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Simple Summary: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder.
Previous studies have focused on NAFLD caused by factors such as obesity or high-fat diets, but in
recent years, more and more studies have proved that starvation is also an important cause of NAFLD.
It has shown great harm in human health (e.g., dieting and anorexia nervosa) and farming economic
benefits (e.g., laying hens and mink). However, the molecular mechanism underlying of starvation-
induced NAFLD remain unclear. Regarding the study of NAFLD, zebrafish is currently widely used
model organism. Thus, in this study, we used zebrafish to establish a starvation-induced hepatic
steatosis model. As we all know, hepatic steatosis is usually a prerequisite for NAFLD. Subsequently,
we performed a comparative transcriptome analysis of starvation-induced hepatic steatosis by RNA-
Seq. We demonstrated that starvation triggers hepatic steatosis by promoting extrahepatic fatty acid
uptake and lipogenesis, and inhibits hepatic fatty acid metabolism and lipid transport. Based on the
indications provided by these data, we further revealed that cd36 plays a crucial role in regulating
extrahepatic fatty acid uptake and inducing hepatic steatosis during starvation conditions. Altogether,
these findings will help us understand the pathogenesis of starvation-induced NAFLD.

Abstract: Hepatic steatosis caused by starvation, resulting in non-alcoholic fatty liver disease (NAFLD),
has been a research topic of human clinical and animal experiments. To understand the molecular
mechanisms underlying the triggering of abnormal liver metabolism by starvation, thus inducing
hepatic lipid accumulation, we used zebrafish larvae to establish a starvation-induced hepatic steatosis
model and conducted comparative transcriptome analysis by RNA-seq. We demonstrated that the
incidence of larvae steatosis is positively correlated with starvation time. Under starvation conditions,
the fatty acid transporter (slc27a2a and slc27a6-like) and fatty acid translocase (cd36) were up-regulated
significantly to promote extrahepatic fatty acid uptake. Meanwhile, starvation inhibits the hepatic
fatty acid metabolism pathway but activates the de novo lipogenesis pathway to a certain extent. More
importantly, we detected that the expression of numerous apolipoprotein genes was downregulated
and the secretion of very low density lipoprotein (VLDL) was inhibited significantly. These data
suggest that starvation induces hepatic steatosis by promoting extrahepatic fatty acid uptake and
lipogenesis, and inhibits hepatic fatty acid metabolism and lipid transport. Furthermore, we found
that starvation-induced hepatic steatosis in zebrafish larvae can be rescued by targeting the knockout
cd36 gene. In summary, these findings will help us understand the pathogenesis of starvation-induced
NAFLD and provide important theoretical evidence that cd36 could serve as a potential target for the
treatment of NAFLD.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disorder
caused by lipid metabolism disorders, and is characterized by excessive lipid accumulation
in hepatocytes [1]. A recent report showed that, in Asia, the estimated prevalence of NAFLD
has reached 29.62% [2]. NAFLD is a relatively broad classification. According to the degree of
pathological changes and whether the diseased liver tissue is accompanied by inflammation
or fibrosis, NAFLD can be divided into: simple fatty liver, non-alcoholic steatohepatitis
(NASH), and NASH-related cirrhosis [3]. Additionally, NAFLD can also be divided into
primary and secondary types. Generally, primary NAFLD is often associated with metabolic
syndromes such as obesity, insulin resistance (IR), type 2 diabetes mellitus (T2DM) and
cardiovascular disease [4]; while secondary NAFLD is mainly caused by malnutrition,
dieting, weight loss after bariatric surgery, and drug or toxic substance poisoning [5].
However, compared with the former, reports on secondary NAFLD are relatively scarce.
Currently, although there is no detailed data on the relative prevalence of primary and
secondary NAFLD, NAFLD caused by malnutrition and dieting is not uncommon.

It is well-known that the liver plays a central role in the maintenance of systemic lipid
homeostasis during fasting and re-feeding cycles. Under the postprandial state, the liver
uptakes dietary fats to synthesize triglycerides for very low-density lipoprotein (VLDL)-
mediated secretion and transport to adipose tissue for storage, or transport to the heart and
skeletal muscle for β-oxidation. During fasting, fatty acids are mobilized from adipocytes
to the liver for energy supply. In the liver, the influxed fatty acids from extrahepatic organs
are oxidized by β-oxidation pathway, leading to the production of acetyl coenzyme A
(acety-COA), which then condenses with itself to ketone bodies (i.e., acetoacetic acid, β-
hydroxybutyric acid, and acetone), thereby providing energy for other tissues, such as the
brain, during starvation; and thus, the uptake of extrahepatic fatty acids has been considered
a survival strategy in response to energy deficiency [6]. However, it has been documented
that prolonged starvation can cause liver tissues to transition from simple hepatic steatosis
to severe liver disease, including inflammation, cell death and fibrosis. For example, sudden
anorexia in cats causes severe negative energy balance, accompanied by impaired liver
function, intrahepatic cholestasis, and intrahepatic lipid deposition [7]. During weaning
or fall moulting, minks lose their appetite for many days, resulting in rapid weight loss
and lipid accumulation in the liver [8–10]. Furthermore, some case reports of dieting and
anorexia patient also present serious NAFLD [11–13], which has become a potential risk
problem for the public health of adolescents.

A metabolomic approach has been applied to a mouse model of starvation-induced
hepatic steatosis [6]. After 24 h of fasting, compared with the control group, the free choles-
terol (FC), cholesterol esters (CE) and triacylglycerols (TG) in the liver increased by 192%,
268%, and 456%, respectively. This indicates that, in animals, the lipid profile in the liver is
a dynamic system, which is readily affected by environmental factors such as starvation.
Nevertheless, the underlying mechanisms of hepatic steatosis caused by starvation is largely
unknown. In addition to the influx of a large number of extrahepatic fatty acids, β-oxidation,
de novo lipogenesis and lipid transport are the vital factors affecting hepatic steatosis in
lipid metabolism during starvation. In the liver, increased fatty acid uptake and de novo
lipogenesis, in addition to decreased β-oxidation and VLDL secretion, can all cause hepatic
steatosis. However, it is still unclear which lipid metabolism abnormalities are caused by
starvation and result in liver steatosis.

In recent years, the use of zebrafish as a model organism for the study of NAFLD
has been well established, including diet-induced, chemical-induced, and transgenic mod-
els [14–17]. The advantages of the use of zebrafish are rapid development, a short spawning
cycle, large number of eggs, optical transparency, easy observation, and low financial cost.
Thus, in this study, we used zebrafish to establish a starvation-induced hepatic steatosis
model and performed comparative transcriptome analysis by RNA-seq. We also used
CRISPR/Cas9 genome editing system to establish a homozygous fatty acid translocase
(cd36) knockout zebrafish. Our data revealed that starvation induces hepatic steatosis by
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promoting extrahepatic fatty acid uptake and lipogenesis, and inhibiting hepatic fatty acid
metabolism and lipid transport. Via suppressing the role of the cd36 gene, the steatosis
in zebrafish larvae can be rescued. Our aim was to provide an insight into the molecular
mechanisms underlying starvation-induced hepatic steatosis, which will help improve
the understanding of NAFLD caused by malnutrition. Furthermore, we believe that our
findings have important implications for broadening the study of secondary NAFLD.

2. Materials and Methods
2.1. Animals and Starvation Treatment

Zebrafish (Danio rerio) were reared under standard laboratory conditions with a
light/dark cycle of 14/10 h at 28.5 ◦C. Embryos were collected and maintained in embryo
medium. At 5 dpf, larvae were randomly divided into two groups. Each group included
three biological replicates, and 40 embryos as one biological sample. One group, as the
controls, were fed with 15 mg AP100 diets (Haisheng, China) once per day. The other, as
the starvation group, was not provided with the basal diets, i.e., fasting treatment. In this
study, livers were collected daily from both the controls and starvation group for relevant
studies until 10 dpf. The animal experiments were conducted according to the regulations
of the Guide for Care and Use of Laboratory Animals, and they were approved by the
Committee of Laboratory Animal Experimentation at Southwest University (IACUC Issue
No. 2019071806; Approval date: 18 July 2019).

2.2. Oil Red O (ORO) Staining

Hepatic neutral lipids were labeled by ORO staining, as described previously [15].
Briefly, zebrafish larvae were fixed in 4% paraformaldehyde (PFA) overnight at 4 ◦C, and
were then washed twice with phosphate-buffered saline with 0.1% Tween-20 (PBST). Next,
samples were incubated into a filtered solution of 0.3% ORO in 60% isopropanol for one
hour. The samples were then rinsed twice with 60% isopropanol for 5 min each time and
repeatedly washed with PBST. Stained larvae were stored in 4% PFA and the representative
images were obtained using a LEICA DM 3000 microscope (Leica, Wetzlar, Germany).

2.3. Electron Microscopy

After MS-222 anesthesia, we dissected the liver tissues and fixed them immediately in
2.5% glutaraldehyde at 4 ◦C. Then, the fixed livers were mounted, sectioned, and imaged,
as previously described [18].

2.4. Biochemical Analysis

Triglycerides (TG) and very low-density lipoprotein (VLDL) in zebrafish livers were
quantified using a Triglyceride Assay Kit (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China) and Fish VLDL Elisa Kit (BIOHJ, Xiamen, China) according to the manu-
facture’s specifications.

2.5. Quantitative RT-PCR

Total RNA was isolated from the dissected liver tissues of zebrafish larvae with
RNAiso plus reagent (Takara, Tokyo, Japan), and RNase-free DNase was employed to
remove the contaminating DNA; cDNA was synthesized from 2 µg of total RNA with
GoScriptTM Reverse Transcription System (Promega, Madison, WI, USA). qPCR assay
using three replicates were performed using the CFX96 Real-Time PCR detection system
(Bio-Rad, Hercules, CA, USA). All primers used are listed in Table S1. All procedures were
performed as previously described [19].

2.6. RNA-Seq and Transcriptomic Analysis

Zebrafish larvae were anesthetized by MS-222, and then the liver was dissected using
a micro-dissection needle. Forty liver tissues were pooled into a tube as one sample. Total
RNA extraction of three independent biological replicates were performed as stated above.
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RNA quality and concentration were assessed using Agilent 2100 Bioanalyzer (Agilent Tech-
nologies, Santa Clara, CA, USA). For high-throughput sequencing, the library preparations
were conducted using TruseqTM RNA Sample Preparation Kit (Illumina, San Diego, CA,
USA) and sequenced on an Illumina Hiseq X10 platform by Majorbio Biopharm Technology
Co., Ltd. (Shanghai, China).

After sequencing, the high-quality clean reads were obtained by filtering the dirty
reads with the low-quality reads, adaptors, and sequences with a high content of N or
reads <20 bp using SeqPrep and Sickle, and then mapped to the reference genome zebrafish
(GRCz11) using Tophat [20]. The gene expression levels were calculated using the method of
FPKM (Fragments Per Kilobases Per Millionreads) [21]. DESeq2 was used for the differential
expression analysis of RNA-Seq expression profiles [22], and genes with a more than two-
fold changes, and p < 0.05 and false discovery rate (FDR) < 0.05, were considered to be
differentially expressed. The raw data has been uploaded to the NCBI Sequence Read
Archive under the accession number PRJNA682774.

2.7. Cd36 Knockout by CRISPR/Cas9

To obtain the zebrafish cd36−/− mutant line, a specific CRISPR/Cas9 target site was
designed using the target site prediction website (http://zifit.partners.org/ZiFiT/). After
injecting cas9 mRNA and gRNA into ond-cell embryos, the knockout effect at 72 h post
fertilization (hpf) was determined by pairs of specific primers (cd36exon1-F/R) using
Sanger sequencing, as shown in Table S1. The F0 generation positive mutants were raised
to sexual maturity and then mated with WT zebrafish to obtain F1 generation mutants.
Then, F1 generation mutants carrying the same genotype were used for mating to obtain
F2 homozygous mutants. In this study, the polyacrylamide gel electrophoresis (PAGE) was
employed to rapidly identify the different genotypes of F2 generation mutants [23].

2.8. Statistical Analysis

Data are expressed as means ± SEM. One-way ANOVA with Tukey’s post-hoc test
was performed for multiple group comparisons. For all analysis, p < 0.05 was considered
statistically significant.

3. Results
3.1. Starvation Induced Hepatic Steatosis in Zebrafish Larvae

In this work, to confirm whether zebrafish larvae can be used to build a starvation-
induced hepatic steatosis model, we performed a fasting treatment at 5 dpf, which is the
first feeding stage of zebrafish larvae. At this stage, without timely supplementation of
exogenous nutrients, the larvae will immediately enter a malnourished state. As shown in
Figure 1A, the growth of the starved larvae was arrested completely during the starvation
process. Commencing on 10 dpf, the starved larvae died intensively (Figure 1B), therefore
we focused on the observation of hepatic steatosis in larvae from 5 to 10 dpf. ORO staining
showed starvation resulted in a significant accumulation of neutral lipids in larval liver
tissues. Moreover, the incidence of hepatic steatosis was positively correlated with the
starvation time and reached its highest level three days after starvation (Figure 1C,D). By
measuring the level of triglycerides (TG), we found a significant increase in TG levels in the
livers of starved larvae compared to those of the control larvae (Figure 1E). Furthermore, by
transmission electron microscope observation, we examined lipid droplets in the cytoplasm.
In contrast, no lipid droplets were observed in the hepatocytes of larvae fed normally
(Figure 1F).

http://zifit.partners.org/ZiFiT/
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Figure 1. Characterization of starvation-induced hepatic steatosis in zebrafish larvae. (A) The depiction of growth perfor-
mance in the control and starved larvae from 5 to 10 dpf. (B) The survival curve of the control and starved larvae was 
depicted by Kaplan-Meier assay. (C) Percentages of control and starved larvae with hepatic steatosis at 6, 7, 8, and 10 dpf. 
(D) Representative images of whole-mount Oil Red O (ORO) staining labelled the neutral lipids in larval liver at 6, 7, 8, 
and 10 dpf. White and black arrows label the liver tissues of control and starved larvae, respectively. The black dotted box 
labels the liver of zebrafish larvae. Bars = 200 μm. (E) Hepatic triacylglycerol (TAG) levels in the control and starved larvae 
from 6 to 10 dpf were determined. (F) Electron micrographs of hepatocytes from the control and starved larvae. Id: lipid 
droplets; m: mitochondria; n: cell nucleus. Bars = 10 μm. * indicates significant differences (p < 0.05). 
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brary construction, sequencing data, and quality control are shown in Table 1. In total, 
these results indicate that the RNA-seq data are of high quality and can be used for further 
analysis. 

Figure 1. Characterization of starvation-induced hepatic steatosis in zebrafish larvae. (A) The depiction of growth perfor-
mance in the control and starved larvae from 5 to 10 dpf. (B) The survival curve of the control and starved larvae was
depicted by Kaplan-Meier assay. (C) Percentages of control and starved larvae with hepatic steatosis at 6, 7, 8, and 10 dpf. (D)
Representative images of whole-mount Oil Red O (ORO) staining labelled the neutral lipids in larval liver at 6, 7, 8, and
10 dpf. The black dotted box labels the liver of zebrafish larvae. Bars = 200 µm. (E) Hepatic triacylglycerol (TAG) levels in the
control and starved larvae from 6 to 10 dpf were determined. (F) Electron micrographs of hepatocytes from the control and
starved larvae. Id: lipid droplets; m: mitochondria; n: cell nucleus. Bars = 10 µm. * indicates significant differences (p < 0.05).

3.2. Comparative Transcriptome Analysis of Starvation Induces Hepatic Steatosis

To clarify the molecular mechanism underlying hepatic steatosis caused by starvation
in zebrafish larvae, we employed RNA-seq technology to investigate the effects of starvation
on the gene expression regulation in the liver tissues. In our study, three biological replicates
were performed in the control and starved larvae, respectively. The library construction,
sequencing data, and quality control are shown in Table 1. In total, these results indicate
that the RNA-seq data are of high quality and can be used for further analysis.
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Table 1. Statistical analysis of sequencing data.

Samples Ctrl1 Ctrl2 Ctrl3 Starve1 Starve2 Starve3

Raw reads (M) 50.82 45.52 54.45 44.12 46.26 44.79
Clean reads (M) 50.44 45.20 52.01 43.61 45.83 44.29
Good reads (%) 99.25 99.30 95.51 98.84 99.07 98.88
Error rate (%) 0.0250 0.0250 0.0251 0.0253 0.0251 0.0250

Q20 (%) 98.02 97.99 97.96 97.89 97.96 98.02
Q30 (%) 94.21 94.12 94.08 93.92 94.05 94.18

Total mapped (M) 46.18 41.18 47.85 39.87 41.96 40.68
Total mapped (%) 91.55 91.11 92.0 91.41 91.55 91.86
Uniquely mapped 39.27 34.77 40.42 33.15 35.03 34.30

Uniquely mapped (%) 77.85 76.92 77.71 76.02 76.42 77.44

Correlation analysis between samples shows that the intra-group correlation coef-
ficients in the control larvae and starved larvae exceeded 0.977 and 0.972, respectively
(Figure 2A). This indicates that the variation in gene expression between intra-group sam-
ples was extremely low. In contrast, the correlation coefficient between inter-group samples
was relatively low (0.822–0.908). This indicates that the gene expression of liver tissues
changed significantly during starvation stress.

In this study, genes with differential expression levels ≥2 and p-adjust < 0.05 were
considered to be significantly different. On the basis of this condition, 4166 differentially
expressed genes (DEGs), including 2049 up-regulated and 2117 down-regulated, were
identified (Figure 2B). Interestingly, among these DEGs, 4129 expressed in both the control
and starved larvae. In addition, 28 genes were expressed only in the control and nine
in the starved larvae alone (Figure 2C and Table S2). Then, all of the DEGs with signifi-
cant change were subject to further Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis.

As shown in Figure 2D and Table S3, starvation stress resulted in more than 20 path-
ways being considerably affected. As expected, pathways (i.e., DNA replication and cell
cycle) involved in growth regulation were inhibited significantly. In addition, most of
these pathways are associated with lipid metabolism, including fatty acid degradation,
glutathione metabolism, peroxisome proliferator-activated receptor (PPAR) signaling path-
way, fatty acid elongation, fat digestion, and absorption, biosynthesis of unsaturated fatty
acids, and alpha-Linolenic acid metabolism. Thus, it appears that starvation stress has a
significant effect on the hepatic lipid metabolism of zebrafish larvae.

3.3. Expression of Genes Related to Fatty Acid Transmembrane Transport in Liver Tissues of
Starved Larvae

Under starvation conditions, liver tissues mainly uptake free fatty acids from the
extrahepatic organs, and then synthesize triglycerides, phospholipids, and cholesterol esters
in the hepatocytes, thereby providing major energy resources for tissues (e.g., heart, skeletal
muscle, and brain). However, the influx of fatty acids into hepatocytes, with the exception of
a small part (less than 10 carbon chains), is via passive diffusion, and more than 90% of long-
chain fatty acids (LCFAs) require the transport of specific membrane proteins to enter [24]. It
has been confirmed that several proteins, including fatty acid translocase (FAT/CD36) and
fatty acid transporters (FATPs), play an important role in the transmembrane transport of
fatty acids [25–28]. In this study, we identified six fatty acid transporters (slc27a1a, slc27a1b,
slc27a2a, slc27a4, slc27a6, and slc27a6-like) (Figure 3A) and one fatty acid translocase (cd36) in
the liver tissues of zebrafish. Among these transporters, slc27a1b, slc27a4, and slc27a6 were
down-regulated significantly, whereas slc27a2a and slc27a6-like were up-regulated. Notably,
the expression level of slc27a2a was the highest among these six paralogs. In addition, we
observed that cd36 was also up-regulated (Figure 3B). These data suggest that the liver
tissues of zebrafish larvae may mediate the transmembrane transport of slc27a2a, slc27a6-like,
and cd36, promoting the uptake of extrahepatic fatty acids during starvation stress.
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in Figure 5, a large number of the DEGs involved in the fatty acid metabolism were down-
regulated significantly in the liver tissues of starved larvae. These genes include cpt1ab 
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Figure 3. Effect of starvation on the gene expression involved in the transmembrane transport of fatty acids in liver tissues.
(A) Gene expression of solute carrier family 27 (fatty acid transporter), including slc27a1a, slc27a1b, slc27a2a, slc27a4, slc27a6,
and slc27a6-like, were extracted in the control larvae from the RNA-seq data. (B) Differential expression of fatty acid
transporter and fatty acid translocase (cd36) in the control and starved larvae. The FPKM (Fragments Per Kilobases Per
Millionreads) value represents the mean ± SEM of three independent RNA-seq biological replicates. * indicates significant
differences (p < 0.05).

3.4. Expression of Genes Involved in Intracellular Fatty Acid Transport and β-Oxidation in the
Liver Tissues of Starved Larvae

In liver, the influxed extrahepatic fatty acids are either used for fatty acid metabolism
or de novo lipogenesis. Fatty acid binding proteins (FABPs) is a family of low molecular
weight intracellular proteins involved in the transport and metabolism of fatty acids [29].
In the RNA-seq data, we detected 11 FABPs genes expressed in the liver tissues of zebrafish
larvae (Figure 4A). Among these FABPs genes, we observed that four genes (fabp1b.1,
fabp1b.2, fabp2, and fabp7a) were down-regulated significantly compared to control larvae
(Figure 4B). Interestingly, however, the expression of fabp10a (fatty acid binding protein
10a, liver basic), which has the highest expression levels in the liver tissues, did not change
significantly. Thus, it appears that fabp10a plays a vital role in regulating hepatic fatty acid
intracellular transport during starvation stress.

The inhibition of a fatty acid metabolism pathway indicates that the influxed extrahep-
atic fatty acids do not appear to be used for β-oxidation in the liver tissues. As shown in
Figure 5, a large number of the DEGs involved in the fatty acid metabolism were down-
regulated significantly in the liver tissues of starved larvae. These genes include cpt1ab
(carnitine palmitoyltransferase 1Ab, liver), cpt1b, cpt2, acox1 (acyl-CoA oxidase 1, palmitoyl),
acox3, acsbg1 (acyl-CoA synthetase bubblegum family member 1), acsl3a, acsl4a, acaa1 (acetyl-
CoA acyltransferase 2), acaa2, acadl (acyl-CoA dehydrogenase long chain), acadm, acadvl,
acads, hadhaa (hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit
alpha a), hadhab, hadh, hadhb, eci1 (enoyl-CoA delta isomerase 1), eci2, acat2 (acetyl-CoA
acetyltransferase 2), aldh3a2b (aldehyde dehydrogenase 3 family, member A2b), and aldh9a1b.
These data suggest that the influxed extrahepatic fatty acids is more tended to be de novo
lipogenesis, rather than β-oxidation.
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3.5. Expression of Genes Related to De Novo Lipogenesis in the Liver Tissues of Starved Larvae

Because starvation stress triggers the transmembrane transport of extrahepatic fatty
acids but inhibits the intrahepatic fatty acid metabolism pathway in our above studies
(Figures 3 and 5), we therefore speculate that most of the fatty acids may be used for de
novo lipogenesis rather than fatty acid metabolism. In the present study, we investigated
the expression of major transcription factors and key enzymes involved in regulating de
novo lipogenesis (Figure 6). These genes include peroxisome proliferator-activated receptors
(PPARs), sterol regulatory element binding transcription factor (SREBFs), retinoid X receptor
(RXRs), diacylglycerol O-acyltransferase (DGATs), stearoyl-CoA desaturase (SCD), and fatty
acid synthase (FASN). Among these genes, we only detected two genes whose expression
was down-regulated significantly. Conversely, the expression of most genes was not affected
(e.g., pparaa, pparg, rxraa, dgat2, and fasn) by starvation, and three genes (i.e., pparab, rxrgb,
and scdb) were even up-regulated. Thus, it appears that starvation stress promotes the
lipogenesis of liver tissues in zebrafish larvae to a certain extent.
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Figure 6. Effect of starvation on the gene expression involved in lipogenesis in liver tissues. Differential expression of
pparaa, pparab, pparg, ppargc1a, ppargc1b, srebf1, srebf2, dgat1a, dagt1b, dgat2, scdb, fasn, rxraa, rxrba, rxrbb, rxrga, and rxrgb in
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replicates. * indicates significant differences (p < 0.05).
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3.6. Lipid Transport in the Liver Tissues of Starved Larvae

Very low-density lipoprotein (VLDL) is essential for the transport of triglycerides from
the liver into the circulation. It is well-known that apolipoproteins are a key component of
VLDL, and have abundant subtypes expressed in liver [30]. In our study, 22 apolipoprotein
genes with expressiosn ranging from 0.24 to 20773.21 FPKM were identified (Figure 7A). The
top 15 genes were apoa1b, apoa2, apoa4b.1, apoea, apoc1, apoc2, apo3b, apoa4b.2, apobb.1, apom,
apoa4a, apoba, apodb, apoa1a, and apoc4 (Figure 7C). Notably, we observed that most genes
were down-regulated significantly, with the exception of apom and apodb. This observation
is consistent with the change of VLDL secretion in the liver of starved larvae. As shown
in Figure 7B, we detected that the VLDL content in the liver of starved larvae was 47.54%
lower than that of the control larvae. These results indicate that starvation may lead to lipid
transport dysfunction in the liver of zebrafish larvae.
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3.7. qPCR Analysis of Genes Related to Lipid Metabolism

To further verify the effects of starvation on the gene expression involved in hepatic
lipid metabolism, we examined the relative mRNA levels for 20 genes by qPCR. It is found
that the qPCR results of most candidate genes are highly consistent with the RNA-seq data
(Figure 8A–D). These genes include up-regulated genes cd36, slc27a2a, and scdb, and down-
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regulated genes fabp1b.1, cpt1ab, cpt1b, cpt2, acox1, acaa1, hadhab, apoa1, apoa4.3, apoba, dgat1a,
and dgat1b. In the qPCR data, only the expression of four genes (i.e., dgat2, srebf1, srebf2,
and fasn) differed from the RNA-seq data. In brief, they were shown to be significantly
up-regulated in the qPCR data, whereas no significant changes in the RNA-seq data were
observed. Through a linear regression analysis, we determined that the fold change of
the gene expression ratio between qPCR and RNA-seq data is highly positively correlated
(R2 = 0.844) (Figure 8E). Thus, our RNA-seq data is reliable and of high quality.
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Figure 8. (A–E) Validation of RNA-seq data by qPCR. The mRNA levels of 20 genes involved in fatty acid transport (A),
fatty acid metabolism (B), lipid transport (C), and lipogenesis (D) were measured by qPCR. (E) Correlation analysis of gene
expression between RNA and qPCR. Scatter plot of gene expression in RNA-seq (y-axis) and qPCR (x-axis). “Ratio” in
log2 (Ratio) represents the fold change with gene expression. * indicates significant differences (p < 0.05). (F) Schematic
diagram of starvation triggering hepatic steatosis by regulating liver fatty acid intake, β oxidation, de novo lipogenesis and
lipid transport. Starvation up-regulated transcription of slc27a2a, slc27a6-like, and cd36, promoting extrahepatic fatty acid
uptake. In liver, starvation induces the expression of lipogenesis-related genes (srebf1, srebf2, fasn, and scdb) by activating the
PPARα/RXR pathway, thereby promoting lipogenesis. Meanwhile, the fatty acid metabolism pathway was inhibited. Thus,
most ingested extrahepatic fatty acids are used for lipogenesis rather than β oxidation. However, synthetic fat appears to be
blocked in the liver, because starvation inhibits the expression of numerous apolipoprotein genes. Red arrows indicate
up-regulated genes, green arrows indicate down-regulated genes. FFA: free fatty acid.
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3.8. Starvation-Induced Hepatic Steatosis Is Rescued by Targeting Knockout Cd36 Gene

Based on the above observations (Figure 8F), we hypothesize that the initial cause of
starvation-induced hepatic steatosis may be triggered by excess fatty acid uptake in the
liver. Our data from the RNA-seq and qPCR both showed that cd36 (fatty acid translocase)
was up-regulated the in the liver tissues of starved larvae (Figures 3B and 8A), and is a
major mediator of hepatic fatty acid uptake, as shown in previous reports [31–33]. Thus, to
confirm this hypothesis, we employed CRISPR/Cas9 technology to target the knockout of
the cd36 gene, thereby blocking the pathway for the liver to uptake extrahepatic fatty acids
under starvation conditions.
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Figure 9. Establishment of the cd36 knockout zebrafish line. (A) Genomic structure of the zebrafish cd36 gene and
CRISPR/Cas9 target site design. (B) DNA sequencing confirmed that two mutants (c. 86_93delCGGTGGGC, p.Pro29Argfs5)
and (c. 84_87delCCCG, p. Ile28Metfs5) were generated. (C,D) Genotypes of cd36 mutants were screened by the PAGE
technology. Image C labels the mutant line1 (M1): Lanes 3, 9, 11, and 12 were identified as cd36 homozygous mutant line;
lanes 5, 6, 7, 8, and 10 were identified as cd36 heterozygous mutant line; lanes 1, 2, and 4 were identified as WT zebrafish.
Image D labels the mutant line2 (M2): Lanes 3 and 4 were identified as cd36 homozygous mutant line; lanes 7 and 10 were
identified as cd36 heterozygous mutant line; lanes 1, 2, 5, 6, 8, 9, 11, and 12 were identified as WT zebrafish. (E) A diagram
representative of WT and two truncated mutant CD36 proteins (M1 and M2). (F) Oil Red staining of WT and cd36−/−

mutant zebrafish larvae at 8 and 10 dpf. The ORO-stained signal in intestinal lumen is the lipid droplets of exogenous
nutrients. (G) Percentages of WT and cd36−/− mutants (M1) with hepatic steatosis at 8 and 10 dpf. Significant differences
are marked by different letters. (H) TAG levels in starved WT and cd36−/− mutants (M1) at 8 dpf. # p < 0.05 compared to
WT_S; * p < 0.05 compared to WT_ctrl.
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As shown in Figure 9A, the target site for gene knockout was designed in the exon1 of
the cd36 gene. Seventy-two hours after injection of gRNA and cas9 mRNA, DNA sequenc-
ing of normally developing F0 embryos revealed a high-frequency somatic mutation, and
all mutations occurred correctly at the target sites (Figure S1). Upon PCR and sequencing,
two homozygous mutants, 8-bp and 4-bp deletion in the exon1, were obtained from F2
generation (Figure 9B). Concurrently, individuals with different genotypes were screened
by the polyacrylamide gel electrophoresis (PAGE) assay (Figure 9C). Ultimately, the mu-
tants resulted in premature termination of translation and produced two truncated CD36
proteins (M1 and M2).

The mutants were fertile and no significant features of abnormality in the gross mor-
phology between WT and cd36−/− mutants were observed (data not shown). Next, we
performed ORO staining to investigate the effect of starvation on the hepatic steatosis
of different genotypes in zebrafish larvae. As shown in Figure 9F,G, after three days of
starvation, the hepatic lipid droplets of WT zebrafish larvae increased significantly and the
percentages of hepatic steatosis reached 92.12%, whereas the steatosis degree of cd36−/−

mutants did not appear to have significant changes before and after starvation. Consistently,
after five days of starvation, only 22.83% of cd36−/− mutants showed hepatic steatosis,
whereas the proportion of WT zebrafish reached 93.33% at the corresponding time. Through
lipid content determination, we found that the hepatic lipid content of starved mutants
was 44.09% lower than that of WT zebrafish (Figure 9H). These results demonstrate that
starvation-induced hepatic steatosis is rescued by targeting the knockout cd36 gene.

4. Discussion

In the present study, we successfully established a model of starvation-induced hep-
atic steatosis in zebrafish larvae. Furthermore, we examined the effect of starvation on
gene expression regulation in the liver tissues by RNA-seq. Our data demonstrated that
starvation contributes to hepatic steatosis by promoting extrahepatic fatty acid uptake and
de novo lipogenesis, inhibiting hepatic fatty acid metabolism and lipid transport. Based on
the indications provided by these data, we further revealed that cd36 plays a crucial role
in regulating extrahepatic fatty acid uptake during starvation conditions. To the best of
our knowledge, this is the first animal model used to study the production of NAFLD by
starvation in a non-mammalian vertebrate.

In our study, we defined a standard food intake, that is, 15 mg of diets per day for
40 fish larvae. Under this standard, the percentage of hepatic steatosis was less than 10%.
In contrast, during food deprivation, we observed severe lipid accumulation in the liver of
zebrafish larvae. Therefore, using this method of feeding is beneficial to identify the effects
of starvation stress on the hepatic steatosis in zebrafish larvae.

At present, hepatic steatosis caused by starvation, thereby resulting in NAFLD, has
been shown in human clinical [11–13,34,35] and animal experiments [6–8,36–38], but the
molecular mechanisms underlying starvation-induced hepatic steatosis are yet to be well
defined. Thus, we elucidated the regulation of gene expression in starvation-induced
hepatic steatosis in this work. In the RNA-seq data, we observed significant changes in the
expression of more than 4000 genes, including 2049 up-regulated genes and 2117 down-
regulated genes. It is well-known that the excessive accumulation of lipids in hepatocytes
under starvation stress is nothing more than (1) increased fatty acid flux to the liver from
extrahepatic organs, (2) inhibited β-oxidation, (3) increased de novo lipogenesis, and (4)
repressed lipid export [39]. Based on the above indications, we therefore focused on the
expression of genes related to hepatic lipid metabolism. In the RNA-seq data, we first
investigated the expression of genes involved in the transmembrane transport of fatty
acids. Two fatty acid transport protein genes (slc27a2a and slc27a2a-like) and one fatty acid
translocate gene (cd36) were shown to be up-regulated significantly. Previous reports have
been shown that zebrafish slc27a2a is mainly expressed in the liver tissues of zebrafish [30,40].
Consistently, our data revealed that the expression of slc27a2a in the FATPs family is highest
in the liver. CD36, also known as fatty acid translocase (FAT), is a fatty acid transporter
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that facilitates fatty acid uptake and has a profound impact on the development of NAFLD.
Increased expression of hepatic CD36 leads to lipid accumulation, whereas inhibition of
CD36 is resistant to hepatic steatosis [33,41]. Our data suggest that starvation may mediate
fatty acid transmembrane transport of slc27a2a, slc27a2a-like, and cd36, thereby promoting
the extrahepatic fatty acid uptake.

The KEGG enrichment analysis showed that starvation is involved in the regulation of
a large number of pathways. Among these, the hepatic lipid metabolism related pathways,
including the fatty acid metabolism, PPAR signaling pathway, fatty acid elongation, fat
digestion and absorption, and biosynthesis of unsaturated fatty acids shows significant
changes. Notably, we found that all DEGs enriched in the fatty acid metabolism pathway
(e.g., cpt1ab, cpt1b, cpt2, acox1, acaa1, and hadhab) are down-regulated. This result indicates
that although starvation promotes the transmembrane transport of fatty acids in the liver,
the influxed fatty acids do not appear to be used for β oxidation. In contrast, we observed
that several key genes (i.e., srebf1 [42], srebf2, fasn [43], and scdb [44]) involved in de novo
lipogenesis were up-regulated by qPCR, and the expression level of most other genes
related to lipogenesis is not affected by starvation in the RNA-seq data. Thus, it appears
that decreased hepatic fatty acid oxidation and increased lipogenesis are the vital causes of
severe hepatic steatosis in the starved zebrafish larvae.

Concomitantly, we also observed that lipid transport is significantly impaired. Apolipo-
protein is a protein component that constitutes plasma lipoprotein. Its basic function is to
carry lipids and stabilize the structure of lipoproteins (e.g., VLDL) [45]. In the RNA-seq data,
22 apolipoprotein genes such as ApoA-I (apoa1a and apoa1b), ApoA- II (apoa2), ApoA-IV
(apoa4a, apoa4b.1, apoa4b.2, and apoa4b.3), ApoB (apoba, apobb.1, and apobb.2), ApoC (apoc1,
apoc2, and apoc4), and ApoE (apoea and apoeb) families were identified. However, most genes
were shown to be down-regulated significantly in the liver of starved larvae. Furthermore,
we also demonstrated that VLDL secretion from the liver is inhibited during starvation
stress, which is consistent with a previous report by Gibbons et al. [46]. Thus, the other
vital causes for starvation-induced hepatic steatosis in zebrafish larvae is the impairment of
hepatic lipid transport function.

Previous reports have shown that the CD36 pathway plays a crucial role in NAFLD
induced by high-fat diets [47–50], which is a key transporter of free fatty acid uptake in liver.
In high-fat diet induced NAFLD patients and animal models, up-regulation of CD36 were
commonly detected. On the contrary, suppressing its expression can effectively improve
hepatic lipid accumulation. However, it is still unclear whether it plays a similar role
during the starvation process, although our data show that starvation induces a significant
up-regulation of cd36 in the liver of zebrafish larvae. [14] has shown that starvation can
regulate hepatic lipid metabolism through PPAR signaling pathway. Meanwhile, PPARγ, a
positive regulator of CD36, is a transcriptional target of Pregnane X receptor (PXR) [51]. In
our work, we examined that the expression of multiple key transcription factors involved in
PPAR signaling pathway were not inhibited (e.g., pparaa, pparg and rxraa) by starvation, and
two (i.e., pparab and rxrgb) were even up-regulated. Thus, it appears that starvation may
mediate the PPAR signaling pathway to induce CD36 expression. To further explore the role
of cd36 in starvation-induced hepatic steatosis, we successfully created two independent
mutant lines using the CRISPR/Cas9 system in zebrafish. Under starvation conditions, we
observed the hepatic lipid droplets of WT zebrafish larvae increased significantly, whereas
the steatosis degree of cd36−/− mutants did not appear to have significant changes before
and after starvation. The comparison analysis showed that the hepatic lipid content of
starved cd36−/− mutants is 44.09% lower than that of WT zebrafish. These results revealed
the importance of cd36 in regulating starvation-induced hepatic steatosis in zebrafish larvae.

5. Conclusions

In summary, our data suggests that starvation-induced hepatic steatosis is caused by
complex lipid metabolism disorders. These events include increased hepatic fatty acids
uptake and de novo lipogenesis, and inhibited β-oxidation and lipid export. We also
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demonstrated that the degree of hepatic steatosis in animals can be reduced by targeting
the inhibition of the expression of cd36 under starvation conditions. These findings will
extend our understanding of abnormal liver lipid metabolism under starvation stress and
clarify the intervention effect of cd36 as a target, which may provide new strategies for the
treatment of NAFLD.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-7
737/10/2/92/s1, Figure S1: Sequencing analysis of cd36 knockout in F0 generation. (A) Primers
(cd36exon1-F/R) and target site amplified sequence information. Black underline labels primer
sequence. (B) Sequencing results show that mutations are generated accurately at the target site. Red
underline labels the target site sequence. Table S1: All primers and sequence information used in this
study. Table S2: Genes expressed only in the control and starved larvae, respectively. Table S3: Top 20
KEGG pathways with high representation of DEGs. Red and green indicate up- and down-regulated
genes, respectively.
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