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Frye et al.1 published a study in Translational Psychiatry that
indicated that treatment with sapropterin, which is a synthetic
form of tetrahydrobiopterin (BH4), improved metabolic outcomes
in patients with autism spectrum disorder (ASD). They explained
that BH4 is a critical co-factor for the production of precursors of
many monoamine neurotransmitters, including dopamine (DA)2

and norepinephrine (NE),3 and is vital in nitric oxide (NO)
production. The author of this letter has published an ecological
investigation that may shed light on the existence of BH4 in ASD
and why supplementation appears to ameliorate behavioral and
metabolic outcomes in ASD, as shown by Frye et al.1

The increase in NO levels that is often noted in ASD may have to
do with the parasympathetic dominant state that arises from
chronic gestational exposure to nitrous oxide (N2O) in the
environment, most especially from agricultural practices but other
sources as well, as discussed elsewhere.4 This cycle may start,
given that N2O, at clinically relevant doses, inhibits the human
(alpha 7) nicotinic acetylcholine receptor (alpha 7 nAChR)5 and
results in elevated central levels of DA and NE, as discussed
previously.4 Others have found this particular nicotinic ACh
receptor subtype to be altered in ASD.6,7 Low concentrations of
monoamine uptake inhibitors (that is, elevated synaptic NE)
enhanced cerebral vasodilation mediated by alpha 7 nAChR,8

suggesting that elevated central NE levels may overcome central
N2O-mediated inhibition of this receptor. Alpha 7 nAChR also acts
as an anti-inflammatory in the periphery, and activation of the
receptor prevented H2O2-mediated cell damage,9 suggesting that
early gestational inhibition of alpha 7 nAChR may contribute to a
higher oxidative stress baseline in ASD subjects.
Therefore, if gestational exposure to N2O perturbs, among many

targets,4 alpha 7 nAChR activity, an uncoupling from eNOS may
also occur,10 facilitating the production of H2O2, which can
enhance cerebral endothelial ‘agonist-induced vasodilation’
induced by acetylcholine.11,12 The cholinergic system may, there-
fore, have a key etiological role in a mouse model of ASD.13 This
cascade is dependent upon increased superoxide dismutase and
decreased catalase, which characterize oxidative stress profiles in
patients with ASD.14 H2O2 has been shown to induce a long-
lasting bradycardia in rats that was inhibited by catalase activity15

and stimulated BH4 synthesis in vascular endothelial cells,16

although the magnitude of alpha 7 nAChR impairment during
gestational N2O exposure may impact the capacity of central
stimulation in ASD patients.17 Nevertheless, higher H2O2 produc-
tion (indicative of gestational N2O burden) may help to explain
increased plasma levels of NO18 in ASD. Moreover, Wu et al.19

reported that GTS-21, an alpha 7 nAChR agonist, ‘inhibited the
production of IFN-γ by PBMCs from patients with RA in a dose-
dependent manner and reduced the levels of IFN-γ to levels
similar to, or even below, those found in healthy volunteers’,
suggesting that inhibition of this particular nAChR subtype may
contribute to not only elevated plasma NO in ASD but also
increased inflammatory markers, like IFNγ, as has been shown.18

These studies support the claim by Frye et al.1 that ‘the increase in

NO metabolism seen in some individuals with ASD is associated
with greater morbidity and a less favorable prognosis’.
The author has previously discussed the other physiological

roles of N2O, including the inhibition of dopamine 4 receptor
(DR4) activity through impairment of methionine synthase.4 The
elegant studies of Yuen and Yan20 suggest that DR4 activation
exerts an activity-dependent control of calcium homeostasis that
then has a bi-directional impact on glutamatergic signaling in
pyramidal neurons of prefrontal cortex, potentially contributing to
autonomic dysregulation. Furthermore, Koyanagi et al.21 reported
that the antinociceptive effect of N2O was mediated in part by
dopamine receptor 2, and activation of this receptor could be
expected to promote parasympathetic tone.22,23 Therefore,
disruption of these many intricate control mechanisms, perhaps
through chronic gestational environmental N2O exposure, may
confer a parasympathetic dominance.
The BH4 dysregulation in ASD may be a manifestation of this

parasympathetic dominance to accommodate a low-grade N2O
(that is, κ-opioid) dependence developed in utero. Recent studies
that intimate a sympathetic dominance in ASD24–26 may actually
be revealing the paradigm of opiate withdrawal in ASD subjects,27

especially given the seasonality of agricultural N2O emissions.28

Given that 3CT is a known inhibitor of tyrosine hydroxylase,29 a
rate-limiting enzyme involved in catecholamine synthesis, the
significant decrease in 3CT after supplementation1 may indicate
the role of BH4 in the restoration of myogenic and central
catecholaminergic activity, much like naltrexone,30,31 an opioid
antagonist. These contributions may help to explain the ameliora-
tion of behavioral (that is, irritability, hyperactivity) and metabolic
(that is, NO) outcomes characteristic of ASD patients.
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