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SUMMARY

qPCR is still the gold standard for gene expression quantification. However, its accuracy is highly depen-
dent on the normalization procedure. The conventional method involves using the geometric mean ofmul-
tiple study-specific reference genes (RGs) expression for cross-sample normalization. While research on
selecting stably expressed RGs is extensive, scant literature exists regarding the optimal approach for
aggregatingmultiple RGs into a unified RG. In this paper, we introduce a family of scale-invariant functions
as an alternative to the geometric mean aggregation. Our candidate method (weighted geometric mean
minimizing standard deviation) demonstrated significantly better results compared to other proposed
methods. We provide theoretical and experimental support for this finding using real data from solid tu-
mors and liquid biopsies. Moreover, the closed form and regression-based solution enable efficient
computation and straightforward adoption on various platforms. All the proposedmethods have been im-
plemented within an easy-to-use R package with graphics processing unit (GPU) acceleration.

INTRODUCTION

Reverse transcription quantitative PCR (RT-qPCR) is one of the most utilized techniques to quantify RNAmolecules. Despite high-throughput

methods such as RNA sequencing (RNA-seq) are widely used for expression quantification, qPCR is still the primary molecular diagnostic test

for clinical and research purposes due to its high specificity and sensitivity, low cost, and reproducibility.1,2 There are, however, different sour-

ces of technical errors that make the accuracy and power of qPCR highly dependent on the normalization procedure.

The qPCR method uses repeated cycles of DNA amplification to measure the expression of target gene(s) in a given sample. The amount

of the target region approximately doubles during each amplification cycle. The Cycle Threshold (CT) value is defined as the first cycle the

amount of amplified target region exceeds a fixed threshold.3 This raw CT value is affected by two sources of variation: biological and tech-

nical.4 To accurately measure expression alternation of a target gene among different conditions, we need to minimize these variations. For

this purpose, cross-sample normalization is performed to make the expression levels of a target gene comparable among different samples,

which leads to statistically authentic results. Themost usual way of cross-sample normalization employs a reference gene (RG) and normalizes

the expression of each target gene by subtracting the expression of RG from it. The assumption behind these techniques is that the RG

expression is unaffected in different conditions.5 Choosing an unstable or differentially expressed RG could lead to contradictory results.

For example, if an RG has expression alternation between the treatment vs. control groups, a correlated target gene would show lower or

no significant expression change after normalization with this RG. An example is provided in Ghanbari et al.6

An optimal RG is a gene withminimal biological variation among different samples, which is also highly expressed in all samples. There are

housekeeping genes (e.g., Glyceraldehyde 3-phosphate dehydrogenase GAPDH) that are widely used for this purpose. Several studies, how-

ever, have shown that those so-called housekeeping genes have high variation of expression in specific tissues or diseases.7,8 Moreover, some

studies question the existence of any housekeeping genewith aforementioned conditions.9 This challenge is evenmore apparent in non-cod-

ing RNA studies, particularly when using circulatingmicroRNAs (miRNAs) as cancer biomarkers.10,11 Therefore, usingmultiple and study-spe-

cific RGs is highly recommended in the standard guidelines.4,12

Usingmultiple RGs in a qPCR experiment raises several challenges, including the need to aggregate expression levels of multiple RGs into

a single reference value for normalizing the other genes. This single value can be considered as the expression level of a virtual RG. Addition-

ally, we need to measure the expression stability of a real or virtual RG which is maximized when that RG shows zero expression variation

among different conditions. Although the latter challenge is well studied,5,13,14 there is a paucity of literature about the former one which

is the main focus of this paper.
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The standard deviation (SD) of CT values is one of the main stability measures of an RG. In the case of 2 candidate RGs with equal SD, the

one with a higher expression level is preferable. The reason is genes with low abundance have a higher chance of not being detected due to

technical errors. Accordingly, the coefficient of variation (CV) is another widely usedmeasure for an RG’s stability, which is the SDof expression

divided by mean expression. Both SD and CV are vastly used tomeasure the stability of an RG in the literature, but no theoretical explanation

has been provided.14–16

In this work, we first elucidate the theoretical assumptions behind SD and CV as RG expression stability measures. Next, by intro-

ducing the family of scale-invariant functions, we explain the reason arithmetic and geometric mean functions can be used for the

aggregation of multiple RGs. Then by providing mathematical solutions for the optimization of the weighted version of geometric

and arithmetic mean functions, we present four novel weighted aggregation methods to optimally minimize the SD and CV of a vir-

tual RG (see STAR Methods). Each proposed method is defined by an aggregation function (geometric or arithmetic mean) and a

measure (SD or CV) to be minimized. They are named as geom(sd), geom(cv), arith(sd) and arith(cv) and we call them weighting

methods. The usual unweighted geometric mean is abbrevated as geom throught the paper. To evaluate these methods, we utilized

qPCR array datasets. qPCR array datasets with a high number of genes or other RNA molecules can be normalized without RGs. This

feature enabled us to design a benchmarking pipeline using which we could calculate stability measures of different combinations of

weighted RGs on the normalized data and compare the weighting methods. Finally, we chose the best method (geom(sd)) and

showed the weights of the weighted geometric mean optimized on SD of logarithm of expression can be calculated solely from

the raw CT values without being affected by the gene-independent technical variations. Experimental evaluations show that this

method can also be used in low-sample-size conditions.
Related works

Various RG expression stability methods have been previously proposed, and they are being highly utilized for the selection process of RGs

and their stability assessment.

GeNorm is an iterative method that uses pairwise variation to measure the stability of RGs. In each iteration, the candidate with the worst

stability score is removed. Then, the procedure is repeated until only 2 genes remain. The method’s assumption is that all input genes should

have low expression variation.5

NormFinder is another widely used tool that suggests a mathematical model that separates technical and biological variations

and then eliminates the technical biases to find the RG with the lowest biological variation.13 NormiRazor offers a graphics process-

ing unit (GPU)-based implementation of GeNorm, NormFinder, and BestKeeper to examine the stability of high number of RG com-

binations in parallel.17

To our knowledge there has previously been only one study that has approached the problem of aggregating multiple RGs. This method

uses weighted geometric mean and follows a heuristic approach to define each RG’s weight by the ratio of their SD.18 We have named it

geom(sd_r), and it has been evaluated along with our proposed weighting methods.
Figure 1. Benchmark workflow to evaluate and compare the weighting methods in terms of stability measures utilizing qPCR array datasets

SD: Standard Deviation, CV: Coefficient of Variation

Figures on the left and right side are for the breast cancer and liver cancer, respectively. RGd is the weighted/unweighted mean of a combination of d miRNAs.

(A) Mean stability of all combinations of two miRNAs in different weighting methods (the lower is better).

(B) Boxplots for the stability of all combinations of twomiRNAs in different weightingmethods and the tile figures show pairedWilcoxon test between the stability of

different weighting methods on raw CT values. Colored tiles indicate that the row weighting method had significantly (p < 0.01) lower stability than the column one.
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(C) Sample size analysis: for each sample size, the SD of each combination of two miRNAs is calculated and averaged. This process is repeated 20 times, and the

error bars show the standard deviation of the repeats. The weights were calculated based on raw CT values. A statistical comparison in each sample size is

provided in Figures S9 and S10.

(D) The number of reference genes effect on stability. For each number of reference genes, the SD of different combinations of miRNAs was calculated. SD:

Standard Deviation, Normalized: weights were optimized on the normalized data, raw CT: weights were optimized on the raw CT values, geom: usual

geometric mean. Also for complete figures of all stability measures refer to the Figures S5–S8.

Figure 1. Continued
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RESULTS

Following the benchmark workflow presented in Figure 1, our evaluation of the proposed methods was carried out in three scenarios which

are different based on the data type that the aggregation weights were calculated from.

� Raw CT values of the qPCR array: shows the effect of qPCR technical variations on the performance of weighting methods.
� Normalized qPCR array: exhibits how much the weighting method could lower the biological variation if the data had very small to no

technical variation. The mean CT of all expressed miRNAs (CT < 35) is used as the normalization factors.
� An external biologically compatible RNA-seq dataset: shows if the weights could be calculated from a separate high-throughput dataset.

In all three scenarios the stability measures (SD, CV, GeNorm, and NormFinder) were calculated on the normalized qPCR array, but the

weights of the weighting methods were optimized on the aforementioned data types.

Stability comparison of weighting methods

Here we utilized two qPCR array datasets with different variability levels across samples: a breast cancer tissue dataset and a liver cancer

plasma dataset with median expression SD of 1.6 and 2.77, respectively, among their miRNAs. The SD of the log2 of the normalization

factors was considered as an estimate of the technical variation caused by RNA abundance of the samples which were 0.45 and 0.72 for

the breast and liver cancer datasets, respectively. We calculated the mean stability of all combinations of two miRNAs aggregated by

different wighting methods. As illustrated in Figures 2A and 2B, on both datasets the geom(sd) method outperforms all other methods

in terms of the aggregated stability, specifically when the aggregation weights are calculated based on the raw CT values. The geom(cv)

method is the second-best method on the breast cancer dataset, but it has the worst stability on the liver cancer dataset. By contrast,

the arith(sd) method performs as well as geom(sd) in the liver dataset. The difference between the normalized and raw CT results sug-

gests that geom(cv) and arith(cv) are sensitive to technical variations in raw CT values and thus not suitable for datasets with high tech-

nical variation. All methods tested outperform the usual geometric mean. Tables 1 and 2 show each stability measure separately.

Expectedly, geom(cv) had a lower CV than others, but high numbers on other measures have made its overall stability worse than others

in the liver dataset.
Table 1. Comparison between different weighting methods based on four stability measures on the breast cancer dataset

Base weighting method SD CV GeNorm NormFinder Stability

arith 0.833 G 0.244 0.654 G 0.303 0.593 G 0.082 0.081 G 0.024 4.004 G 4.625

geom 0.765 G 0.19 0.531 G 0.172 0.586 G 0.073 0.075 G 0.018 2.518 G 3.412

geom(rand) 0.826 G 0.243 0.588 G 0.247 0.595 G 0.073 0.08 G 0.024 3.579 G 4.323

Raw CT arith(cv) 0.724 G 0.173 0.504 G 0.153 0.574 G 0.091 0.07 G 0.017 1.787 G 3.288

Raw CT geom(cv) 0.723 G 0.174 0.48 G 0.127 0.568 G 0.097 0.07 G 0.017 1.57 G 3.236

Raw CT arith(sd) 0.712 G 0.163 0.52 G 0.172 0.575 G 0.087 0.069 G 0.016 1.755 G 3.231

Raw CT geom(sd_r) 0.726 G 0.165 0.5 G 0.144 0.578 G 0.078 0.071 G 0.016 1.836 G 3.065

Raw CT geom(sd) 0.703 G 0.158 0.487 G 0.137 0.567 G 0.092 0.068 G 0.015 1.396 G 3.076

Normalized arith(cv) 0.715 G 0.172 0.495 G 0.149 0.571 G 0.092 0.07 G 0.017 1.607 G 3.282

Normalized geom(cv) 0.711 G 0.172 0.473 G 0.125 0.564 G 0.098 0.069 G 0.017 1.371 G 3.227

Normalized arith(sd) 0.708 G 0.164 0.514 G 0.167 0.572 G 0.089 0.069 G 0.016 1.648 G 3.248

Normalized geom(sd_r) 0.717 G 0.164 0.494 G 0.142 0.572 G 0.084 0.07 G 0.016 1.637 G 3.114

Normalized geom(sd) 0.699 G 0.158 0.483 G 0.137 0.564 G 0.095 0.068 G 0.015 1.293 G 3.12

At each column, theminimumnumber is specified in a bold style and the secondminimum is underlined (the rowswith Base:Normalized are not considered in this

styling). The Base column determines what type of data the weights are optimized on. Arith: arithmetic mean, geom: geometricmean. (sd): weights are optimized

to minimize the standard deviation of ct or normalized ct data,(cv): weights are optimized to minimize coefficient of variation of 2ð� ctÞ or 2ð� normalized ctÞ, (rand):
weights are randomly sampled from a uniform distribution.
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Table 2. Comparison between different weighting methods based on four stability measures on the liver cancer dataset

Base weighting method SD CV GeNorm NormFinder Stability

arith 1.909 G 0.769 1.272 G 0.531 1.22 G 0.28 0.427 G 0.174 4.036 G 3.926

geom 1.707 G 0.608 1.041 G 0.397 1.201 G 0.255 0.38 G 0.137 2.805 G 3.162

geom(rand) 1.841 G 0.728 1.105 G 0.456 1.225 G 0.25 0.409 G 0.164 3.43 G 3.589

Raw CT arith(cv) 1.525 G 0.638 0.891 G 0.331 1.137 G 0.287 0.34 G 0.143 1.691 G 3.3

Raw CT geom(cv) 1.72 G 0.82 0.888 G 0.325 1.186 G 0.269 0.382 G 0.182 2.416 G 3.673

Raw CT arith(sd) 1.431 G 0.563 0.992 G 0.435 1.073 G 0.335 0.318 G 0.126 1.435 G 3.352

Raw CT geom(sd_r) 1.514 G 0.586 0.955 G 0.384 1.12 G 0.307 0.337 G 0.132 1.748 G 3.273

Raw CT geom(sd+) 1.428 G 0.549 0.937 G 0.384 1.088 G 0.323 0.317 G 0.123 1.337 G 3.18

Normalized arith(cv) 1.466 G 0.619 0.837 G 0.326 1.102 G 0.312 0.327 G 0.139 1.268 G 3.323

Normalized geom(cv) 1.603 G 0.765 0.827 G 0.319 1.151 G 0.282 0.357 G 0.171 1.803 G 3.571

Normalized arith(sd) 1.398 G 0.566 0.943 G 0.41 1.061 G 0.339 0.311 G 0.127 1.18 G 3.36

Normalized geom(sd_r) 1.492 G 0.591 0.948 G 0.387 1.11 G 0.313 0.332 G 0.133 1.634 G 3.324

Normalized geom(sd+) 1.404 G 0.554 0.92 G 0.386 1.085 G 0.319 0.312 G 0.125 1.218 G 3.22

At each column, theminimum number is specified in a bold style and the secondminimum is underlined (the rows with Base:normalized are not considered in this

styling). The Base column determines what type of data the weights are optimized on. Arith: arithmetic mean, geom: geometricmean. (sd): weights are optimized

to minimize the standard deviation of ct or normalized ct data,(cv): weights are optimized to minimize coefficient of variation of 2ð� ctÞ or 2ð� normalized ctÞ, (rand):
weights are randomly sampled from a uniform distribution.
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Sample size analysis

We analyzed the effect of sample size on the performance of the weighting methods. Each sub-sampling is repeated 20 times, and the mean

SD of all RG2 combinations is presented in Figure 2C. The weights were calculated from the raw CT values, and confidence intervals are pro-

vided. As expected, increasing the sample size improves all methods. Specifically geom(sd+), the improved version of geom(sd) for small

sample sizes, shows significantly better results in lower samples sizes, and as the number of samples decreases the improvement gap be-

tween geom(sd+) and geom(sd) increases. On the breast cancer dataset, the only methods which outperformed the usual geometric

mean for the low sample size of 10 were geom(sd+) and geom(sd_r), and as samples increased, although geom(sd+) kept improving,

geom(sd_r) stayed still. On the liver cancer dataset, all methods except geom(cv) performed better than the usual geometric mean indepen-

dent of the sample size.
Number of RGs

Consider RGk is the weighted/unweighted mean of a combination of k RGs. In order to figure out how the number of RGs affects the geom(sd)

method, an iterative approach was used. Starting with k = 2 first, we evaluated all combinations of RG2 in terms of SD. Then at each iteration k,

the top 400 combinations of RGk with the lowest SDwere crossed with the remaining genes to build the combinations of RGk+1. This process was

repeated till the number of RGs reached 20. Figure 2D shows the relation between the number of RGs (k) and themean SD of RGk combinations.

Until k = 6 the geom(sd) weightingmethod outperforms usual geometric mean. However, when the weights are calculated based on the raw CT

values, an over-fitting pattern appears. This result suggests that the geom(sd) weighting method is only applicable to up to five or six RGs.
Weights from external dataset

Here we analyze whether external high-throughput data could be used to calculate the aggregation weights of RGs. The Cancer Genome

Atlas (TCGA) breast cancer miRNA expression dataset was obtained as a biologically compatible external dataset for the qPCR array

breast cancer dataset. Moreover, the qPCR array dataset is evaluated in three different sample sizes, 20, 30, and 106; just like what

we saw in Figure 2, geom(sd+) outperformed other methods (Figure 3). The paired Wilcoxon test reveals that calculating geom(sd+)

weights from the miRNA-seq data had better stability results compared to the raw CT with 20 samples but performed on par with

the 30-sample case (Figure 3C). On the other hand, the arith(sd) and arith(cv) methods were utterly off by a large margin regarding sta-

bility for the miRNA-seq case.
Experimental validation

To demonstrate the utility of the weighting method in a real experiment, we applied it to qPCR data of breast cancer tissue containing ex-

pressions of 3 internal controls (miR-16-5p, miR-361-5p, and RNU48) and one target miRNA (miR-21-5p). Figure 4 illustrates how normalizing

the expression of the well-knownmiRNAmiR-21-5p using a weighted geometricmean of the internal controls yielded a significant differential

expression. In contrast, the usual geometric mean showed no significant change.
4 iScience 26, 107945, October 20, 2023
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Figure 2. Stability comparison of different weighting methods

The estrogen positive samples of the TCGA BRCA are used as the external RNA-seq dataset.

(A) Mean stability of all combinations of two miRNAs in different weighting methods.

(B) Boxplots for the stability of all combinations of two miRNAs in different weighting methods.

(C) Paired Wilcoxon test between stability scores of different weighting methods. Cells with p< 0:01 indicate that the row’s weighting method had significantly

lower stability scores than the column one (lower is better). Raw CT: weights were optimized on the raw CT values of the entire 106 sample breast cancer qPCR

array. n:x means a subset of x samples was taken and an average score of repeating the sub-sampling 20 times was considered. Also for complete figures of all

stability measures refer to the Figures S1–S4.
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DISCUSSION

In this paper the aggregation of multiple RGs is introduced as an optimization problem. This optimization is formulated in four com-

binations of stability measures (SD or CV) as the objective functions and weighted mean (geometric or arithmetic) as aggregation

functions. The geom(sd) method showed significantly better results compared to other methods in both low- and high-variability con-

ditions as well as different numbers of samples. We also mathematically showed that weights of geom(sd) method are independent

of the noise caused by the RNA abundance in different samples, which may justify its superiority over other methods (see STAR

Methods). Furthermore, its closed form and regression-based solution allow fast running time and straightforward implementation in

various platforms. We have also highlighted how a significant upregulation of miR-21-5p could be overlooked in a real-world case if
iScience 26, 107945, October 20, 2023 5
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Figure 3. Comparison between external RNA-seq data and raw CT qPCR data with different sample sizes for weights optimization

ll
OPEN ACCESS

iScience
Article
the non-weighted geometric mean was applied instead. miR-21-5p is a well-known upregulated gene in cancer as it is involved in cell

growth and proliferation.19

Through optimization of stability measures, our proposed aggregation methods provide either a more stable virtual RG or, at worst, an

equal level of stability compared to the single-input RGs. It is also noteworthy that the application of the usual geometric mean could result in

a less stable virtual RG (supplemental information of Andersen et al.13) specifically when there is a positive covariance between the RGs

expression. The geom(sd_r) method which uses the reverse of each RG’s SD as aggregation weights is also subject to this problem due

to not considering the covariance between RGs.18 In Equation 25 we demonstrated that in order to minimize the SD of the aggregated virtual

RG for a combination of two RGs, their covariance must be taken into account.

This study found that, when enough samples are available, raw CT values are preferable to external high-throughput data for optimizing

the aggregation weights of RGs. In our experiment, we used compatible large-sample-size TCGA breast cancer miRNA-seq data, yet a

subset of 30 samples from the qPCR dataset showed better results. This can be a consequence of the distribution shift caused by the

platform difference or batch effect. Considering these findings, in Figure 5 a workflow for the use cases of the InterOpt tool is presented.

There are two main scenarios in which this tool would be useful. The first and most common scenario is when the RGs are preselected, or

the experiment is already done. Then based on the number of samples and availability of high-throughput data with similar biological

conditions, the weights would be either calculated based on the raw CT values or the normalized high-throughput dataset. In the second

scenario this tool can also be used to choose the best weighted combination of RGs from a qPCR experiment of common RGs or a high-

throughput dataset. This use case is more suitable for situations where there is no consensus on the best combination of RGs for a partic-

ular biological condition. It is worth noting that to have a persistent and reliable result while using an external high-throughput dataset, the

similarity of the clinical and pathological characteristics of samples with the qPCR study is highly recommended for choosing the RGs or

calculating the weights of the preselected RGs.
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Figure 4. hsa-miR-21-5p expression normalized with the proposed weight method geom(sd)

and normal geometricmean of three internal controls: U48, hsa-miR-16-5p, and hsa-miR-361-5p

**: t test p value < 0.01.
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Figure 5. Recommended usage of the proposed method
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Due to the effect of gene expression distribution assumption on the RG stability measure, examining other distributions (like beta distri-

bution) and providing better measures are suggested for further improvements. Moreover, we introduced the family of scale-invariant func-

tions as a necessary condition for aggregatingmultiple RGs. This family of functions can also be explored for more stablemembers in this line

of research.
Limitations of the study

A limitation of the proposed method is the number of RGs. As described in the ‘‘Number of RGs’’ section, aggregating more than 5 RGs by

geom(sd) method does not have the expected benefits compared to the regular geometric mean. But it is worth noting that in most cases no

more than 3 RGs are quantified.Moreover, the number of samples for evaluating the hsa-miR-21-5p expression in the experimental validation

phase was low (12 pairs).
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METHOD DETAILS

This section begins with a review of the stability criteria, SD and CV for an optimal RG by modeling the normalization procedure and gene

expression distribution. Next, we show why arithmetic and geometric mean could be used as aggregation functions for multiple RGs. We

propose solutions to optimize the weighted version of those functions based on different stability criteria. We present a benchmarking pipe-

line to evaluate the proposed weighting methods in different biological situations as well as number of samples and at last some implemen-

tation details are explained.

It is worth mentioning that in this study, a gene consists of both coding and none-coding genes, and by gene expression in a qPCR study,

we mean RNA concentration which is affected by both gene transcription and degradation.

The criteria of optimal reference gene

A widely used application of gene expression quantification is differential expression analysis. In which genes expression are compared

among samples using fold change or ratio:

I =
yi;a
yi;b

(Equation 1)

Here yi;a is the expression of gene i in sample a and yi;b is the expression of gene i in sample b. We aim to find the biological variations how-

ever, the CT values of a qPCR experiment also comprise technical variations. One of the primary sources of technical variation is the different

amounts of initial RNA concentration at the start of the qPCR process for each sample. We canmodel this effect as a coefficient for each sam-

ple’s different genes:

I0 =
aayi;a
abyi;b

(Equation 2)

Here aayi;a and abyi;b are the raw measured concentration of gene i in samples a and b accordingly and aa and ab represent the technical

variation as coefficients. In order to remove this technical variation, each gene expression is divided by an RG (yr ) which is also affected by

the technical variation:

aayi;a
abyi;b

=

aayi;a
aayr;a
abyi;b
abyr ;b

=
yi;a
yi;b

yr ;b
yr;a

z
yi;a
yi;b

(Equation 3)

To find the true ratio of the target gene, the ratio of the RG expression in different samples should be close to 1. Z is a continuous random

variable with probability density function fZðz; qÞ representing this ratio. Hence the objective can be defined as maximizing the probability

density of Z in the proximity of 1:

arg max
q

fZ ðz = 1; qÞ h arg max
q

�
lim
e/0

Z 1+e

1� e

fZðz; qÞdz
�

(Equation 4)

q represents the parameters of the probability density function.

Gaussian expression distribution leads to CV as RG stability measure

One of the common distributions to model gene expression is the Gaussian distribution. If we model the expression of an RG r by a Gaussian

distribution with mean m and standard deviation s, the distribution of the ratio of the gene in two different samples would be Equation 6.22

yr;b � Nðm;s2Þ
yr ;a � Nðm; s2Þ = Z (Equation 5)
fZðzÞ = mðz+1Þ:e
� :

m2

s2
ðz � 1Þ2

2ðz2+1Þ

s
ffiffiffiffiffiffi
2p

p � ffiffiffiffiffiffiffiffiffiffi
z2+1

p �3 :

�
F

�
mðz+1Þ
s
ffiffiffiffiffiffiffiffiffiffi
z2+1

p
	

� F

�
� mðz+1Þ

s
ffiffiffiffiffiffiffiffiffiffi
z2+1

p
	


+
1

ðz2+1Þpe
� m2

s2

(Equation 6)

The definition of coefficient of variation of a gene is defined as standard deviation of gene expression divided by the mean expression:

m =

Pn
i = 1

yr ;i

n
; s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1

�
yr;i � m

�2
n

vuut
; CV =

1

d
=
s

m

(Equation 7)
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Where n is the number of samples. According to Equation 4 the goal is tomaximize fz in z = 1. Therefore fz can be rewritten as a function of d:

d =
m

s
; z = 1/fzðz = 1; dÞ = d

2p
ffiffiffi
2

p :
h
F
� ffiffiffiffiffiffi

2k
p �

� F
�
�

ffiffiffiffiffiffi
2k

p �i
+

1

2p
e� d2

=
d

2p
ffiffiffi
2

p
Zd ffiffi2p

0

2e� t2

2 dt +
1

2p
e� d2

(Equation 8)

Now we can show that vfzðz = 1;dÞ
vd is always a positive value:

vfzðz = 1; dÞ
vd

=
1

2
ffiffiffi
2

p
p

Z2k ffiffi2p

0

e� t2

2 dt +
2
ffiffiffi
2

p
d

2
ffiffiffi
2

p
p
e� d2 � 2

2p
de� d2

=
1

2
ffiffiffi
2

p
p

Z2k ffiffi2p

0

e� t2

2 dtR 0

(Equation 9)

Therefore maximization of m
s
is equivalent to maximizing fZðz = 1;m; sÞ or in other words minimizing the coefficient of variation (CV) of the

Gaussian distribution. This implies CV can be used as ameasure of stability, given that the distribution of the RGexpression follows aGaussian

distribution.
Log-normal expression distribution leads to SD as RG stability measure

Another previously suggested distribution tomodel gene expression is log-normal distribution.23 As the expression of a gene is always a pos-

itive number, this distribution has some benefits compared to the Gaussian distribution.

log
�
yr ;a
�
; log

�
yr;b
�
� N �m; s2

�
(Equation 10)
Z 0 = logðZÞ = log
�
yr ;a
�
� log

�
yr ;b
�
/ Z 0 � N �0; 2s2

�
(Equation 11)

Now we can rewrite Equation 4 in terms of Z 0:

arg max
h

Z e

� e

fZ 0 ðz0; hÞdz0 = arg max
s

Z +e

� e

N �0; 2s2
�
= arg min

s

s (Equation 12)

In conclusion, assuming gene expression follows a log-normal distribution, an RGwith lower SD of the logarithm of expression is more stable.
Geometric and arithmetic Mean as aggregation functions

Wemodel gene independent technical variations in the form of scaling operations in each sample. As explained in Equation 3, an RG should

preserve these variations. Therefore the aggregated virtual RG of a set of d RGs should also follow the same rule:

f ðay1;ay2;.;aydÞ = af ðy1; y2;.; ydÞ (Equation 13)

We call the Equation 13 family of functions, scale-invariant functions. Arithmetic and geometric mean are members of this family of func-

tions. Their weighted counterparts are also scale-invariant functions and their weights can be optimized depending on the objective.

weighted geometric mean : RGðjÞ
d =

Yd
i = 1

ywi
i;j

weighted arithmetic mean : RGðjÞ
d =

Pd
i = 1

wi$yi;j

Xd
i = 1

wi = 1

(Equation 14)

Here RG
ðjÞ
d is a weightedmean of a combination ofd RGs in the sample j. yi;j is the expression value of i-th RG (among the d RGs) in the sample j

and wi is the i-th RG weight. Throughout the paper, RGd is also referred as a virtual RG resulted from aggregation of d RGs.
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Optimizing weighted geometric/arithmetic Mean

Weighted geometric and arithmetic mean aggregation functions are parametric and the weights can be optimized based on an objective

function. Taking together all combinations of arithmetic and geometric mean as the aggregation functions and SD and CV as stability mea-

sures we introduce the following weighting methods:

� geom(sd): Aggregation of d RGs using weighted geometric mean, optimized on SD of logarithm of RGd .
� geom(sd+): Improved version of geom(sd) for small sample size datasets
� arith(cv): Aggregation of d RGs using weighted arithmetic mean, optimized on CV of RGd .

� geom(cv): Aggregation of d RGs using weighted geometric mean, optimized on CV of RGd .
� arith(sd): Aggregation of d RGs using weighted arithmetic mean, optimized on SD of logarithm of RGd .

Each of these weightingmethods and their optimization solutions are described in the "weightingmethodsmathematical solutions" section.

Benchmark

In order to evaluate and compare the weighting methods on real data, we acquired qPCR array datasets and designed the benchmark work-

flow depicted in Figure 1. First lowly expressed and genes with none-detects in more than 4 samples are removed. The remaining none-de-

tects were imputed using the nondetects R package.24 Next, depending on the weightingmethod, for any combination of d genes, the Equa-

tion 14 is calculated, and the resulting virtual RG’s stability is measured based on SD, CV, GeNorm and NormFinder. The individual stability

measures are then converted to their corresponding standard z-scores, and their average is taken to obtain the aggregated Stability measure.

The weight optimization of the weighting methods is executed on three different types of data. Raw CT values, normalized CT and a

normalized external high-throughput dataset.

High-throughput and qPCR datasets

Two qPCR array datasets (GEO: GSE78870 andGSO: GSE50013) were obtained from the Gene ExpressionOmnibus (GEO). The GSE78870 20

contained the expression of 768miRNAs in 106 primary breast cancer specimens, andGSE50013 21 contains the expression of 762 (258 detect-

able) miRNAs in the plasma of 20 patients with hepatocellular carcinoma, as well as 20 healthy donors. To normalize the qPCR array datasets,

we have adopted global normalization.25 In this method the mean expression value of all expressed microRNAs (CT > 35) in each given sam-

ple is used as a normalization factor. The Cancer GenomeAtlas (TCGA) is a comprehensive cancer genomics program that includesmolecular

datasets for different types of cancer tissues.26 Using the TCGAbiolinks package,27 the breast cancer miRNA-Seq profile of 1097 tumor sam-

ples were obtained from the TCGA portal . The count matrix was normalized in count per million (CPM).

For the experimental validation, we used the qPCR dataset from our previous study containing 12 pairs of breast cancer and adjacent

normal tissue.6

Implementation

All the proposed weightingmethods were implemented in an easy to use open source R package called InterOpt which is available at https://

github.com/asalimih/InterOpt. geom(sd) and arith(cv) were implemented based on their closed form solutions. The pseudo-inverse in Equa-

tion 35 was performed using the ginv function from the MASS R package.28 For geom(cv) a stabilized version of the Barzilai-Borwein gradient

method was utilized. It requires less computation and greatly speeds up the convergence compared to other gradient methods. Since no

solution for the arith(sd) method was given, an exhaustive search through weights was utilized as an alternative approach.

Running the proposed benchmark for thousands of combinations is not trivial on a single CPU core. Thus we utilized a CUDA accelerated

implementation of stability measures (GeNorm, NormFinder) called NormiRazor.17 The following modifications are applied to the orig-

inal code:

� Integration of aggregation weights and the capability to handle combinations of d > 3 RGs.
� To comply with our normalization method for the qPCR array datasets, NormFinder only uses elements with CT < 35 for calculating

each sample mean.
� In Genorm iterations, each gene is only compared with the top 10 stable genes with least SD. This removes the influence of genes with

high overall variation on Genorm score.14

Weighting methods mathematical solutions

In the following sections the optimization solutions for each weighting method is described in details.

geom(sd) solution 1

This section determines the optimal weighted geometric mean to minimize the SD of the logarithm of the aggregated RG. The geometric

mean is equivalent to the arithmetic mean in the logarithmic space; therefore the optimization problem would be as follows:
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arg min
w1 ;w2 ;.;wd

SD

 
log

 Yd
i = 1

ywi
i;j

!!
; subject to

Pd
i = 1

wi = 1 (Equation 15)

In Equation 15, d is the number of RGs, and yi;j is the expression of the i-th RG in sample j. By applying logarithm, production converts to

summation and Equation 15 can be rewritten as follows:

xi;j = log
�
yi;j
�
0SD

 Xd
i = 1

wixi;j

!
=
Pn
j = 1

  Xd
i = 1

wixi;j

!
� 1

n

 Xn
k = 1

 Xd
i = 1

wixi;k

!!!2

=
Pn
j = 1

  Xd
i = 1

wixi;j

!
�
 Xd

i = 1

wi

Xn
k = 1

�xi;k
n

�!!2

=
Pn
j = 1

 Xd
i = 1

wi

 
xi;j �

Xn
k = 1

�xi;k
n

�!!2

=
Pn
j = 1

 Xd
i = 1

wi~xi;j

!2

(Equation 16)

Here ~x is the mean centered version of x. Equation 16 can be interpreted as the cost function of classic linear regression with MSE cost

function:

arg min
w1 ;w2 ;.;wd

Xn
j = 1

 Xd
i = 1

wi~xi;j

!2

h
Xd
i = 1

wi
~Xi = 0; subject to

Pd
i = 1

wi = 1 (Equation 17)

To get rid of constraints of wi , we can rewrite the Equation 17 as Equation 18:

Xd
i = 1

wi
~Xi =

Pd� 1

i = 1
wi

~Xi +wd
~Xd

=
Pd� 1

i = 1

wi
~Xi +

 
1 �

Xd� 1

i = 1

wi

!
~Xd

=
Pd� 1

i = 1

wið ~Xi � ~XdÞ+ ~Xd
Xd� 1

i = 1

wið ~Xd � ~XiÞ � ~Xd = 0 h
Pd� 1

i = 1

wiGi = ~Xd (Equation 18)

Here ~Xi is the mean centered expression of RGi and Gi = ~Xd � ~Xi. The solution of Equation 18 linear regression comes in closed

form:

W1::ðd� 1Þ =
�
GTG

�� 1
GT ~Xd ; wd = 1 �

Xd� 1

i = 1

wi; G =

2
6666664

~Xd � ~X

~Xd � ~X2

«

~Xd � ~Xd� 1

3
7777775

(Equation 19)

W1::ðd� 1Þ is a 13ðd � 1Þ matrix consisting of the first ðd � 1Þ elements of W.

geom(sd) solution 2

We found a solution to minimize the SD of the weighted geometric mean of multiple RGs. Here, we solve this problem in the context of

random variables. Suppose X1 and X2 are two random variables representing the logarithm of two RGs expression. The variance of the

weighted arithmetic mean of them would be:
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var

�
w1X1+w2X2

w1+w2

	
=

w2
1

ðw1+w2Þ2
varðX1Þ + w2

2

ðw1+w2Þ2
varðX2Þ+ 2

w1$w2

ðw1+w2Þ2
covðX1;X2Þ (Equation 20)

w1 and w2 are the weights of X1 and X2. To find the minimum of this equation, we set the derivative to zero with respect to each of the

weights:

d

�
var

�
w1X1+w2X2

w1+w2

	�
dw1

=
2w1ðw1+w2Þ2 � 2w2

1 ðw1+w2Þ
ðw1+w2Þ4

varðX1Þ+� 2w2
2 ðw1+w2Þ

ðw1+w2Þ4
varðX2Þ+

2
w2ðw1+w2Þ2 � 2w1w2ðw1+w2Þ

ðw1+w2Þ4
covðX1;X2Þ = 0

(Equation 21)
d

�
var

�
w1X1+w2X2

w1+w2

	�
dw1

=
�
2w1ðw1 +w2Þ � 2w2

1

�
varðX1Þ+

�� 2w2
2

�
varðX2Þ+

2ðw2ðw1 +w2Þ � 2w1w2ÞcovðX1;X2Þ = 0

(Equation 22)

After several steps of simplification, we have the Equation 23:8>>>>>>><
>>>>>>>:

d

�
var

�
w1X1+w2X2

w1+w2

	�
dw1

= 0 /w1w2varðX1Þ � w2
2varðX2Þ+

�
w2

2 � w1w2

�
covðX1;X2Þ = 0

d

�
var

�
w1X1+w2X2

w1+w2

	�
dw2

= 0 / � w2
1varðX1Þ+w1w2varðX2Þ+

�
w2

1 � w1w2

�
covðX1;X2Þ = 0
�
w2

1 +w1w2

�
varðX1Þ+

�� w2
2 � w1w2

�
varðX2Þ+

�
w2

2 � w2
1

�
covðX1;X2Þ = 0

w1varðX1Þ � w2varðX2Þ+ ðw2 � w1ÞcovðX1;X2Þ = 0

varðX2Þ � covðX1;X2Þ
varðX1Þ � covðX1;X2Þ =

w1

w2

(Equation 23)

Next if we assume that the sum of w1 and w2 is equal to 1 then the closed-form solution of w1 and w2 would be as follows:

w1 =
varðX2Þ � covðX1;X2Þ

varðX1Þ+varðX2Þ � 2covðX1;X2Þ ; w2 =
varðX1Þ � covðX1;X2Þ

varðX1Þ+varðX2Þ � 2covðX1;X2Þ (Equation 24)

These equations can also be rewritten this way:

p1 = ðvarðX1Þ � covðX1;X2ÞÞ� 1
; p2 = ðvarðX2Þ � covðX1;X2ÞÞ� 1

w1 =
p1

p1+p2
; w2 =

p2

p1+p2

(Equation 25)

The expression valuesobtained fromqPCR (CT values) are subject to technical andbiological variations.Herewemodel the technical variation

as an additive random variable called F. So we replace X1 and X2 with X1 +F and X2 +F in Equation 24. As X1 and X2 are in logarithmic space,

adding F to them is like applying a random coefficient to each of the samples’ true expressions. Now we can simplify the equation as follows:

w1 =
varðX2+FÞ � covðX1+F;X2+FÞ

varðX1+FÞ+varðX2+FÞ � 2covðX1+F;X2+FÞ

=
varðX2Þ+varðFÞ � covðX1;X2Þ � varðFÞ

varðX1Þ+varðFÞ+varðX2Þ+varðFÞ � 2covðX1;X2Þ � 2varðFÞ

=
varðX2Þ � covðX1;X2Þ

varðX1Þ+varðX2Þ � 2covðX1;X2Þ

(Equation 26)
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The same steps could be applied to w2. As you can see, the result is the same as Equation 24. This shows the robustness of geom(sd) and

geom(sd+) method to gene-independent technical variations of qPCR raw CT values.

geom(sd+)

Equation 25 only requires to estimate the variance and covariance of the RGs expression. This enabled us to enhance geom(sd) by utilizing

specialized covariance matrix estimation methods for small sample size datasets. After comparing covariance estimation methods for

different sample sizes (n), we employed a hybrid approach that uses the oracle approximation shrinkage method for n< 15,29 soft threshold-

ing for 15%n< 85, and hard thresholding for nR 85.30 This hybrid method is named geom(sd+) throughout this paper.

arith(cv)

SupposeW is a 13dmatrix of RGs weights and Y is a d3nmatrix containing the expression of d RGs in n samples. Here the goal is tominimize

the CV of the weighted arithmetic mean of the RGs. This optimization problem is demonstrated in Equation 27:

arg min
W

SDðWY Þ
MeanðWY Þ ;

Pd
i = 1

wi = 1 (Equation 27)

Equation 27 can be written as:

arg min
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
k WY � 1

n
WY1nk22

r
1

n
WY1n

;
Pd
i = 1

wi = 1 (Equation 28)

where 1n is a n31matrix of ones. To get rid of the constraint, an unconstrained vector x is introduced and used to construct a column vectorw,

which satisfies the constraint.

w =
x

1Tn x
0 1Tnw =

1Tn x

1Tn x
^1 (Equation 29)

Then for algebraic convenience, some auxiliary variables are defined:

J = 1n1
T
n

C = I � 1

n
J ðCentering MatrixÞ

w = WT ðcolumn vector constructed from xÞ
u = YTw 0du = YTdw

z = Cu 0dz = CYTdw

a = 1Tdx 0da = 1Tddx

b = 1Tnu 0db = 1Tndu = 1TnY
Tdw

w = a� 1x 0dw = a� 1dx � xa� 2da

0dw = a� 1
�
I � w1Td

�
dx

(Equation 30)

Note that CT = C = C2 and b = 1TnY
Tw = wTY1n = WY1n. These properties will be used in several of the steps below. First the vector

appearing in the numerator is simplified using the new variables:

�
WY � 1

n
WY1n1

T
n

	T

=

�
YTw � 1

n
JYTw

	
= Cu = z (Equation 31)

The objective function is called 4, and we start by differentiating its square:
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42 = nb� 2zTz

24 d4 = 2nb� 2zTdz � 2nb� 3zTz db

d4 = n4� 1b� 3zT ðb dz � z dbÞ
= n4� 1b� 3zT

�
b CYT � z1TnY

T
�
dw

= n4� 1a� 1b� 3zT
�
b CYT � z1TnY

T
� �

I � w1Td
�
dx

v4

vx
= n4� 1a� 1b� 3

�
I � 1dw

T
� �

b YC � Y1nz
T
�
z

(Equation 32)

The gradient is set to zero:

�
1dw

T
� �

b YC � Y1nz
T
�
z = I

�
b YC � Y1nz

T
�
z (Equation 33)

Next, z is eliminated in favor of w.�
1dw

T
� �

bYC � Y1nw
TYC

�
CYTw = ðbYC � Y1nw

TYC
�
CYTw�

1dw
T
� �

bI � Y1nw
T
�
YCYTw = ðbI � Y1nw

T
�
YCYTw�

b1dw
T � 1dw

TY1nw
T
�
YCYTw = ðbI � Y1nw

T
�
YCYTw

0 = ðbI � Y1nw
T
�
YCYTw

Y1nw
TsYCYTw = b sYCYTw�ðY1nÞwT

�
sv = bsv
Bv = bv

(Equation 34)

The last line is an eigenvalue equation. Since the matrix B is rank-1, there is only one non-trivial eigenvector, which surprisingly allows for a

closed-form solution to the problem.

v = Y1n ðeigenvector of BÞ�
YCYT

�
w = Y1n

WT = w =
�
YCYT

�+
Y1n +

�
I � �

YCYT
�+
YCYT

�
q

(Equation 35)

Where C is the Centering Matrix
�
I � 1

n1n1
T
n

�
;H+ denotes the pseudo-inverse of H, I is the identity matrix, and q is an arbitrary vector.

geom(cv)

The matrix product form of weighted geometric mean function is expðW lnðY ÞÞ So if Y 0 = lnðYÞ, then the optimization problem can be for-

mualted as:

arg min
W

SD
�
exp ðWY 0Þ�

Mean
�
exp ðWY 0Þ� ; Pd

i = 1

wi = 1 (Equation 36)

The Equation 36 can be written as:

arg min
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
k exp ðWY 0Þ � 1

n
exp ðWY 0Þ1nk22

r
1

n
exp ðWY 0Þ1n

;
Pd
i = 1

wi = 1 (Equation 37)

where 1n is a n31matrix of ones. To get rid of the constraint, an unconstrained vector x is introduced and used to construct a column vectorw,

which satisfies the constraint.

w =
x

1Tn x
0 1Tnw =

1T
n x

1T
n x

^1n (Equation 38)
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Then for algebraic convenience, some auxiliary variables are defined:

j = 1n1
T
n

C = I � 1

n
J ðCentering MatrixÞ

w = WT ðcolumn vector constructed from xÞ
Q = Y 0+1dy

T
+ : Hadamard Product

u = exp
�
Y 0Tw

�
0du = Y 0T+exp

�
Y 0Tw

�
1Tddw = QTdw

z = Cu 0dz = CQTdw

a = 1Tdx 0da = 1Tddx

b = 1Tnu 0db = 1Tndu = 1TnQ
Tdw

w = a� 1x 0dw = a� 1dx � xa� 2da

0dw = a� 1
�
I � w1Td

�
dx

(Equation 39)

Note that CT = C = C2 and b = 1Tn exp ðY 0TwÞ = exp ðwTY 0Þ1n = exp ðWY 0Þ1n. These properties will be used in several of the steps

below. First the vector appearing in the numerator is simplified using the new variables:

�
expðWY 0Þ � 1

n
expðWY 0Þ1n1Tn

	T

=

�
exp

�
Y 0Tw

� � 1

n
J exp

�
Y 0Tw

�	
= Cu = z (Equation 40)

The objective function is called 4, and we start by differentiating its square:

42 = nb� 2zTz

24 d4 = 2nb� 2zTdz � 2nb� 3zTz db

d4 = n4� 1b� 3zT ðb dz � z dbÞ
= n4� 1b� 3zT

�
b CQT � z1TnQ

T
�
dw

= n4� 1a� 1b� 3zT
�
b CQT � z1TnQ

T
� �

I � w1Td
�
dx

v4

vx
= n4� 1a� 1b� 3

�
I � 1dw

T
� �

b QC � Q1nz
T
�
z

(Equation 41)

Contrary to the previous method, there is no closed form solution here. However, the gradient with respect to x where WT = x
1Tn x

can be

obtained.

4ðxÞ =
�
nb� 2zTz

�1=2
(Equation 42)
gðxÞ = n4� 1a� 1b� 3
�
I � 1dw

T
� �

b QC � Q1nz
T
�
z (Equation 43)

Where gðxÞ is the gradient of the objective function with respect to x. To optimize it we used a gradient-descend method called Barzilai-Bor-

wein.31 In Practice, the original Barzilai-Borwein method could diverge from the optimal point. To handle this inconvenience, the step size is

cautiously controlled using the stabilized Barzilai-Borwein method:32

Initialize

x0 = random

First step

g0 = gðx0Þ

x1 = x0 �
�
0:05 4ðx0Þ

gT
0g0

	
g0

k = 1
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Subsequent steps

gk = gðxkÞ

Step size: ak = min

(
ðxk � xk� 1ÞT ðgk � gk� 1Þ
ðgk � gk� 1ÞT ðgk � gk� 1Þ

;
D

k gk k

)
;D>0

xk+1 = xk � akgk

k = k + 1Stop when gkz0.

arith(sd)

Unlike previous methods no mathematical solution was provided for this optimization problem. Thus, based on the constraint that weights

sum to 1, a numerical procedure in which an exhaustive search through weights with a precision of 0.01 was used.
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were executed in the RStudio integrated development environment33 and R language v3.6.1.34 Paired Wilcoxon rank

sum test was carried out for stability comparison between weighting methods with a p.value significance level of 0.01. Covariance estimation

of geom(sd+) method was carried out by the CovTools v0.5.4 package.35 Figures were produced using ggplot2 v3.3.5,36 cowplot v1.0.0,37

ggsci v2.938 and ggsignif v0.6.339 packages.
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