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Abstract

Background: The study of cancer therapy is a key issue in the field of oncology research and the development of
target therapies is one of the main problems currently under investigation. This is particularly relevant in different
types of tumor where traditional chemotherapy approaches often fail, such as lung cancer.

Results: We started from the general definition of robustness introduced by Kitano and applied it to the analysis of
dynamical biochemical networks, proposing a new algorithm based onmoment independent analysis of input/output
uncertainty. The framework utilizes novel computational methods which enable evaluating the model fragility with
respect to quantitative performance measures and parameters such as reaction rate constants and initial conditions.
The algorithm generates a small subset of parameters that can be used to act on complex networks and to obtain the
desired behaviors. We have applied the proposed framework to the EGFR-IGF1R signal transduction network, a crucial
pathway in lung cancer, as an example of Cancer Systems Biology application in drug discovery. Furthermore, we
have tested our framework on a pulse generator network as an example of Synthetic Biology application, thus proving
the suitability of our methodology to the characterization of the input/output synthetic circuits.

Conclusions: The achieved results are of immediate practical application in computational biology, and while we
demonstrate their use in two specific examples, they can in fact be used to study a wider class of biological systems.

Keywords: Robustness analysis, Cancer robustness, Target therapies, Lung cancer, Drug discovery, Cancer systems
biology, EGFR-IGF1R networks

Background
Most diseases, including cancer, involve a large number
and variety of elements that interact via complex networks
and, consequently, display highly nonlinear behavior. Tra-
ditional approaches to the study of biological phenomena
consider single events, such as single mutations, sin-
gle gene or protein alterations, and their corresponding
effects on the biological phenotype. These reductionist
approaches are intrinsically unable to fully capture the
overall complexity of molecular interaction networks. The
key main of systems biology is to take into account all the
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interactions within a given network, as emphasized by the
system notion [1, 2].
The identification of specific molecular targets that play

a central role in cancer cell proliferation and survival has
led to the development of a targeted therapy approach
for the treatment of cancer patients in the clinical setting.
Nevertheless, knocking out one target molecule in a bio-
chemical pathway may not be enough to treat a disease
such as cancer, because tumor cells often find alternative
molecular routes to escape the drug-induced blockage.
This is one reason why current drug design strategies fail
in some cases [3].
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In the last few years, Systems Biology has received
increasing attention as a promising approach toward
personalized medicine and to assist the oncologist
community [4]. Through the Systems Biology approach,
for example, it could be possible to improve our under-
standing of the complex signalling networks involved in
cancer. This methodology would allow for the develop-
ment of smarter therapeutic strategies; e.g., disrupting
simultaneously two or three key intersections crucial for
tumor growth and progression in a biochemical network.
This approach could lead to significant advances in the
treatment of cancer and help in transforming traditional
reductionism-based methods into systems-level ones for
drug discovery [5–8].
The analysis of complete (or, at least, a large portion of)

networks could be a way to understand the robustness
property of cancer [9, 10]. In this study, we focus on can-
cer robustness as a quantitative measurement indicating
the cells ability to maintain their functions against internal
and external perturbations. In the framework of cancer
research, it is relevant to discover how to reduce robust-
ness of cell proliferation attitude; i.e., it is important to
study the fragility of cancer cells and to discover ways to
increase this fragility.
Figure 1 shows the context of interest of this paper. Sig-

nal transduction pathways are complex networks based
on protein interactions that determine the propagation

of extracellular inputs through the cytoplasm driving the
timing of cellular survival, apoptosis and proliferation.
The proliferation activity of normal and tumor cells can

be evaluated by looking at the activation of downstream
proteins; e.g., phosphorylated form of extracellular signal-
regulated kinase (ERK) [11]. To achieve quantitative mea-
sure of the proliferation activity, a suitable proliferation
indicator can be used. For example, the intensity of phos-
phorylated ERK is one such indicator. If we describe the
proliferation activity of a cell population by means of
the probability density for the chosen proliferation indi-
cator, the expected mean value and variance for cancer
cells will be higher than normal cells. The plots at the
bottom of Fig. 1 show an example of probability den-
sity of a proliferation indicator in tumor (red line) and
normal cells (green line), respectively. Additional variabil-
ity in the signaling networks, such as different topologies
and settings, arises depending on cell type (e.g., lung,
breast, colon,..) and their characteristics (normal vs can-
cer cell). The variability on drugs response can be seen as
example [12].
To prove the suitability of our approach in a more gen-

eral context, we investigated both an oncological network
and a synthetic biology example. Synthetic biology aims
to provide a way to synthesize living systems accord-
ing to certain design specifications by means of strate-
gies similar to the ones electrical engineers employ to

Fig. 1 Cancer cell proliferation. Green cells are normal cells and red cells are tumor cells. The proliferation activity of normal and tumor cells can be
measured looking at the activation of a proliferation protein, which is driven by a complex network based on protein interactions. In a population of
cells the proliferation activity can be described by means of probability density for the proliferation protein; e.g., phosphorylated form of the
extracellular signal-regulated kinase (ERK) . The plots at the bottom show an example of probability density of a proliferation indicator in tumor (red
line) and normal cells (green line), respectively
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construct electronic circuits[13]. Among the proposed
applications of synthetic biology, there are medical appli-
cations, such as synthesis of biofuels, biosensing, selective
destruction of cancerous cellular tissue and low-cost pro-
duction of drugs [14]. At the heart of this new field are
synthetic gene networks. Such circuits are frequently con-
structed in Escherichia coli by cutting and combining nat-
ural or engineered coding DNA regions and promoters.
Widely studied examples of such circuits include a toggle
switch [14], an auto-repressed circuit [15], an oscillating
“repressilator” [16], as well as other electronics-inspired
genetic devices, including pulse generators [17], digital
logic gates, filters and communication modules [14].
Biochemical signal transduction networks, both natu-

ral and synthetic, can be modeled with a large spectrum
of mathematical tools; here we focus on Ordinary Dif-
ferential Equations (ODE) that allow us to describe the
time evolution of a set of proteins of interest. Once the
pathway structure is drawn, the corresponding equations
are relatively easy to write down using widely accepted
kinetic laws, such as the law of mass action, theMichaelis-
Menten law or the Hill functions. The generated model
will depend on several parameters, and the corresponding
identification and model selection problems are relevant
issues (see [18, 19] and the references therein).
The alterations giving rise to tumor development can

be described by perturbations on the parameters char-
acterizing the biochemical reactions; i.e., the parameters
characterizing the whole set of ODE [20]. The lack of
parameter identifiability in large-scale network models
hamper translation of the results of modelling studies
into the process of anti-cancer drug development. Hence,
assuming large perturbations on those parameters and
studying the corresponding Global Sensitivity Analysis
(GSA) is a way to analyze the uncertainty of the model
parameters and to generate valid predictions on paramet-
ric sensitivities [21, 22]. In [23] the authors applied GSA to
an ErbB signalling network model with the goal of explor-
ing how multi-parametric network perturbations affect
signal propagation through cancer-related networks.
Other approaches to robustness analysis are those

searching for the shape and volume of the region in the
parameter space in which the system is functioning prop-
erly [24], and for the topology and geometry of such a
region, which turns out to have important consequences
for the robustness [25–27]. The topological properties of
the networks and their relationship with robustness and
fragility in large-scale bio-molecular networks have been
studied [28], showing that networks with a larger number
of positive feedback loops and a smaller number of neg-
ative feedback cycles are likely to be more robust against
disturbances.
A related problem is model validation. In this case, a

robustness index can be seen as a measure of plausibility

in models of biochemical networks [29]. Along this line,
[30] introduces the concept of “glocal” robustness anal-
ysis as a combination of global and local tools used for
model validation and for identifying key causes of high
or low robustness. A possibly related problem, studied in
[31–33], is the core prediction.
The purpose of the present contribution arises from

personalized therapy and is focused on computational
analysis. We use the in silicomodel to generate samples of
the proliferation indicator and some computational elab-
orations to select a small number of nodes in the cancer
cells signaling network that reduces their proliferation
robustness; i.e., that improves the fragility of cancer cell.
It follows that these nodes are candidate drug targets and
our algorithm permits us to discover how these nodes can
be conditioned to obtain the desired behavior.
Figure 2 illustrates the fragility problem: we propose a

methodology to shift the probability density function of
a proliferation signal in cancer cells toward the density
describing the normal cells. The solution proposed here
stems from robustness analysis tools, extending our pre-
vious results in [34]. Several authors have introduced the
visionary idea of applying robustness in drug development
[9, 10, 23, 35], although the application of the general
definition is still a key problem in Systems Biology.
The rest of the paper is organized as follows. In the

“Methods” section we introduce the complete theory
associated with our procedure, namely the robustness
problem, the conditional robustness concept, its use in
the solution of the fragility problem, and the proposed
computational algorithm. In the “Results” we illustrate
the procedure with two examples drawn from molecu-
lar biology. The first example is a circuit from synthetic
biology, the pulse generator circuit and the second one
is a signal transduction network from Cancer Systems
Biology. Finally, in the “Discussion and Conclusions” we
summarize the new procedure, we give some additional
remarks, and we point out how these findings should
be of immediate interest to researchers in computational
biology applied to cancer drug development.

Methods
Problem formulation
In this paper, we start from the general definition of
robustness proposed by Kitano [36]: robustness is a
property that allows a system S to maintain its prop-
erty/capability τ against internal and external perturba-
tions p. Kitano [36] proposes the following measure:

RS
τ ,P :=

∫
P

ψ(p)ζS
τ (p)dp, (1)

where ψ(p) is the probability of parameter vector p, P is
the parameter space and ζS

τ (p) is the evaluation function
of capability τ for the system S . Kitano’s definition is very
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Fig. 2 Problem formulation. The fragility problem in the oncology context is related to the cancer cells signaling network, and the goal is to reduce
the cell proliferation attitude acting in few target molecules. The problem is related to the conditional robustness problem, namely the problem of
shifting the probability density function of a proliferation signal in cancer cells toward the density describing the normal cells

general and can be used in a wide number of applications
and problems.
The evaluation function ζS

τ (·) for the systems S can be
considered as an input-output map relating the parame-
ters p to the function z, z ∈ R, measuring the capability of
interest τ :

ζ : P −→ R, z = ζS
τ (p). (2)

The function ζS
τ (p) is not necessarily known analyti-

cally, and in Systems Biology applications it is often com-
puted in silico through a simulation of the mathematical
model of system S for a given value p of the parameter
vector. In this paper we will assume that the biological sys-
tem S can be modeled by a system of ordinary differential
equations of the form:

S :
{
ẋ = f (x,u, p), x(0) = x0, x ∈ R

n, p ∈ P

z = h(x, p), y ∈ R
m (3)

where the state space vector x denotes the concentration
of some substances relevant to the biological phenom-
ena under consideration; p denotes the vector of system
parameters taking values in the parameter space P, a sub-
set of the positive orthant Rq

>0 of Rq; u denotes the input
vector; i.e., the external stimuli acting on the system; and
z denotes the output response of the system; e.g., the
evaluation function of interest.

Conditional robustness
Conditional robustness: short motivation
In several applications, and in Systems Biology as a spe-
cial case, it is of interest to search for a (possibly small)
subset of the parameter vector having strong influence on

the evaluation function ζS
τ (·), and allowing the system to

exhibit extreme values for it.
For example, in the case of translational oncology and

targeted therapy [6–8], the idea is that one has to carefully
choose a few nodes along the pathway where to act phar-
macologically, with the aim of achieving the best possible
benefit [9, 10, 37]. Also in Synthetic Biology, the fine-
tuning through a few parameters of a synthetic network is
searched for to produce the input/output behaviors char-
acteristic that can be used as the data sheet of biological
circuits [14].
To this purpose, we introduce the notion of conditional

robustness as follows.

Density probabilities on P and Z
We can consider a given vector p in the parameter space
as a realization of a vector random variable P on a mea-
surable space (P,A). We denote by FP(p) the cumulative
distribution function of P, which is a model of the “a pri-
ori” knowledge on P. Let fP(p) denote the corresponding
probability density function.
Similarly, the evaluation function ζS

τ (·) can be inter-
preted as a transformation from the random variable P
to the random variable Z, whose realizations are given by
z = ζS

τ (p). Hence, let FZ(z) and fZ(z) denote the cumu-
lative distribution function and the probability density
function of the model output Z, respectively, that is, the
transformation of the corresponding measures FP(p) and
fP(p) through the mapping ζ .

Partitioning definition domain Z
The system behavior, in addition to the output Z, can also
be characterized bymeans of the abovementioned density
function fZ(z) and by means of the associated probability
of having values of themeasureZwithin a given interval of
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its definition domain. The red curve in Fig. 3 is an example
of probability density function of the model output; i.e.,
the proliferation activity in a population of cancer cells.
To further characterize system behavior, we consider

some subset T(α) of the definition domainDZ of the out-
putZ. For example, in the case of the normal distributions,
examples of subsets T(α) are the lower quartile and the
upper quartile. Here, we will use a subset T(α) defined
according to one of the following conditions:

T = T(α) :=
{
z ≤ a :

∫ a

0
fZ(z)dz = α

}
, (4a)

T = T(α) :=
{
z ≥ a :

∫ ∞

a
fZ(z)dz = α

}
. (4b)

Notice that the above definitions assume that the out-
put function spans the non negative real axes. We will call
the class of subsets of type (4a) the “lower set”, and the
ones given by (4b) the “upper set”, and we will also use
the notation L = L(α) and U = U(α), respectively, to
make it clearer. In Fig. 3 the lower set for the proliferation
indicator is marked with dark red color under the fZ(z)
curve.
More generally, we can define a set T(α, a, b) such that:

T(α, a, b) : =
{
z ∈ DZ : Pr{a < Z < b}

=
∫ b

a
fZ(z)dz < α

}
. (5)

Of course, the three values a, b and α in (5) are not
independent.
A different approach to the partitioning of the output

space DZ is based on population quartile; i.e., by collect-
ing a fixed number of samples, say the 10 % of samples,
with the lower values of the evaluation function. Numeri-
cal experiments with such an approach, not reported here
for brevity, yield results pretty much equal to the ones
achieved with the probability approach proposed in (4).

Conditioning on Pi
Suppose now that we choose to fix the i-th component
of the parameter vector at a given value p̂i. We introduce
the notion of conditional robustness of system S given that
the scalar variable Pi is fixed at p̂i. It will be studied by
means of the conditional probability on the output Z; i.e.,
the probability density function fZ|Pi(z) of Z upon selec-
tion of Pi to a given value p̂i. An example of conditional
density distribution is shown in Fig. 3 with a green line.

Fig. 3 General problem formulation of conditional robustness. The problem addressed in this paper is that of selecting a suitable conditioning set K
(a proper subset of parameter vector and the corresponding values), achieving a conditional probability density function fZ|K (z) having values of the
output function in a given lower set Li
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The problem: qualitative formulation
With the above notation, the problem studied in this
paper is that of selecting a suitable conditioning set K
(a proper subset of parameter vector and the correspond-
ing values), achieving a conditional probability density
function fZ|K (z) properly placed on the support inter-
val shared with the density fZ(z) (Fig. 3). With “properly
placed” we mean, as an example, that the conditional
probability of having values of the output function in a
given (upper or lower) set T has to be much larger than
the probability of the same set in the unconditioned case.
This allows for a moment independent formulation of our
problem (again, see Fig. 3).

The problem name: fragility problem
Taking into account that our main interest originates in
the oncological context, and more precisely in reducing
the cell proliferation attitude, we will call such a problem
the fragility problem.

Solution to the fragility problem
The proposed solution: conditional density fPi|T(pi)
The proposed approach to the solution of the fragility
problem relies on the availability of the probabilities
fPi|T (pi) of each parameter Pi, interpreted as a random
variable, conditioned by the values of the output func-
tion Z belonging to a given subset T of the output space.
Assuming the definitions (4) for such a subset, we use the
density fPi|T (pi) to characterize the portion of the param-
eter space along the direction Pi giving rise to the values
of the output function belonging to such set T.

The proposed solution: selection of set K
In order to select a conditioning set K, the problem is now
to search for the directions in the parameter space giving
a sufficiently sharp separation of the conditional proba-
bilities fPi|L(pi) and fPi|U(pi); i.e., the set K which has a
stronger influence on the system output Z; i.e., on the
evaluation function of interest. The basic idea is to com-
pute for each of the components of the parameter vector
the two conditional densities, fPi|U(pi) and fPi|L(pi). The
separation properties of each parameter on Z are evalu-
ated through an index measuring the intersection of the
corresponding conditional densities.
The components of the parameter vector yielding the

smaller intersection are candidates to participate in the
conditioning set K.

The proposed solution: key steps
Computational algorithm
The entire procedure is visualized in the flowchart in
Fig. 4. The Conditional Robustness Algorithm (CRA) has
four input values to be set (green ellipses in the diagram):
the parameters ranges, the number of samples for the

parameters space sampling, the area under sets (4) and the
number of selected parameters to design K.
The proposed solutions go through the following basic

steps (see Fig. 4):

1. Sampling the parameter space Generate a
sufficiently large set of samples PS of the parameter
vector; i.e., a sufficiently large number of points in
the parameter space P.

2. In silico analysis For each point p ∈ PS, generate a
sample z = ζS

τ (p) of the output function by means of
numerical simulation of model S , thus building up
the set of samples Z := {

z : z = ζS
τ (p), ∀p ∈ PS

}
.

3. Partitioning output sample set Z Compute the
upper and lower sets U = U(α) and L = L(α),
respectively, of set Z , for a given bound α.

4. Estimating conditional densities For each
component pi of parameter ∈ p, estimate the two
conditional densities fPi|U(pi) and fPi|L(pi).

5. Parameter selection For each parameter
component pi ∈ p, compute the moment
independent robustness index (defined in the
following equation in (7) between the densities
fPi|U(pi) and fPi|L(pi), and select the three parameters
having the lowest index values.

6. Conditioning set selection Set K equal to the three
parameters selected above and choose, for each of
them, the value corresponding to the maximum of
the associated conditional density fPi|L(pi) (if one
seeks to reduce the evaluation function).

The proposed solution: step by step discussion
The basic steps outlined above involve a number of ingre-
dients and implications, described in the following.

Sampling the parameter space
In this paper, we assume Latin Hypercube Sampling with
Linearly spaced samples (L2HS). The use of Latin Hyper-
cube Sampling is common in global approaches to the
analysis of complex biochemical networks such as the
ones based on Global Sensitivity Analysis. For a compar-
ison of different sampling approaches, see [21] and the
references therein.
The issue of linear vs logarithmic sampling is not cov-

ered here for the sake of brevity (see [21, 34] for the
reasons behind logarithmic sampling).
As for the number of samples, here it has been chosen by

looking at the variation of the density fZ(z) while increas-
ing the sample number, and stopping once a steady density
has been reached.

In silico analysis
The computation of the evaluation function, of the model
output z, is carried out by means of numerical integration
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Fig. 4 The flowchart of the Conditional Robustness Algorithm (CRA). The CRA has four input values to be set (green ellipses in the diagram) and go
through six steps

of the ODE model S , for each point of the sample set PS,
using tools such as Matlab, Octave or similar ones.

Partitioning the output sample setZ and the parameter
space PS
According to definitions (4), the set of samples Z is par-
titioned and the two subsets L and U are computed for a
given value of design parameter α. Based on these subsets,
the corresponding subsets of PS are aggregated:

PU := {
p ∈ PS : z = ζS

τ (p) ∈ U
}
, (6a)

PL := {
p ∈ PS : z = ζS

τ (p) ∈ L
}
. (6b)

Estimating conditional densities
To estimate the conditional densities fPi|U(pi) and fPi|L(pi),
we use a kernel density approach. Each density is esti-

mated as a superposition of a suitable number of gaussian
densities. The non-parametric nature of the approach is
of special interest here, as well as its multivariate nature
[38–40].
For each component pi of the parameter vector, we pick

up conditioned values from the sets PU and PL (i.e., we
pick up the values giving rise to output values in the two
setsU and L) and use them to estimate the corresponding
conditional densities.
Criteria to evaluate the accuracy of the estimated den-

sity turns out to be important whenever the raw data do
not show a sufficiently large set of values.

Conditioning set selection
For each parameter pi a weight computed as the intersec-
tion between the two densities fPi|U and fPi|L is assigned.
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More precisely, for each parameter we compute aMoment
Independent Robustnesss Indicator (MIRI) μi defined as:

μi :=
∫

|fPi|U − fPi|L|dpi, i = 1, · · · , q. (7)

The MIRI indicator resembles the moment indepen-
dent sensitivity indicator δ proposed by [41]. While the
δ indicator is aimed at studying the shift between an
unconditional case and a “sensitivity” one, here we com-
pare two “conditioned” cases. Also, here the conditioning
events, the lower and upper sets, have fixed probabilities
α, while the δ indicator comprises an expectation over the
conditioning variables.
The MIRI is then used to sort the parameter com-

ponents: the selected ones are those with larger shifts
between the two conditional densities, those with higher
MIRI values. The conditioning values associated with
those selected parameters are the values corresponding
to the mode (the maximum of the associate conditional
density).

Results
To verify the performance of the proposed conditional
robustness approach, we applied it in two biologically rele-
vant cases. The first example is taken from the field of Syn-
thetic Biology: the incoherent feedforward network called
“pulse generator network” [17].We used this simple exam-
ple to prove the general application of our approach and
also to work with a tractable dimension of the parameter
space.
The second example is an application from Cancer

Systems Biology [3]: we investigate the robustness of the
EGFR IGF1R pathway in lung cancer [20]. This model is
directly related to the inspiration of the methodology we
proposed in this paper.

Pulse generator network
The pulse generator network is an artificial network used
in Synthetic Biology to achieve coordinated behavior in
cell communities. The model we use here is derived
according to the simplified structure proposed in [42],
based on an incoherent feedforward loop network. The
system, shown in Fig. 5a, includes an inducing input sig-
nal (S1) activating both the transcription of a reporter
gene from a multi-input promoter (P12) as well as the

expression, through the promoter P1, of a repressor (R2)
of the P12 promoter ([43], pag. 279). The corresponding
simplified model is a three node incoherent feedforward
network where the input signal S1 activates R2 and the
output Y and the repressor R2 deactivates the promoter
P12 and its product Y ([42, 43], pag. 279) (see Fig. 5b).
A mathematical model for the topology in Fig. 5b can

be obtained using a Hill function for the activation and
the repression function [42]. The corresponding ODEs are
given by:

Ṙ2 = k1
(S1/K1)n1

1 + (S1/K1)n1
− λ2R2 (8a)

Ẏ = k12
1 + (R2/K2)n2

(S1/K1)n1

1 + (S1/K1)n1
− λY (8b)

where k1 = 5 nM/min, k12 = 20 nM/min, λ2 = 0.01
nM/min, λ = 0.04 nM/min, K1 = 1 nM, K2 = 100 nM,
and n1 = n2 = 3 (see [43]).
Figure 6a shows the time behavior of the network out-

put Y when we apply an inducing rectangular input signal
with amplitude equal to S1 = 470 nM and duration of 50
min [42]. The model simulation, assuming the wild type
values (i.e., nominal) for the parameters, gives an output
pulse signal Y with the property that the intensity of the
pulse, as well as the maximum value and the duration,
are not maximized. In Synthetic Biology, the interest is on
the possibility to engineer variants of the pulse-generator
circuit output exhibiting different quantitative responses
such as increased duration and increased intensity of
the pulse.
We applied our approach taking three different evalua-

tion functions for the output function Y : the area under
the curve, the maximum value and the time of occurrence
of the maximum.
We set up in silico simulations for the model (8) to gen-

erate the measure of the area under the curve of signal
Y as described in the “Methods” section: we selected the
parameter space P by using as the lower bounds

1
10

and
as the upper ones 10 times the nominal value in R

6
>0. We

fixed the number of sample to N = 10000 and we gener-
ated 100 realizations of the subset PS,i, i = 1, . . . , 100, of
the parameters space with L2HS. The kernel distribution
estimates for the 100 realizations of the three evaluation
functions are shown in Fig. 6b, 6c and 6d, respectively.

Fig. 5 Pulse generator network. a Architecture of the pulse-generating network. b Equivalent three nodes feedforward network
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Fig. 6 Pulse generator network simulation. a Time response of pulse generator network to an input signal with intensity S1 = 470 nM and duration
50 min (k1 = 5 nM/min, k12 = 20 nM/min, λ2 = 0.01 nM/min, λ = 0.04 nM/min, K1 = 1 nM, K2 = 100 nM, and n1 = n2 = 3). b 100 realizations of
the pdf of the Y area; c 100 realizations of the pdf of the Y maximum. d 100 realizations of the pdf of the time to maximum of Y

For the area of the Y signal we applied the proposed
algorithm with the goal of selecting the parameters that
are most significant to maximize such an indicator.
According to the procedure we fixed the α parameter for
the sets L and U, as in (4), to α = 0.1. Then, the kernel
distributions were estimated. Additional file 1: Figure S1
shows the upper set distributions fPi|U(pi) (red line) and
the lower distributions fPi|L(pi) (blue line) for the whole
parameter set, i.e., k1, K1, k12, K2, λ2 and λ, for a single
realization of PS.
MIRI was evaluated for each parameter (Fig. 7a) and

the most significant parameters turn out to be λ, k12 and
K2, as can be inferred, for a single realization of PS, from

Additional file 1: Figure S1F, Additional file 1: Figure S1C
and Additional file 1: Figure S1D, respectively. MIRI for
the six model parameters was evaluated for the 100 real-
izations and the result is presented in the box plot in
Fig. 7b, confirming λ, k12 and K2 as the parameters most
relevant for the pulse area control.
Since we are interested in maximizing the pulse area,

we used the parameter densities conditioned on the upper
sets, and chose as conditioning values the corresponding
modes. Additional file 2: Figure S2 shows the λ, k12 and K2
lower and upper sets probability density for all the realiza-
tions and it confirms the low variability of the probability
density shapes over the parameter space sampling.

Fig. 7Moment Independent Robustness Indicator (MIRI) for the Y signal area. a Single realization. b Box plot for 100 realizations



Bianconi et al. BMC Systems Biology  (2015) 9:70 Page 10 of 18

Conditional robustness was performed setting each
parameter to the values chosen according to the proce-
dure above. Figure 8a shows the conditional probability
density estimates setting k12, K2 and λ parameters as
shown in Table 1. Also fZ|k12,K2,λ(z) is compared with the
unconditional probability density for the evaluation func-
tion. The parameter λ plays the major role in maximizing
the pulse area and the use of the three parameters selected
allows us to obtain the expected behavior. Figure 8b
presents an example of simulation where the parameters
k12, K2 and λ are fixed and the other parameters are ran-
domly selected: the network generates a version of the Y
signal with increased area.
To further test our approach, we performed the robust-

ness analysis using as evaluation function the max-
imum value reached by the signal Y. As shown in
Additional file 3: Figure S3, MIRI values for a single
realization of the parameters L2HS sampling (Additional
file 3: Figure S3A) and MIRI box plot for 100 real-
ization (Additional file 3: Figure S3B) suggested that
two parameters are relevant for this evaluation function:
k12 and λ.
We fixed k12 as in Table 1; i.e., the value giving rise

to the maximum of the densities conditioned over the
upper set and then we performed conditional robustness
analysis. The simulation results are shown in Additional
file 4: Figure S4A: the blue curve is the conditional density
fZ|k12(z): its first moment is higher than the unconditioned
distribution fZ(z); the yellow curve is the conditional den-
sity function, fZ|λ(z) (see Table 1) and the distribution
spread at higher values of the evaluation function; the red
line is the fZ|k12,λ(z) and the most probable output value is
the one corresponding to the densitymaximum. An exam-
ple of the conditioned behavior is showed in Additional
file 4: Figure S4B.
For the third evaluation function, the time to maximum

of the signal Y, in silico simulations were performed and
MIRI for single realization of the parameter space and 100

realizations are shown in Additional file 5: Figure S5. The
key parameters are k1, K2 and λ.
The parameter values to be used for the conditioning

operation are in Table 1 from the lower set parameters
distributions. In this case, we are interested in minimiz-
ing the time to maximum of the signal Y ; the results for
the analysis are presented in Additional file 6: Figure S6A.
The simulation example with the selected values of k1, K2
and λ confirmed the ability of the proposed procedure to
give a ready response of the signal Y, that upon condition-
ing reaches the maximum in 1.5 min (Additional file 6:
Figure S6B).
Finally, we performed conditional robustness analysis

with the goal of obtaining a fast amplified pulse gener-
ation; therefore, we minimized the time to maximum of
Y and maximized both the area and the intensity of Y.
For each of the above indexes we chose the parameter
with the higher MIRI according to the previous analysis
(see Fig. 7b, Additional file 3: Figure S3B and Additional
file 5: Figure S5B). K2 minimizes the time to maximum of
Y and k12 and λ maximizes the area and the intensity of
the pulse Y, respectively. The modes are presented in the
forth row of Table 1. Figure 9 shows the results of in sil-
ico experiment through conditional probability densities
for the time to maximum of Y (Fig. 9a), the intensity of Y
(Fig. 9b) and the area of Y (Fig. 9c). An example of time
behavior of the model states with the selected values for
the k12, K2 and λ parameters is shown (see Fig. 9d).

EGF-IGF network in lung cancer
The proposed algorithm has been applied to the EGFR-
IGF1R network, which is our keymotivating example [44].
This network is important in cancer pathogenesis and
progression, mostly in the development of Non Small Cell
Lung Cancer (NSCLC). Although this signaling pathway
is a therapeutic target, recent clinical trials have exhib-
ited limited effects [45]. These complex networks include
interactions between epidermal growth factor receptor

Fig. 8 Conditional robustness for Y area (N = 10000). a Probability density function. b Simulation examples conditioning parameters as shown in
first row of Table 1
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Table 1 Parameters setting for the pulse generator and EGFR-IGF1R in silico experiments

Experiment Parameters setting

Y area k12 = 174.1101, K2 = 789.4512, λ = 0.0163

Y maximum k12 = 177.8501, λ = 0.0204

Y time to maximum k1 = 43.4827, K2 = 40.0512, λ = 0.3360

Multiobjective of Y k12 = 177.8501, K2 = 40.0512, λ = 0.0163

ERK∗ activity p23 = 73.9765, p24 = 3.9577 × 106, p35 = 23.5795, p36 = 6.0595 × 105, p27 = 1.0195

(EGFR), insulin-like growth factor 1 receptor (IGF1R)
along with their downstream effectors of the Mitogen-
activated protein kinases (MAPK) cascade and the phos-
pholipids inositol kinases axis (PIK3). One of the main
downstream effectors of this network is ERK, a kinase able
to phosphorylate both cytosolic and nuclear substrates,
including several transcription factors (see pathway in
Fig. 10a and [20]).
The biochemical network is sketched in Fig. 10b. The

activation of the EGFR and IGF1R (x1 and x2, respectively)
induced by the ligands binding triggers a cascade of com-
plex proteins interactions that leads to the activation of
the ERK protein (x7). There is biological evidence that
the time behavior of ERK concentration in its active form
is strictly related to the proliferation attitude of the cell
[11]. The complete model can be found in [20] and
[46]. For this system the identification problem has been
studied in [47].
Here, we rewrite the model in [20] considering the con-

servation law and assuming (as is common in this field)
that the total amount of each protein and receptor is con-
stant and equal to xTi , i = 1, · · · , 10, as presented in [48].

The complete system has 10 state variables, 3 input sig-
nals and a parameter vector comprising 39 entries. The
output function z of interest, the evaluation function,
is the area under the ERK∗ curve over the whole time
span studied (30 min). This evaluation function is selected
because ERK∗ can be measured with several experimen-
tal methodologies such a quantitative immunoblotting,
immunofluorescence, in live-cell by means of fluores-
cence microscopy and mass spectrometry [49] and in
patient samples with immunohistochemistry [50]. In [11]
the measure of ERK concentration is used to infer the
silencing of its activity in tumor cells.

ẋ1 = −p1 x1
ẋ2 = −p2 x2

ẋ3 = p6x1
xT3 − x3

p7 + xT3 − x3
+ p14x2

xT3 − x3
p15 + xT3 − x3

−p12x13
x3

p13 + x3
ẋ4 = p8x3

xT4 − x4
p9 + xT4 − x4

− p33u3
x4

p34 + x4

Fig. 9Multiobjective conditional robustness for area, time to maximum and amplification of Y (N = 10000 and parameters values are shown in the
forth row of Table 1). a Pdf for time to maximum of Y. b Pdf for area of Y. c Pdf for Intensity of Y. d Simulations example with fixed k12, K2 and λ
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Fig. 10 The EGFR-IGF1R pathways in NSCLC. a Pathways graph as presented in [46]. b State variables representation of the EGFR-IGF1R pathways

ẋ5 = p27x4
xT5 − x5

p28 + xT5 − x5
− p37u1

x7
p38 + x7

−p31x10
x5

p32 + x5
ẋ6 = p29x5

xT6 − x6
p30 + xT6 − x6

− p35u2
x6

p36 + x6

ẋ7 = p10x6
xT7 − x7

p11 + xT7 − x7
− p23u2

x7
p24 + x7

ẋ8 = p4x7
xT8 − x8

p5 + xT8 − x8
− p39x8

ẋ9 = p25x4
xT9 − x9

p26 + xT9 − x9
+ p16x2

xT9 − x9
p17 + xT9 − x9

+p18x1
xT9 − x9

p19 + xT9 − x9
− p3x9

ẋ10 = +p20x9
xT10 − x10

p21 + xT10 − x10
− p22x10

(9)

Following an approach widely used in literature, we
assume that each element pi of the parameter vector p,
p ∈ R

39, can assume values in a range defined by two
multiplicative bounds w.r.t. a nominal (wild-type) value
pwt,i: a lower bound b�,i = c�,ipwt,i and an upper bound
bu,i = cu,ipwt,i, where the coefficients c�,i and cu,i are the
multiplicative perturbations, c�,i < 1, ∀i and cu,i < 1, ∀i.

Hence, the parameter space P is given by the cartesian
product P = ∏39

i=1[ c�,ipwt,i, cu,ipwt,i].
The key parameters characterizing the ODE model of a

biochemical network are activation rates and Michaelis-
Menten constants. In Table Additional file 7: Table S1, the
Michaelis-Menten constants are all those whose names
start with KM. While sampling the parameter space,
we will consider the whole parameter vector with 39
entries, since the relationship between activation rates and
Michaelis-Menten constants allows us to check the con-
sistency of the analysis. We also assume that the total
mean values of the number of molecules in the cell does
not change significantly in NSCLC when compared to
normal cells (Additional file 8: Table S2 Table).
We apply conditional robustness analysis for the model

in (9) generating in silicomeasures of the active ERK. The
parameter space P was sampled with the L2HS method,
the number of samples and the number of realizations of
the parameter space sampling were fixed to N = 10000
and 100, respectively. Figure 11a shows a realization of
MIRI for the EGF-IGFmodel. The highestMIRI values are
achieved by p23, p24, p35 and p36: they represent the activa-
tion rates and the Michealis-Menten constants of protein
phosphatase 2A (PP2A) with ERK andMAPK/ERK kinase
(MEK), respectively. The activation rate of Ras and Raf
interaction (p27) also has relevant MIRI. The MIRI box
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Fig. 11Moment Independent Robustness Indicator (MIRI) for ERK activity in EGFR-IGF1R model. a Single realization. b Box plot for 100 realizations

plot for 100 realizations confirmed the MIRI ordering for
the 39 parameters (Fig. 11b).
The estimated kernel density for the values of the area

under ERK∗ signal is shown in Fig. 12a: it has a mean, a
variance and amode presented in Table 2.We evaluate the
conditional robustness for the single value p23, p24, p35,
p36 and p27 obtained fixing the lower L and upper U set
with a parameter α = 0.1, and setting them to the highest
density values for the corresponding densities conditioned

on set L, (see last line in Table 1). We evaluate conditional
robustness fixing only the activation rates p23, p35 and p27
and also fixing all 5 parameters selected. Figure 12b shows
the conditional densities for fZ|p23(z), fZ|p35(z), fZ|p27(z),
fZ|p24(z), fZ|p36(z), fZ|p23,p35,p27(z) and fZ|p23,p24,p35,p36p27(z)
and Table 2 presents the statistical descriptors for the con-
ditional densities. The lowest mean, variance are obtained
conditioning all the selected parameters. Figure 12c shows
a comparison between the wild type simulation of ERK
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Fig. 12 a Unconditional distribution of evaluation function ERK∗ . b Conditional robustness for ERK activity (N = 10000). c ERK∗ time simulation: wild
type (black line) vs simulation at conditioned value as in Table 1

activity (black line) and the conditioned simulation with
parameters with fixed value as in Table 1 (red line). The
ERK∗ activity is strongly reduced as showed in Table 2.
It is known from biochemical and clinical literature that

the concentration of the receptors EGFR and IGF1R has a
major role in the proliferation attitude (see, among others,
[20, 44] and the references therein). To exploit this char-
acteristic, we also investigated perturbation on the initial
value of x01 = EGFR and x02 = IGF1R. We use a receptor
space X1,2, obtained in a manner similar to P, i.e., X1,2 :=[
c�,1x0wt,1, cu,1xwt,110

] × [
c�,2x0wt,2, cu,2x0wt,2

]
, where the c’s

coefficients are the perturbations and x0wt,i, i = 1, 2, are the
wild-type initial conditions. Figure 13a shows the uncon-
ditioned measure distribution with perturbed EGFR and
IGF1R (red line) that shows higher mean and variance
than is the case with fixed initial conditions (see Table 2).
The MIRI box plot in Fig. 13b, generated with our algo-
rithm by perturbing both the 39 parameters and the x01
and x02 initial conditions, confirmed the same condition-
ing set obtained in the previous analysis. Conditioning
the p23, p24, p35, p36 and p27 parameters we are still
able to reduce the mean and variance (see Table 2 and
Fig. 13c)).

Discussion and Conclusions
We have presented a novel approach to study the robust-
ness of complex biological networks and discover their
fragility. We have used this approach as a base to design
a new algorithm aimed at selecting a few of the system
parameters that would allow us to achieve desired condi-
tional robustness properties. The approach is based on the
combination of robustness analysis, moment independent
robustness indicator, and estimated kernel conditional
densities. The approach takes its motivation from Cancer
Systems Biology and the associated problem of drug ther-
apy strategies, namely the selection of crucial proteins that
need to be inhibited with the administration of therapeu-
tic compounds with the goal to block cancer proliferation
and progression [3]. Nevertheless, the proposed algorithm
is general in nature and its suitability for a larger class of
problems has been shown by means of a case study from
Synthetic Biology.
Our algorithm is similar to Global Sensitivity Analysis

(GSA) approaches as far as the sampling of the param-
eter space is concerned, while it is different from the
point of view of the goals of analysis. Both GSA and our
Conditional Robustness Algorithm (CRA) have to deal with

Table 2 Proliferation output pdf measures

Pdf Mean Variance Mode

fZ(z) 2.6 × 108 1.5805 × 1017 2.1 × 107

fZ|p23 (z) 1.5824 × 108 7.6840 × 1016 1.0 × 107

fZ|p35 (z) 1.6075 × 108 7.0478 × 1016 9.6 × 106

fZ|p27 (z) 1.6380 × 108 9.5956 × 1016 7.2 × 106

fZ|p24 (z) 1.3436 × 108 6.6212 × 1016 7.085 × 106

fZ|p36 (z) 1.4505 × 108 7.0479 × 1016 7.41 × 106

fZ|p23,p35,p27 (z) 4.2358 × 107 8.0128 × 1015 2.528 × 106

fZ|p23,p24,p35,p36,p27 (z) 8.2938 × 106 5.3817 × 1014 5.131 × 105

fZ(z) @ x01 and x02 perturbed 3.2996 × 108 2.0223 × 1017 2.451 × 107

fZ|p23,p24,p35,p36p27 (z) @ x01 and x02 perturbed 1.3099 × 107 1.4868e × 1015 2.528 × 106
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Fig. 13 a Unconditional ERK∗ activity at EGFR and IGF1R initial condition wild type and at perturbed EGFR and IGF1R. bMIRI of the parameters for
100 realizations. c Effect of conditioning of p23, p24, p35, p36 and p27

the sampling of a large parameter space. Key approaches
to this issue are Sobol Low Discrepancy Sequence, Monte
Carlo techniques, Latin Hypercube and variants of all of
the above. Here, we use Latin Hypercube sampling; addi-
tional results (data not shown) show that Sobol techniques
yield similar results. Sampling techniques are discussed
in [21, 23, 34] and the references therein. Uniform/linear
vs logarithmic distribution is another relevant issue when
sampling of large spaces has to be performed. The “priori”
knowledge on parameter variability is related to to this
issue. See [21, 34] for a more detailed discussion. In this
paper, we focus on Latin Hypercube Sampling with Lin-
early spaced samples (L2HS) since our focus is on the key
properties of the proposed algorithm.
As for the main goal of our approach, we are seeking a

strategy to identify regions of the parameter space yield-
ing desired system behavior. On the contrary, most of
the GSA results are finalized to investigate the sensitiv-
ity of key performance indices with respect to variation
on system parameters, usually in the classical form of
derivative of the index with respect to parameters. Hence,
GSA methods are quite useful as analysis tools and they
provide “results that could potentially help in the opti-
mization of the system” [27]. Similarly, they do not yield
specific design criteria to enforce given system capabil-
ities, as with this problem we are investigating on the
problem we are investigating. Here our main interest is
on the selection of some parameters and their values to
achieve a desired behavior, and not on the deduction of
the parameters having the largest influence on a given
performance function.
We have shown how the CRA tool can be used both in

Cancer Systems Biology and in Synthetic Biology through
two examples, the EGFR-IGF1R network in non small
cell lung cancer and a reduced model of pulse generator
network.
The development of computational tools to study can-

cer disease is an emergent field in Cancer Systems
Biology. The general formulation of robustness proposed
in [36] and its extensions to drug development in cancer

research [9] were explored in our paper by introducing the
idea of conditional robustness.
Our approach assumes the knowledge of a mathemat-

ical model of the biological system and the associated
parameter space. In addition, a proper evaluation func-
tion whose behavior over the whole parameter space can
be described by means of an associated density function
must be defined. The problemwe are interested in, namely
the Conditional Robustness Problem, is that of shifting
such a density to a desired region in order to achieve the
suitable global behavior.
The mathematical model used here is based on ordinary

differential equations; nevertheless, several others types of
mathematical tools, e.g. stochastic models, boolean mod-
els and many other, can be used as well with minor mod-
ification. The dependence of the Conditional Robustness
Algorithm on the specific modeling approach is confined
to the two blocks in dark blu in Fig. 4. More specifi-
cally, the key condition is the availability of a computable
relationship between system parameters and evaluation
function. Notice that both numerical and analytical maps
can be used. From amathematical point of view, any mod-
eling approach allowing to compute the input-output map
in (2) can be directly cast in our general framework. As an
example, the Booleanmodel in [51] has been implemented
by the authors through a proper simulation model, which
depends on a number of rules, initial states and other
parameters. Each execution of the block “in silico genera-
tion of ζ ” in our CRA, for a given parameter configuration,
turns out to be a corresponding simulation of the above
boolean model.
In silico experiments are used to generate the density

function describing the property of interest as well as to
estimate the effect on such density of the parameter con-
ditioning, measuring the amount of overlapping between
the parameters conditioned density functions. From a
technical point of view, the distance between the param-
eter densities is a separation measurement in the sense
of [52], and it is evaluated trough the Moment Indepen-
dent Robustness Index (MIRI) which is inspired to the
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measure introduced in [41]. Borgonovo et al. illustrated
that variance is not always sufficient enough to describe
uncertainty and pointed out that a sensitivity measure
should refer to the entire output distribution instead of a
particular moment. Therefore we introduce in our algo-
rithm the MIRI. A higher value of the MIRI indicates
a greater separation between the densities and a greater
capacity of the parameter to discriminate between differ-
ent behaviors of the evaluation function. The parameters
with largest MIRI are selected as the conditioning ones,
and their values are fixed to the modes of the conditional
densities, allowing to achieve the desired system behavior.
The analysis of the EGFR-IGF1R model in non small

cell lung cancer is an example of nontrivial biochemical
network in cancer application. The output of the EGFR-
IGF1R network is the active form of the ERK protein,
which is related to the cancer proliferation.We considered
the area under the active ERK curve as a measure of pro-
liferation, and our goal is to reduce this network output
almost to zero, namely to silence the proliferation activity.
In [11] the authors concluded that cell proliferation is

effectively silenced only when active ERK protein level
falls below a lower threshold. Their findings provide ratio-
nale for combined inhibition of multiple nodes in the ERK
pathway, since acting on a single node turns out not to
be enough to constrain ERK signal below the threshold
required for a proper proliferation level. A multiple node
action is the objective of the computational algorithm we
are proposing, whose goal is finding to how to silence
ERK protein with a conditioning action onmultiple model
parameters.
The CRA results suggest three points in the network

that could be potentials targets for the inhibition of can-
cer cell proliferation: the activation rate of RAF/Ras in
the MAPK cascade, and the activation rate and Michaelis
Menten constants of PP2A both with MEK and ERK. In
silico experiments show that ERK silencing is more effec-
tive whenever all the three nodes are conditioned (by
fixing the corresponding five parameters, see Table 1), i.e.,
they are candidate that could be targeted.
The therapeutic strategies recently proposed, primar-

ily pertaining to co-targeting EGFR and IGF1R receptors,
exhibited notable advantages in overcoming resistance to
standard chemotherapy. Furthermore, these techniques
might offer benefits beyond the limited effects of single-
agent targeting previously reported. The strategies of
blocking these pathways in combination with the result
obtained from our conditional robustness, suggest a novel
potential approach to develop future and more effective
therapies for cancer treatments [53].
It is well known that the over expression of both EGFR

and IGR1R plays a crucial role in the proliferation of can-
cer cells [44]. The increase in the mean value and variance
of proliferation index associated with an increase on the

number of receptors showed in this study confirm their
role in cancer (see Table 2 and Fig. 13b).
The results obtained can be applied to other problems

concerned with drug development. For example, if we
have a set of drug candidates that target proteins in a
pathway, our methods can be used to asses which is the
best compound to use as a single agent or in combination.
Figure 12b can be interpreted as the best combination of
target to be used and Fig. 13b predicts the ability of the
target to silence ERK activity.
We considered the pulse generator network from Syn-

thetic Biology to study the validity of CRA in different
frameworks. This analysis allows us to conclude that the
algorithm is able to select the proper parameters in order
to maximize the pulse transferring ( and intensity of the
pulse) and minimize the time to reach the pulse max-
imum. The example also demonstrates the solution for
a multi objective evaluation function. For this type of
synthetic networks, the knowledge of the most signifi-
cant parameters and the corresponding values allowing
achievement of specific input/output behaviors is of cru-
cial relevance to characterize the biological circuits and is
a key piece of information contained in their data sheet.
The algorithm proposed in this paper has four classes

of configuration data: the multiplicative perturbation con-
stants c�,i and cu,i defining the parameter space; the num-
ber N of samples to be taken in the parameter space and
used to run in silico experiments to compute the corre-
sponding set of samples Z of the evaluation function; the
probability α defining the subsets of Z used to carry out
conditional robustness; and the number of parameters to
be fixed by the conditioning operation. The selection of
those inputs is a user choice and depends on the problem
at hand. Below we give some guidelines to select proper
values.
In the framework of mathematical modeling of biolog-

ical systems, and in particular Computational Biology,
the nominal system parameters can be either estimated
from experimental data with a given range of uncer-
tainty, (and quite often the experiments are carried out
in different settings and conditions, or derived using bio-
chemical/biological a priori knowledge of the system, and
therefore only the order of magnitude can be set). In
this setting, a strategy widely used in the literature is to
assume that the parameters space spans for two orders of
magnitude below and above the nominal value [21, 27, 34].
The choice of the number N of samples in the param-

eters space and the probability α defining the extremal
subsets U and L are somehow interdependent. The num-
ber N of samples has to be set in order to guarantee that
the estimated output density function fZ(z), as a func-
tion of increasing N, has reached a steady state shape
[34]. The subsets L and U build upon this distribution
generate data used to estimate the conditional densities
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fPi|L(p) and fPi|U(p) of each parameter. To generate a satis-
factory estimation of these densities at least 1.000 samples
are required. Hence, on the average, a good estimate for a
lower bound on the number N of overall samples is equal
to 1.000

α
. As an example, in the EGFR-IGFRmodel we fixed

α = 0.1 and we generated N = 10.000 samples in the
parameter space. Notice that, in this case, such a value
is quite higher than the number of samples required to
achieve a satisfactory (i.e., stationary with respect to N)
density fZ(z); hence we are over-sampling the parameter
space.
The fourth configuration constant of the CRA algo-

rithm is the number of parameters to be fixed, i.e., to
be conditioned. Such a number can be 6set by trial and
error, looking both to the number of densities fPi|L(p) and
fPi|U(p) that turn out to be sufficiently different and to the
overall effect on the conditional density fZ|K (z).
The computational cost of our CRA has two main

sources: the L2HS sampling of the parameter space and
the ODE numerical integration of the whole set of sam-
ples. As for the former, in [54] the computational cost
of Matlab function lhsdesign, is compared with other
optimization techniques with respect to the number of
parameters and sampled points. As for the latter, the com-
putational cost associated with the numerical integration
of a single ODE depends heavily onmodel dimensions and
model properties, such as its stiffness. Parallel implemen-
tations, such as CUDA models, can be used to deal with
this issue.
We implemented a parallel versions of our algorithm:

referring to the diagram in Fig. 4, the most significant
computation cost is the in silico data generation associ-
ated with the block “For each sample”, which integrates
the ODE model. Each ODE integration is independent of
the others and therefore they can be executed in parallel
on a cluster of work-stations: on a 7 core processor the
computation time to generate the set of samples Z can be
reduced by a factor of 7.
In conclusion, our Conditional Robustness Algorithm is

a new method to study the role of key parameters to dis-
cover the system robustness/fragility or in conditioning
the systems to the wished behaviour. The CRA signifi-
cantly contributes to formal methods in computational
systems biology and introduces a new framework to iden-
tify target identification and to support drug discovery in
oncology.
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