amyloid and tau criteria to be
included in the Alzheimer’s disease Continuum group.
Table 1 summarizes demographics of the four groups—
CN, Clinical Alzheimer’s disease (for training SPARE-BA1
and SPARE-AD1 models), A−/CN and Alzheimer’s disease
Continuum (for training subsequent SPARE models).

Disentangling the SPARE scores
Machine learning cross-validation results are summarized in
Supplementary Table 3. Overall, SPARE-BA2 showed the
best fit (MAE= 5.18, R2= 0.650) among the three versions
of SPARE-BA, as the training sample was the most homoge-
neous. When computed on a common test dataset, age cor-
relation of the SPARE-BA3 was better than that of the
SPARE-BA1, both for cognitively normal individuals
(MAE= 5.80–6.03, n= 1218) and for individuals with ei-
ther MCI or Alzheimer’s disease (MAE= 5.88–7.68, n=
506) (Supplementary Fig. 2). SPARE-AD1 showed better
cross-validation results (AUC= 0.89) than SPARE-AD2

(AUC= 0.82) as the task of separating between CN and
Clinical Alzheimer’s disease groups using brain volumes
was relatively easier compared with separating between
A−/CN and Alzheimer’s disease Continuum.

However, note that the goal here was not to achieve best
fit results, but to build models that produce disentangled
SPARE scores. The correlation between SPARE-BA Gap
and SPARE-AD was the highest between SPARE-BA1 and
SPARE-AD1 (r= 0.511, n= 4054), which was significantly
reduced between SPARE-BA2 and SPARE-AD2 (r= 0.403,
difference PFDR, 0.001), and again between SPARE-BA3
and SPARE-AD2 (r= 0.055, difference PFDR,0.001)
(Fig. 3). In cognitively normal individuals, SPARE-AD3
was also significantly less correlated with chronological age
(r= 0.112, n= 2388) compared with SPARE-AD2 (r=
0.225, difference PFDR, 0.001), whose correlation was
less compared with SPARE-AD1 (r= 0.328, difference
PFDR, 0.001).

The classification accuracy of the SPARE-BA Gap at sep-
arating between CN and Clinical Alzheimer’s disease was
gradually reduced from 73.8% (Cohen’s d= 1.33) with
SPARE-BA1 to 70.7% (d= 1.15) with SPARE-BA2, then
to 57.6% (d= 0.43) with SPARE-BA3. A similar trend was
found with its separability between A−/CN and
Alzheimer’s disease Continuum, suggesting progressively
greater specificity to ageing unrelated to Alzheimer’s disease.
Alternatively, SPARE-AD remained robust at classifying be-
tween CN and Clinical Alzheimer’s disease (.80%, d.
1.86) and between A−/CN and Alzheimer’s disease
Continuum (.75%, d. 1.37) (Fig. 4).

Disentangled regional atrophy
patterns
The brain ROIs were evaluated based on both their correla-
tions with the SPARE scores (Fig. 5) and the significance of
the assigned weights by the SPARE models (Supplementary
Fig. 3). Individual feature weights in a highly multivariate
model are heavily influenced by interactions between the fea-
tures, and therefore, should be interpreted together with the
actual correlations between the predictors and predicted re-
sponse variable (Supplementary Table 4). Cerebellum and
anterior limb of internal capsule were among the regions
that received more significant weights by the SPARE-BA3
model (PFDR, 1E−10) and were more correlated to
SPARE-BA3 score compared with the preceding versions
(difference PFDR, 0.05), highlighting ROIs specific to brain
ageing. Regions including inferior lateral ventricles and pla-
num polare showed the opposite trends and became signifi-
cantly less associated to SPARE-BA3. Most ROIs
individually became less correlated to SPARE-AD3 com-
pared with the preceding versions, with hippocampus, mid-
dle temporal gyrus, anterior insula, entorhinal area being
the most significant (difference PFDR, 1E−25), suggesting
that these regions were also associated with typical brain
ageing. Compared with SPARE-BA2, the SPARE-BA3model
consistently assigned greater weights to brain regions that
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were least affected by Alzheimer’s disease and smaller
weights to the affected regions (Supplementary Fig. 4).

Clinical, molecular and genetic
associations
Consistentwith greater specificity to ageing, SPARE-BA3 did
not significantly correlate with any tau measures in indivi-
duals with either MCI or Alzheimer’s disease. Further, it
was significantly less correlated with amyloid and tau mea-
sures, compared with SPARE-BA2 and SPARE-BA1
(Table 2 and Supplementary Table 5). SPARE-AD2 corre-
lated more strongly with Aβ42 (ρ=−0.400, n= 773) and
[18F]florbetapir (ρ= 0.396, n= 759) compared with
SPARE-AD1 without reaching statistical significance.

SPARE-AD2 and SPARE-AD3 (ρ= 0.313, n= 773) were
more correlated with CSF total phosphorylated tau com-
pared with SPARE-AD1 (ρ= 0.302), while the opposite pat-
tern was observed for CSF total tau (ρ= 0.425 with
SPARE-AD1 and ρ= 0.397 with SPARE-AD3, n= 760).

SPARE-AD1 was the strongest predictor of tau PET stand-
ard uptake value ratio (SUVR) in entorhinal area (ρ=
0.477, n= 258), whereas SPARE-AD3was the strongest pre-
dictor of tau PET SUVR in inferior temporal gyrus (ρ=
0.415, n= 258). When considering patients and cognitively
normal individuals together, SPARE-AD3 was more corre-
lated with the number of APOE e4 alleles (ρ= 0.300, n=
1753) compared with SPARE-AD2 and SPARE-AD1 (ρ=
0.296) (Table 2). Overall, differences in correlations of
SPARE-AD scores with molecular measures and APOE e4
were not statistically significant, supporting the notion that
the changes in approach, including regressing out brain age
in SPARE-AD3, did not diminish its specificity to
Alzheimer’s disease. In the context of SPARE-BA3 not dis-
playing correlation with these molecular measures, these
findings support our success in disentanglement to the under-
lying biology of Alzheimer’s disease.

SPARE-BA3 was also significantly less correlated with all
Alzheimer’s disease-related clinical test scores examined
herein compared with SPARE-BA2 and SPARE-BA1

Figure 3 Correlations between SPARE-BA Gap and SPARE-AD. Decreased correlation between SPARE-BA Gap (SPARE-BA minus
chronological age) and SPARE-AD was considered as evidence of disentanglement. Pearson correlation coefficients including all data points (n=
4054) are labelled on top of each subplot. CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s disease; *P, 0.05; **P,
0.0001.
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(difference PFDR, 0.05) (Table 2). Nonetheless, its correla-
tions with all test scores remained significant, and either
SPARE-BA3 or SPARE-BA3 Gap was still a significant con-
tributor to the multivariate models predicting the test scores
according to the likelihood ratio test (Supplementary
Table 6), suggesting that it provided additional explanatory
value beyond SPARE-AD3 even when decoupled from
Alzheimer’s disease-related brain changes. This supports
the notion that brain ageing itself contributes to varying de-
grees to the cognitive phenotype of patients with Alzheimer’s
disease.

Discussion
Developing reliable and expressive metrics that summarize
complex, high-dimensional brain patterns are critical in neu-
roimaging. The SPARE scores are designed to capture pat-
terns of specific brain changes to serve as summary metrics.
However, given overlap in affected brain regions, structural
brain-based measures of typical brain ageing and
Alzheimer’s disease are expected to correlate. Here, we
show that this correlation can be effectively eliminated by

carefully restricting the training samples and by introducing
abnormal cases to the brain ageing models.

Molecular definition of Alzheimer’s
disease
With the advancements in both biofluid and imaging-based
biomarkers, the field has been moving towards a more bio-
logically based definition of Alzheimer’s disease.24,56 This
has recently been formulated in the National Institute of
Aging-Alzheimer’s Association research framework,57 in
which patients are dichotomously classified along three di-
mensions: amyloid (A), tau (T) and neurodegeneration
(N).58 Parallel to neuropathological definitions of
Alzheimer’s disease, one must have the presence of both
amyloid and tau biomarkers (A+, T+) to be classified as hav-
ing Alzheimer’s disease. These efforts reflect the fact that
diagnosis of Alzheimer’s disease based solely on cognitive
symptoms is not sufficient and may cause significant false
positive and false negative results.18

In this context, we tested whether defining training sam-
ples based on biological markers such as amyloid and tau
can improve the specificity of the structural brain imaging

Figure 4 Distributions of SPARE scores by diagnoses. Numbers above the boxes are the classification accuracies at (A) separating
between A−CN and Alzheimer’s disease Continuum (combined group of A+ Alzheimer’s disease, A+ mild cognitive impairment and A+T+
cognitively normal) and (B) separating between CN and Clinical Alzheimer’s disease, where sensitivity equals specificity. With SPARE-BA3, the
separation is greatly reduced (Cohen’s d= 0.30 and 0.43, respectively) compared with SPARE-BA1 (d= 0.88 and 1.33, respectively), while the
effect sizes of SPARE-AD remain high (d. 1.37, d. 1.86, respectively). CN, cognitively normal; MCI, mild cognitive impairment; AD, Alzheimer’s
disease.
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markers. As any measurement would inherently contain
variance, we excluded individuals at the borderline by using
stricter cutoffs thanwhat are commonly used. Only 1810 out
of 3257 (56%) scans from individuals who were labelled as
cognitively normal passed our conservative cutoff for being
A−, while 688 out of 814 (85%) scans from individuals
that were labelled clinically as Alzheimer’s disease passed
the cutoff for being A+. This supports the heterogeneity
that exists in samples that are solely defined by clinical symp-
toms, and as discussed earlier, misclassified individuals result
in measures of brain ageing and Alzheimer’s disease that are
tainted by the other. The resulting model after employing
molecular cutoffs, SPARE-AD2, assigned higher weights to
regions including left hippocampus and less weights to re-
gions including right middle temporal gyrus and right en-
torhinal area, compared with SPARE-AD1. SPARE-AD2
and SPARE-AD3 scores were generally more correlated
with amyloid measures and similarly with measures of CSF
total phosphorylated tau (pTau) and tau PET. Importantly,
SPARE-AD2 and SPARE-AD3 were significantly less corre-
lated with chronological age, which supported their in-
creased specificity to Alzheimer’s disease-related brain
changes. On the other hand, SPARE-BA2 Gap became less

sensitive to differentiating Alzheimer’s disease versus cogni-
tively normal individuals and less correlated with
SPARE-AD2, supporting its increased specificity to
age-related changes.

Specific brain biomarkers of brain
ageing and Alzheimer’s disease
In addition to using the molecular markers, our results also
showed that adding individuals with Alzheimer’s disease to
the training set of the brain ageing model can significantly re-
duce correlation between the two biomarkers. The resulting
machine learning models learned brain patterns that were
more specific to each of the two types of brain changes.
For example, the SPARE-BA3 model avoided brain regions
such as the inferior lateral ventricle, whose volume increase
was associated not only with brain ageing in general, but
also with the presence of Alzheimer’s disease. This was
also evidenced by the progressively reduced relationship of
the SPARE-BA scores (from SPARE-BA1 to SPARE-BA3)
with Alzheimer’s disease-related molecular markers.

Conflating biomarkers of typical brain ageing and
Alzheimer’s disease results in biased assessment of a person’s

Figure 5 Brain volumes correlatedwith the SPARE scores. (A) The colour maps are based on the Spearman correlation rho between the
SPARE scores and the brain volumes (n= 4054). A negative value indicates a decrease in volume associated with the positive case (older age in
SPARE-BAmodels, and Alzheimer’s disease in SPARE-ADmodels). (B) The colour maps are based on the significance (-log10 of the P-values) of the
correlation changes.
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brain. The brain age gap has been associated with
Alzheimer’s disease4,5,15,16; on the other hand, SPARE-AD
has been reported to increase with age in cognitive normal in-
dividuals.9,10 Whether an individual with Alzheimer’s dis-
ease has an otherwise healthy brain or whether there is
significant comorbid neurodegeneration related to other
causes is important information for clinicians to estimate
prognosis and to consider whether comorbidity-directed in-
terventions may be worthwhile. Using the disentangled
SPARE scores, one may be able to better differentiate be-
tween individuals with Alzheimer’s disease but otherwise
healthy brain (top-left quadrant in the scatter plots in
Fig. 3) and individuals with advanced brain ageing but no
Alzheimer’s disease (bottom-right quadrant in the scatter
plots in Fig. 3). This can potentially assist in determining
the degree to which Alzheimer’s disease is driving neurode-
generation and the relative contribution of both processes
to cognition and other outcomes in any individual. We
may also find the degree of brain ageing in the setting of a
particular severity of Alzheimer’s disease pathology influ-
ence the resilience to the pathology, thus informing clinical
estimations of progression risk.

Correlation with clinical variables
SPARE-AD2 and SPARE-AD3were similarly or better corre-
lated with amyloid and tau-related measurements, as well as
with the number of APOE4 alleles, compared with
SPARE-AD1. This suggests that the disentangled
SPARE-AD, in addition to being less conflated with age, is
still robustly linked to Alzheimer’s disease pathology.
However, their correlations with psychometric test scores
were somewhat reduced after this disentangling compared

with SPARE-AD1. This is likely because these cognitive vari-
ables are not specific to the Alzheimer’s disease pathology
alone, but also associated with the degree of background
brain aging59 or other neurodegenerative processes which
are often mixed with Alzheimer’s disease. Therefore,
SPARE-AD1, which is sensitive to not only Alzheimer’s
disease-related brain changes, but also to advanced brain
ageing, likely better tracks with these mixed cognitive
changes. Indeed, SPARE-AD1 is trained based on clinical
status, which is closely linked to psychometric performance,
whereas SPARE-AD2 and AD3 are trained based onmolecu-
lar status regardless of the performance. Given these results,
the disentangled SPARE-AD scores may not always be ideal
if trying to track overall clinical status, especially where cog-
nitive impairment reflects the effects of multiple pathologies,
and different versions of SPARE scores may be used in com-
bination to construct a more comprehensive description of
an individual’s brain.

The correlations between SPARE-BA3 and Alzheimer’s
disease-related clinical, molecular and genetic variables
were consistently reduced and non-significant for the latter
two, compared with SPARE-BA1 or SPARE-BA2. This em-
phasizes that the disentangled SPARE-BA scores are no long-
er influenced by brain changes associated specifically with
Alzheimer’s disease, which would be useful for assessing
the presence of accelerated brain ageing in individuals with
Alzheimer’s disease without bias. Moreover, despite being
disentangled, SPARE-BA3 Gap still significantly correlated
with the psychometric measures, further supporting the no-
tion that accelerated ageing itself is associated with declines
in cognition, or, alternatively, that decelerated brain ageing
is associated with resilience to age-associated cognitive de-
cline. Thus, the combination of SPARE-BA3 with more

Table 2 Spearman correlations between SPARE scores and Alzheimer’s disease-related variables

Variable n Age SPARE-BA1 SPARE-BA2 SPARE-BA3 SPARE-AD1 SPARE-AD2 SPARE-AD3

Molecular (amyloid)
CSF Aβ42 773 −0.095* −0.248** −0.250** −0.076*,† −0.387** −0.400** −0.399**
[18F]Florbetapir (AV45) SUVR 759 0.101* 0.255** 0.248** 0.100*,† 0.384** 0.396** 0.396**
Molecular (tau)
CSF total tau 760 0.132* 0.239** 0.219** 0.064† 0.425** 0.397** 0.397**
CSF total phosphorylated tau 773 0.018 0.116* 0.105* −0.040† 0.302** 0.308** 0.313**
Tau PET (entorhinal area) 258 0.008 0.234* 0.191* 0.031† 0.477** 0.430** 0.428**
Tau PET (inferior temporal
gyrus)

258 −0.069 0.184* 0.141* −0.014 0.402** 0.410** 0.415**

Psychometric
MMSE 1310 −0.184** −0.503** −0.487** −0.269**,† −0.609** −0.557**,† −0.540**
MOCA 836 −0.229** −0.493** −0.477** −0.286**,† −0.566** −0.518** −0.497**
ADAS-Cog 13 1306 0.185** 0.512** 0.499** 0.259**,† 0.668** 0.624** 0.607**
Logical memory (delayed) 1244 −0.124** −0.422** −0.402** −0.214**,† −0.594** −0.546** −0.533**
Trail Making Test (Part A) 1215 0.172** 0.401** 0.403** 0.243**,† 0.368** 0.348** 0.330**
Genetic
APOE4 allelesa 1753 −0.121** 0.102** 0.095* −0.031† 0.296** 0.293** 0.300**

Correlations in individuals with either mild cognitive impairment or Alzheimer’s disease are shown. More comprehensive table can be found in Supplementary Table 3. Highest
correlations per variable are highlighted.
*Corrected P, 0.05.
**Corrected P, 0.0001.
†Significant difference from the value on the left (P, 0.05).
aBoth patients and cognitively normal individuals.

Measuring true brain age of Alzheimer’s disease patients BRAIN COMMUNICATIONS 2022: Page 11 of 15 | 11

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac117#supplementary-data


selective SPARE-AD scores (SPARE-AD2 and SPARE-AD3),
may best capture the contributions of both processes to cog-
nitive decline, as evidenced by the complementary inclusion
in nested multivariate models of cognition.

Sample selection
The results underscore the importance of sample selection in
building brain-based predictionmodels like the SPAREmod-
els. Inclusion and exclusion criteria used to define training
samples significantly influenced neurodegenerative patterns
learned by the models as well as the relationships of the de-
rived scores to other variables. Therefore, caution is needed
when the SPARE or other similar summary scores are used in
novel populations or clinical settings to fully understand the
implications of the scores based upon the methods applied to
develop the underlying models. Here, amyloid status was
primarily applied to select samples for the disentangled
SPARE models, firstly, because of its high specificity to
Alzheimer’s disease, but also because amyloid was the
most commonly available molecular marker in the
iSTAGING database. Tau status or the combination of
imaging-based molecular markers specific to Alzheimer’s
disease can further improve the model specificity.

As the goal was to achieve more disentangled, and there-
fore, more orthogonal axes, a direct construction of the
two SPARE machine learning models with an added con-
straint of orthogonality and training them simultaneously
could have been another solution, instead of indirectly re-
defining the training samples. However, not only would
this require substantial modification to the current models,
but it also poses several problems. First, because of the par-
tial overlap of the affected regions, a trade-off between per-
formance of a single metric and orthogonality is inevitable.
By manipulating the training samples, guided by prior
knowledge and hypotheses, we can avoid this statistical com-
promise and benefit from the full capacity of the machine
learning models. The resulting stepwise improvements to
the models are then relatively easier to interpret. The current
solution is also much more versatile for future use, as op-
posed to requiring certain model structure.Moreover, enfor-
cing orthogonality within the model would not test the
hypothesis that the correlation between the two SPARE
scores was indeed due to the loose diagnostic criteria and
the overlapping affected brain regions associated with the
two metrics. Taken together, we selected the current meth-
ods, and as a result, while more effort in the field is devoted
to developing the best model structure and discovering the
best hyperparameter settings, the current work underlines
the importance of careful sample selection.

Comorbidities of ageing
Ageing is a complex process that accompanies many co-
morbidities, including cancer, diabetes, cardiovascular dis-
ease and neurodegenerative disease.1 Differentiating
between typical ageing and ageing-related disorders is

difficult, if at all possible.60,61 The meaning of what is ‘typ-
ical’ and the degree to which a variety of age-associated pro-
cesses contribute to brain integrity remain unclear.However,
one may conceive that the current state of a human brain
might be decomposed into the normative state correspond-
ing to the chronological age plus weighted sum of abnormal-
ities which further modulate brain structure. In this setting,
the status of the brain can be described by a feature space
where each axis corresponds to a type of an abnormality.
While this is an oversimplification, as there are likely to be
second order interactions and non-linearity of combined ef-
fects, developing such a simplified dimensional space may
help researchers and clinicians by providing a snapshot of
brain health.

Here, we introduced approaches to measure two such di-
mensions: advanced brain ageing and Alzheimer’s disease.
There are many more axes to be added to this feature space,
with each addition also potentially refining the normative
population sample. For example, in the current analysis,
the normal group (A−/CN) was defined as individuals with-
out amyloid pathology. But it could, for example, further ex-
clude those with diabetes from the control group and
evaluate diabetes status distinctly as was done for
Alzheimer’s disease here.62,63 A SPARE-diabetes score can
be disentangled from SPARE-BA and SPARE-AD. As such,
in the future, one brain scan may produce numerous such
SPARE scores that are as much disentangled from each
other, assessing the state of a human brain by measuring
the presence and severity of neurodegeneration related to
many pathologies.64,65

Limitations and future work
There are a few limitations to the current work. First, there is
variability in molecular measures across studies and techni-
ques. Even within a single imaging technique, such as florbe-
tapir PET, there exists a variety of methods for preparation
and processing of the results, which causes significant
between-study differences. Here, we circumvented the issue
by linearly harmonizing the diagnostic cutoffs to match sen-
sitivity and specificity, but the analyses linking the measures
to the SPARE scores had to be performed in a study-wise
manner.

Second, intuitively, a regression model is more suitable for
developing biomarkers such as the SPARE scores than a clas-
sification model. This is because the separating plane in a
classification model is most heavily governed by the border-
line cases (especially with SVM). For example, in the
SPARE-AD2model, the separating plane was most likely de-
fined by the more advanced cases of A−/CN and the least se-
vere cases of Alzheimer’s disease Continuum in terms of the
brain changes. This may explain the lower-than-expected
classification accuracy of SPARE-AD2 at separating between
the two groups andmay have limited the correlation between
SPARE-AD2 and Alzheimer’s disease-related molecular
measurements. Here, a classification model was selected
for SPARE-AD to be consistent with previous studies, but
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future work can explore regression model-based SPARE-AD
scores.

Despite the limitations, the current work successfully de-
monstrated a decoupling of the SPARE-BA and SPARE-AD.
Futurework can explore tau status in combinationwith amyl-
oid to define Alzheimer’s disease more carefully as more tau
data become available. Here, we trained linear models using
ROI volumes for better interpretability. Whether similar re-
sults yield using other structural or functional brain mea-
sures,66,67 or using more advanced, non-linear machine
learning models can also be explored.68,69 Moreover, add-
itional efforts to disentangle SPARE-BA from other
ageing-related comorbidities will be valuable in delineating a
complete set of most objective and specific biomarkers to
evaluate an ageing brain.
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