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Cite this article as: Götz J and Götz NN (2009) Animal models for Alzheimer’s disease and frontotemporal dementia: a perspective. ASN NEURO
1(4):art:e00019.doi:10.1042/AN20090042

ABSTRACT

In dementia research, animal models have become
indispensable tools. They not only model aspects of the
human condition, but also simulate processes that occur in
humans and hence provide insight into how disease is
initiated and propagated. The present review discusses two
prominent human neurodegenerative disorders, Alzheimer’s
disease and frontotemporal dementia. It discusses what we
would like to model in animals and highlights some of the
more recent achievements using species as diverse as mice,
fish, flies and worms. Advances in imaging and therapy are
explored. We also discuss some anticipated new models
and developments. These will reveal how key players in the
pathogenesis of Alzheimer’s disease and frontotemporal
dementia, such as the peptide Ab (amyloid b) and the
protein tau, cause neuronal dysfunction and eventually,
neuronal demise. Understanding these processes fully will
lead to early diagnosis and therapy.

Key words: Alzheimer’s disease, amyloid, Caenorhabditis
elegans, Drosophila, frontotemporal dementia, mouse, rat, tau,
TAR DNA-binding protein 43 (TDP-43), transgenic, zebrafish.

INTRODUCTION

The present review is based on a Plenary Lecture given by J.G.

at the 12th ICAD (International Conference on Alzheimer’s

Disease) in Vienna in July 2009.

Animal models have become indispensable in basic and

biomedical research (Götz and Ittner, 2008). The following

definitions found on the web underscore two important

attributes of a model: the open-source platform Wikipedia

states that an animal model is ‘‘a non-human animal that has

a disease or injury that is similar to a human condition’’

(http://en.wikipedia.org/wiki/Animal_model; accessed 7 July

2009)’’. Another site highlights a second important aspect by

defining an animal model as ‘‘a laboratory animal used in

research that simulates processes comparable to those that

occur in humans’’ (http://science.education.nih.gov/supplements/

nih4/self/other/glossary.htm; accessed 7 July 2009). Applying

these definitions, e.g. to neurodegenerative disorders, illustrates

that models are valuable because they represent a certain stage

of disease and because processes that lead to this stage can be

monitored longitudinally.

In modelling AD (Alzheimer’s disease), the most important

form of dementia, and FTD (frontotemporal dementia), which

in prevalence ratings comes second (Ballatore et al., 2007),

familial forms of these diseases, as well as histopathological

and clinical features in the human patient, provide guidance.

In the present review, first, we discuss the genes that cause

FAD (familial AD) and FTD as remarkably enough a subset of

these genes also encode the proteins within the major lesions

that define the two diseases. In FAD, which accounts for less

than 1% of all cases, autosomal-dominant mutations have

been identified in three genes: APP (amyloid precursor

protein), PSEN1 (presenilin 1) and PSEN2 (presenilin 2)

(Bertram and Tanzi, 2008). APP is a membrane-associated

protein from which the peptide Ab (amyloid b) is derived by

proteolytic cleavage. The presenilins are components of the c-

secretase complex that, together with b-secretase, generates

Ab, while a-secretase activity precludes Ab formation. In

addition to the three FAD genes, a series of susceptibility

genes have been identified in SAD (sporadic AD); these

include APOE (apolipoprotein E) as the most established risk

gene (Bertram and Tanzi, 2008). Very recently, three
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additional risk factor genes have been found, CLU encoding

clusterin, PICALM encoding the phosphatidylinositol-binding

clathrin assembly protein and CR1, the complement com-

ponent (3b/4b) receptor 1 (Harold et al., 2009; Lambert et al.,

2009). Compared with AD, FTD is a much more heterogeneous

group of related dementias, which is reflected both by the

types of genes that are mutated and by the proteins that are

deposited. The first mutations identified in FTD were in FTDP-

17 (familial FTD with parkinsonism linked to chromosome 17),

where they were found in the MAPT gene that encodes the

microtubule-associated protein tau (Cruts and Van

Broeckhoven, 2008). This subset of FTD cases is characterized

by tau inclusions (see below). Another subset of familial FTD is

characterized by mutations in the PGRN gene that encodes

the pleiotropic protein progranulin, and in the VCP gene that

encodes valosin-containing protein; these cases are char-

acterized by inclusions of the TDP-43 (TAR DNA-binding

protein 43), a highly conserved hnRNP (heteronuclear

ribonucleoprotein) (Neumann et al., 2006). Finally, mutations

in CHMP2B, encoding chromatin-modifying protein 2B, lead

to FTD in the absence of either tau or TDP-43 inclusions

(Cruts and Van Broeckhoven, 2008). For detailed information,

we refer to http://www.molgen.ua.ac.be/ADMutations and

http://www.molgen.ua.ac.be/FTDMutations as a constantly

updated source of mutations in FAD and FTD, as well as of

the families in which they occur.

Histopathologically, AD is characterized by Ab plaques and

neurofibrillary lesions. Ab in the plaques is fibrillar.

Neurofibrillary lesions contain hyperphosphorylated, fibrillar

aggregates of tau that are found in cell bodies and apical

dendrites as NFTs (neurofibrillary tangles), in distal dendrites

as neuropil threads, and in the abnormal neurites that are

associated with some Ab plaques. Truncation of tau, in

addition to hyperphosphorylation (Chen et al., 2004a), has

been linked to pathogenesis (Horowitz et al., 2004). Tau is

generally perceived as a neuronal protein, with a mainly

axonal localization, but this concept needs to be revisited as

discussed below. In addition to plaques and neurofibrillary

lesions, the AD brain is also characterized by massive neuronal

cell and synapse loss at specific predilection sites (Selkoe,

2002). With regard to the formation of plaques and

neurofibrillary lesions, sporadic cases of AD are not different

from familial cases, whether they carry mutations in APP,

PSEN1 or PSEN2. Hence, this led to the notion that

understanding the pathogenesis of familial cases would also

provide insight into the sporadic cases.

In addition to AD, NFTs are also abundantly present in a

significant subset of FTD such as FTDP-17, in which there is an

absence of overt plaques. Another subset of FTD with tau-

negative and ubiquitin-positive lesions, also in the absence of

plaques, has been termed FTLD-U or FTDU-17 (Cruts and Van

Broeckhoven, 2008). Here, TDP-43 has been identified in

ubiquitin-positive inclusions; these have also been found in

sporadic ALS (amyotrophic lateral sclerosis). Similar to tau,

TDP-43 in the aggregates is hyperphosphorylated, ubiquiti-

nated and C-terminally truncated (Neumann et al., 2006).

Both types of protein aggregates can be visualized under the

light microscope either by immunohistochemistry, thioflavin

S or silver impregnation methods such as those developed by

Gallyas and Bielschowsky [as described previously (Ittner et al.,

2008)]. Massive protein aggregation and, in particular, Gallyas

reactivity was one of the defining hallmark aspects of the

human pathology that the early animal models tried to

achieve, but in which they failed: although tau formed

aggregates as the mice aged, NFTs did not develop (Figure 1A)

(Götz and Ittner, 2008).

Another defining feature of the human pathology is the

characteristic spreading of the hallmark lesions in the AD brain

that, in the case of tau, is subject to little inter-individual

variation and provides a basis for distinguishing six stages: the

transentorhinal stages I and II representing silent cases; the

limbic stages III and IV; and the neocortical stages V and VI

(Braak and Braak, 1991). A similar type of staging has

subsequently been defined for the Ab pathology (Thal et al.,

2002) and is now also available for the Lewy body pathology in

PD (Parkinson’s disease) (Braak et al., 2003). The spreading of

the major histopathological hallmarks of AD, associated with

selective neuronal cell loss, is not well understood at the

cellular and molecular level. The Braak staging implies selective

vulnerability of distinct neuronal populations (Götz et al.,

2009). This staging is a feature one definitely would like to

recapitulate in animals, as neuronal and synapse loss at specific

predilection sites causes the clinical features that discriminate

AD from FTD (Figure 1B). In the AD brain, atrophy is initiated in

the hippocampus and entorhinal cortex, followed by the

association cortices and subcortical structures, including

the amygdala and NBM (nucleus basalis of Meynert). The

histopathology is reflected by the clinical features that

characterize AD: early memory deficits that are followed by

a gradual erosion of other cognitive functions (Arnold et al.,

1991). Atrophy in the FTD brain is mainly found in frontal and/

or temporal cortices. Hence, in contrast with AD, FTD is

associated predominantly with behavioural and/or language

impairment, with memory impairment mostly found only late

in disease (Cruts and Van Broeckhoven, 2008). A significant

subset of FTD is characterized by parkinsonism (Figure 1C), an

aspect that has been modelled in animals as outlined below.

A further remarkable aspect one would like to model in

animals is that of the distinct age of onset and disease

duration until death that, e.g. discriminates carriers of PGRN

mutations from those of MAPT mutations (Cruts and Van

Broeckhoven, 2008) (Figure 1D).

In understanding the aetiology of the sporadic cases of AD

and FTD, a lot of hypotheses have been put forward

(addressing an important aspect highlighted by the second

definition we have presented above). These include the

amyloid cascade hypothesis, oxidative stress/mitochondrial

dysfunction, transport/synaptic dysfunction, mitosis failure,

proteasome dysfunction, and stress response and inflam-

mation hypotheses. They have been tackled by a series of

‘omics’ approaches which encompass lipidomics, proteomics,

transcriptomics and genomics (Noorbakhsh et al., 2009).

J. Götz and N.N. Götz
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VERTEBRATE AND INVERTEBRATE ANIMAL
MODELS

The mouse is the major species used in AD and FTD research,

but significant additional insight has been provided from

species such as the roundworm Caenorhabditis elegans, the

fruit fly Drosophila melanogaster, and two types of fish, the

sea lamprey and the zebrafish (Götz et al., 2007).

As far as rodents are concerned, there are non-transgenic

models available such as the SAM (senescence-accelerated

mice), or chemically induced lesion models, but these lack the

characteristic hallmark lesions of AD (Van Dam and De Deyn,

2006). These have been modelled by transgenesis (Ittner and

Götz, 2007), almost exclusively in mice, as reviewed recently

(Götz and Ittner, 2008), although there are a few transgenic

rat models available (Zilka et al., 2006; Koson et al., 2008).

Although the list of strains that were discussed in Götz and

Ittner (2008) is long, it is still incomplete, since a myriad of

Figure 1 Aspects of AD and FTD one would like to model in animals
Animal models have become indispensable in basic and biomedical research. They reproduce aspects of AD and FTD (A–D), but also allow
for testing the many hypotheses that have been put forward to determine what exactly causes these diseases (E). In both AD and FTD,
protein aggregation leads to lesions that can be visualized under the light microscope either by immunohistochemistry, by dyes such as
thioflavin S, or by silver impregnation methods such as those developed by Gallyas and Bielschowsky, an aspect to be modelled (as
indicated by the ‘M’) in animals (A). A second aspect is that of the spreading of the key histopathological hallmarks of AD, the Ab
plaques and the tau tangles (NFTs) that has led to the definition of the Braak stages (B). A third is the distinct clinical features such as
memory impairment in AD or parkinsonism that characterizes a subset of FTD cases (C). The fourth is the distinct age of onset and
disease duration that discriminates, e.g. carriers of mutations in the tau-encoding MAPT gene compared with those in the progranulin-
encoding PGRN gene (D) based on data in (Cruts and Van Broeckhoven, 2008). The list of hypotheses in the field is led by the amyloid
cascade hypothesis, but animal models provide support for all proposed hypotheses (E).
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AD and FTD mouse strains has been generated since the early

1990s and it is impossible to present them all.

However, a few select models may provide a flavour of

what has been achieved so far. Of the many APP mutant mice

that have been generated in the past, strains such as the

PDAPP, J20, APP23 or Tg2576 mice are good representatives

as they are widely used owing to their robust APP/Ab

pathology (Games et al., 1995; Hsiao et al., 1996; Sturchler-

Pierrat et al., 1997; Mucke et al., 2000). Representative

models with NFT formation are strains such as the JNPL3 or

pR5 mice, both of which express P301L mutant tau that

previously has been identified in FTDP-17 (Lewis et al., 2000;

Götz et al., 2001a). Ab in the above plaque mice is fibrillar, as

is tau in the NFTs of the P301L mutant strains; in both

instances, the histopathology is associated with behavioural

impairment, following assessment of hippocampus- and

amygdala-dependent tasks (Götz and Ittner, 2008). In

conclusion, the aggregation of both Ab and tau has been

faithfully reproduced in vivo, with the hallmark lesions of AD

and FTD being visible at a light microscopic level. Similarly,

aspects of memory impairment have been reproduced.

The microtubule-associated protein tau is generally

perceived as a neuronal protein, however, tauopathies such

as CBD (corticobasal degeneration) and PSP (progressive

supranuclear palsy) are characterized by a pronounced glial

tau pathology that is often even more pronounced than the

concomitant neuronal pathology (Götz, 2001; Kurosinski and

Götz, 2002). The glial tau pathology has been modelled, e.g. in

mice that express wild-type human tau in astrocytes (Forman

et al., 2005). Not only do these mice develop glial lesions that

are remarkably similar to the human pathology, with tufted

astrocytes and astrocytic plaques, but the authors also report

on a focal neuronal degeneration. In other words, a glial

pathology causes a neuronal pathology. The glial lesions were

Gallyas-positive, as in the human patients. Similar inclusions

were obtained by expressing P301L mutant tau in astrocytes;

this again was associated with a neuronal pathology as

evidenced by impaired axonal transport shown for the optic

nerve (Higuchi et al., 2005).

While these studies model tau aggregation and NFT or GFT

(glial fibrillary tangle) formation, other models addressed the

question of how, if at all, the tau aggregates are related to

disease (Götz et al., 2008a). To this end, a CaMKII (Ca2+/

calmodulin-dependent protein kinase II) promoter-driven

transactivator system was employed, achieving a 15-fold

overexpression of P301L mutant tau (Ramsden et al., 2005;

Santacruz et al., 2005). This resulted in NFT formation,

neuronal loss and memory impairment. NFT formation was

linked to the appearance of a 64 kDa ‘toxic’ tau species

termed tau*. When tau expression was suppressed after

supplementing the drinking water with doxycycline, this

resulted in a lower, 2.5-fold overexpression. Interestingly,

memory functions recovered, but NFTs continued to accu-

mulate. In more recent work it was shown that, in the young

brain, elevation of the levels of phosphorylated tau species

per se was not sufficient to cause a lasting tau pathology

(Dickey et al., 2009). A CaMKII promoter-driven transactivator

system was also employed to express truncated forms of tau

comprising mainly the C-terminal microtubule-binding

domain. Both a pro- and an anti-aggregation mutant were

generated, with the former resulting in neuronal loss

(Mocanu et al., 2008). An interesting observation was that

human ‘pro-aggregation’ tau co-aggregated with mouse tau,

the possibility of tau forming mixed aggregates being an

issue of discrepancy in the field for quite some time. For

comparison, previous work including a BAC (bacterial

artificial chromosome) transgenic approach combined with

a tau knockout had suggested that endogenous mouse tau is

inhibitory to the aggregation of transgenic human tau

(Andorfer et al., 2003). In the pro-aggregation mouse model,

again, when the mice were fed with doxycycline, tau levels

went down, while NFTs persisted (Mocanu et al., 2008). In

related work in flies, overexpression of both wild-type and

R406W mutant tau was shown to cause premature death,

with mutant tau showing an earlier age of onset (Wittmann

et al., 2001). Cholinergic neurons (a major target of the

cholinergic therapy in AD) were found to be degenerating in

the flies. Interestingly, the tau-associated pathology occurred

in the absence of NFT formation, suggesting that their

formation may not be required for tau to execute its toxic

effects.

Coming back to NFT formation, this has been linked by

several groups to phosphorylation of tau at distinct epitopes

including AT100 (Thr212/Ser214) and pS422 (Ser422) (Götz and

Nitsch, 2001; Götz et al., 2001b; Allen et al., 2002; Ferrari

et al., 2003; Guillozet-Bongaarts et al., 2006; Le Corre et al.,

2006; Deters et al., 2008, 2009). The notion that phosphor-

ylation of tau at specific sites is both necessary and sufficient

for tau to form filaments has been recently challenged, again

by work in flies. First it was shown that tau simultaneously

pseudo-phosphorylated at 14 sites (E14 tau) was more toxic

than wild-type tau. Next, these sites were mutated to alanine

residues, both in combination and alone. The analysis of

individual alanine point mutations suggested that tau

phosphorylation sites rather than working ‘in isolation’ act

‘in concert’ in order to promote toxicity (Steinhilb et al.,

2007). However, the final word is not yet spoken, especially as

toxicity may depend on species and cell types. From a

therapeutic perspective, whether general rather than site-

specific phosphorylation needs to be impaired to prevent tau

from aggregating has important implications, as boosting the

activity of more promiscuous phosphatases may be a

preferred strategy compared with reducing the activity of

phospho-site-specific kinases (Iqbal and Grundke-Iqbal,

2008).

Similar to the tau field, with a hunt for what is thought to

be the ‘toxic species’, there is also an ongoing search for the

toxic species in the Ab field [reviewed in (Götz et al., 2008b;

Yankner and Lu, 2009)]. Here, a dodecameric form of Ab

termed Ab*56 has been identified in mutant APP transgenic

Tg2576 mice that appeared when memory impairment was

initiated and that disappeared when memory decline was

J. Götz and N.N. Götz
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stabilized. When a preparation enriched for Ab*56 was

injected into young recipient rat brains this was shown to

disrupt memory (Lesne et al., 2006). However, in more recent

work, fibrillar Ab was identified as a pathogenic entity that

altered neuronal membrane properties such that there was

hyperexcitability of pyramidal cells, culminating in epilepti-

form activity (Minkeviciene et al., 2009). Moreover, an

analysis of mitochondrial impairment suggests that both

oligomeric and fibrillar species of Ab exert a similar degree of

toxicity (Eckert et al., 2008).

While this addresses memory impairment as the major

clinical feature characterizing AD, another clinical feature,

parkinsonism, that characterizes a significant subset of FTD

cases, has also been modelled in mice. Several mini-gene tau

constructs have been used to establish a series of transgenic

mouse strains, of which one particular strain reproduced tau

accumulation in astrocytes and neurons including these of

the nigro-striatal pathway (Dawson et al., 2007). The rate-

limiting enzyme in dopamine synthesis, TH (tyrosine hydro-

xylase), was found to accumulate in varicosities (axonal

swellings). Furthermore, the mice showed memory and motor

impairment (Dawson et al., 2007). A second model was based

on the identification of the K369I mutation of tau in a

patient with Pick’s disease, an extreme form of FTD (Neumann

et al., 2001). The tau lesions in Pick’s disease (and also in the

brain of this particular patient) show a remarkable feature:

they are Bielschowsky-positive and Gallyas-negative; in

addition tau is phosphorylated at many epitopes but 12E8

(Ser262/Ser356). This distinct Pick pathology was reproduced in

the K3 mouse strain that expresses K369I mutant tau (Ittner

et al., 2008). The transgenic mice also model early-onset

parkinsonism (resting tremor, bradykinesia, postural instab-

ility and gait anomalies). They show an increased cataleptic

response to haloperidol and an early, but not late, response to

L-Dopa, with similarities to the efficacy of the treatment in

FTD patients using this form of medication.

In the K3 mice, axonal transport is impaired. Indeed in recent

years, impaired axonal transport emerged as a central

pathomechanism in AD (Stokin et al., 2005; Götz et al., 2006;

Magnani et al., 2007; Thies and Mandelkow, 2007; Dixit et al.,

2008; Pigino et al., 2009). Impaired axonal transport is

conceptually linked to oxidative stress and mitochondrial

dysfunction: mitochondria are a major organelle that needs to

be efficiently transported along the long processes for neurons

to function and they are a major source of ROS (reactive

oxygen species) (Su et al., 2008; Tatsuta and Langer, 2008). In

the K3 mice, there is a selectively impaired axonal transport of

distinct cargos, such as mitochondria and TH-containing

vesicles (Ittner et al., 2008). This is because a component of

the kinesin motor machinery, the scaffold/adapter protein JIP1

(c-Jun N-terminal kinase-interacting protein 1), is trapped by

elevated tau, preventing it from executing its physiological

function. In a follow-up study a pathological interaction

between tau and JIP1 was also revealed in AD and not control

brain (Ittner et al., 2009). Interestingly, this pathological

interaction requires phosphorylation of tau. Since JIP1 is

involved in regulating cargo binding to kinesin motors, these

findings may, at least in part, explain how hyperphosphory-

lated tau mediates impaired axonal transport in AD and FTD,

before tau starts to aggregate (Ittner et al., 2009). This presents

inhibition of abnormal hyperphosphorylation of tau as a

promising therapeutic target for the development of disease-

modifying drugs (Iqbal and Grundke-Iqbal, 2008).

Another interesting aspect of tau that has recently

emerged is that of the transmission, secretion and spreading

of tau. Using a stereotaxic injection approach (Clavaguera et

al., 2009), a donor brain extract was derived from 6-month-

old NFT-forming P301S mice (Allen et al., 2002) and injected

into brains of 3-month-old ALZ17 mice (Probst et al., 2000;

Götz and Nitsch, 2001), a (wild-type) tau transgenic strain,

that develops a tau-associated amyotrophy, but fails to

develop NFTs (Clavaguera et al., 2009). The study found that

the donor extract induced NFTs in the recipient brain, a

feature termed ‘transmission’. Secondly, NFT induction was

not confined to the injection site, a feature referred to by the

investigators as ‘spreading’. Finally, insoluble rather than

soluble tau was found to be responsible for these effects

(Clavaguera et al., 2009). In related work, it has been shown

that extracellular tau aggregates can transmit a misfolded

state from the outside to the inside of a cell, similar to prions

(Frost et al., 2009). These features of tau are supported by

work in the sea lamprey, a marine fish characterized by so-

called giant neurons, which can be injected with plasmids

encoding tau expression constructs. Work spanning one and a

half decades support the notion that tau is secreted and

reproduces aspects of the staging that characterizes the tau

pathology (Hall and Cohen, 1983; Hall et al., 2001; Kim et al.,

2009). Similar aspects have been reported for a-synuclein, a

protein with a structure very much like tau, that induced

inclusion formation and neuronal cell death through

interneuronal transmission (Desplats et al., 2009). Taken

together, these data contribute to an understanding of how,

in human disease, Ab and tau impair cellular functions, which

eventually leads to neuronal loss.

Several aspects of the human AD and FTD pathology have

been modelled in the nematode C. elegans (Morcos and

Hutter, 2009). This roundworm has a number of features that

make it a powerful research tool: (i) it is easy to culture as it

feeds on bacteria grown on agar plates; (ii) it reproduces and

develops rapidly: within 3 days it develops from an egg to an

adult worm, with approx. 300 progenies originating from one

self-fertilized hermaphrodite; (iii) its small size allows assays

in microtitre format, studying hundreds of animals in a single

well; (iv) the worm is transparent, which is ideal for the use of

fluorescence markers in vivo; (v) it is a complex multicellular

animal: an adult hermaphrodite has exactly 959 somatic cells

that form different organs, including 302 neurons forming

the nervous system; (vi) it has a short life span of 2–3 weeks,

allowing studies in aged animals within a reasonable time

frame (mice, in comparison, often need to age for 1 year or

even longer before they develop a phenotype); and (vii)

genetic modifications, such as transgenic expression or RNAi

Animal models for Alzheimer’s disease and frontotemporal dementia
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(RNA inteference)-mediated gene knockdown are quite easy

compared with other in vivo systems. Furthermore, most

human disease genes and pathways are present in C. elegans

(Kaletta and Hengartner, 2006). This includes the APP

homologue APL-1, a mutation of which results in early larval

lethality (Hornsten et al., 2007). C. elegans has two PSEN

homologues, SEL-12 and HOP-1 (Levitan and Greenwald,

1995; Li and Greenwald, 1997), and a single tau-like protein

called PTL-1 (protein with tau-like repeats) (Goedert et al.,

1996; McDermott et al., 1996)

C. elegans has been successfully used as model organism to

study pathomechanisms in MND (motor neuron disease) and

FTD; e.g. expression of SOD1 (superoxide dismutase 1)

carrying a human pathogenic mutation identified in familial

MND results in severe locomotor deficits in transgenic

C. elegans (Wang et al., 2009). Expression of wild-type

SOD1, however, does not affect motor behaviour. Similarly,

expression of human tau carrying FTD mutations, but not

wild-type tau, in C. elegans results in neurodegeneration with

an accumulation of hyperphosphorylated tau and associated

uncoordinated locomotion (Unc) (Kraemer et al., 2003;

Miyasaka et al., 2005; Brandt et al., 2009). C. elegans is not

capable of producing endogenous Ab. The first published

transgenic model targeted Ab to the body wall of muscle

cells, causing progressive paralysis (Link, 1995). Ab deposition

in another model was associated with oxidative stress (Drake

et al., 2003). A further aspect linked to oxidative stress that is

evident from studies in C. elegans is the similarity between

diabetes mellitus and AD, in particular with regards to the

formation of AGEs (advanced glycation end-products)

(Morcos and Hutter, 2009). Together this demonstrates the

potential of C. elegans as a model organism in AD and FTD

research. The findings obtained in the worm are comple-

mented by studies in Drosophila, that in addition has shown

its potential as a model and a powerful system to screen for

modifiers that either enhance or suppress an AD-associated

pathology (Shulman and Feany, 2003; van de Hoef et al.,

2009).

That farm animals are also attractive as AD models is

illustrated by the recent establishment of a porcine model:

while the transgene was found to be expressed in brain, the

authors speculate that it may take until the age of 1–2 years

until Ab may accumulate in the porcine brain (Kragh et al.,

2009).

THE Ab–TAU AXIS

A central hypothesis in AD research is the amyloid cascade

hypothesis as revisited by Hardy (2006). Animal models were

central in providing support for this hypothesis that claims, in

simplified terms, that an Ab pathology causes a tau pathology

(Figure 2). While initially plaques and NFTs were thought to

be the key players, in recent years the focus has shifted from

these end-stage lesions to the precursors, oligomeric forms of

Ab and soluble forms of tau, as the major (but not exclusive)

culprit. When P301L mutant tau transgenic JNPL3 mice were

crossed with APP mutant Tg2576 mice, this caused a 7-fold

NFT induction, but no increased Ab pathology (Lewis et al.,

2001) (Figure 2A). Similarly, stereotaxic injections of fibrillar

preparations of Ab42 into the hippocampus and somatosen-

sory cortex of P301L tau mutant pR5 mice caused a 5-fold

induction of NFTs in the amygdala, a site which projects to

the CA1 neurons in the hippocampus (Götz et al., 2001b)

(Figure 2B). The pathology in the amygdala is reflected by an

impairment in amygdala-dependent tasks (Pennanen et al.,

2004, 2006). Injections of Ab42 into wild-type tau transgenic

ALZ17 mice that lack an NFT pathology (Probst et al., 2000)

failed to induce NFTs, suggesting that the toxic effect of Ab is

dependent on a pre-existing tau pathology (Götz et al.,

2001b).

Subsequently, the so-called 3xtg-AD mice (P301L tau/

APPsw/PSENM146/2 knock-in) were generated that combine

an NFT and plaque pathology (Figure 2C). Their formation

was found to be preceded by synaptic and LTP (long-term

potentiation) deficits (Oddo et al., 2003). The clinical

features were correlated with intraneuronal Ab formation

(Billings et al., 2005), and blocking of Ab was shown to

delay onset and progression of the tau pathology (Oddo

et al., 2008). A stereotaxic approach was used, not by

injecting synthetic Ab preparations (Götz et al., 2001b), but

by injecting extracts from Ab plaque-forming APP23 mice

into P301L tau mutant JNPL3/B6 mice (Figure 2D). This

induced a tau pathology in areas with a neuronal projection

to the injection site (Bolmont et al., 2007). When the

injections were performed in APP23/JNPL3/B6 mice with

both a plaque and NFT pathology, a more pronounced tau

pathology was induced in areas with a high Ab plaque load

(Bolmont et al., 2007) (Figure 2D).

While this supports the amyloid cascade hypothesis in

mice, there is also a role for tau (Figure 3). Several years ago,

Ab toxicity in primary neuronal cultures was shown to

depend on the presence of tau: wild-type neurons were

found to degenerate when incubated with Ab42 as did tau-

transfected neurons (Figures 3A and 3B). However, primary

neurons derived from tau knockout mice turned out to be

resistant to the toxic effects of Ab (Rapoport et al., 2002)

(Figure 3C). This was translated in vivo by breeding APP

mutant J20 mice on to a tau-knockout background (Roberson

et al., 2007). Most, if not all, APP mutant strains with a robust

Ab plaque pathology are characterized by premature death of

unknown cause (Palop et al., 2007; Minkeviciene et al., 2009;

Palop and Mucke, 2009) (Figure 3D). Roberson and colleagues

reported the remarkable finding that tau reduction amelio-

rates the premature lethality of the J20 mice, increases the

resistance to excitotoxin-induced seizures and prevents

behavioural deficits in the Morris water maze (Roberson et

al., 2007) (Figure 3E).

Taken together, these studies suggest that Ab and tau

contribute synergistically to neurodegeneration in AD (Götz
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et al., 2007). The findings further indicate that a combin-

atorial therapy targeting both Ab and tau may be useful

(Golde et al., 2009).

ADVANCES IN ANIMAL IMAGING AND
THERAPY

The preclinical diagnosis of AD depends on neuropsycholo-

gical testing and, increasingly, the use of imaging techniques

and biomarkers in CSF (cerebrospinal fluid) and blood. The

major imaging techniques are PET (positron emission

tomography), CT (computed tomography), MRI (magnetic

resonance imaging) and multiphoton imaging. The field has

been boosted significantly with the development of the PET

tracer PIB (Pittsburgh Compound-B), a thioflavin T derivative.

Using four-dimensional multiphoton imaging of transgenic

mouse brain, PIB was shown to enter the brain extremely

rapidly, Ab was targeted within 1 min, and unbound

florescence cleared within several minutes (Bacskai et al.,

2003). This was soon followed by the first study using PIB in

humans (Klunk et al., 2004). While PET has its undisputed

beauty, there are, however, some major drawbacks, especially

when PET is compared with MRI: it takes around 45 min for

an entire scan (a situation with which healthy people are not

comfortable let alone patients suffering from dementia); a

cyclotron needs to be close to the imaging facility as the t1/2

(half-life) of carbon-20 is only 20 min, and finally, PET is

approx. 50 times as expensive as MRI. Multiphoton imaging

has also been used to determine that plaque formation in

mice can be a surprisingly rapid process, with an Ab plaque

forming within 24 h (Meyer-Luehmann et al., 2008).

Imaging assists in diagnosis, but has its place also in

monitoring the efficacy of therapies. The current treatment

rests on the use of AChE (acetylcholine esterase) inhibitors

and memantine, an NMDA (N-methyl-D-aspartate) receptor

antagonist. The AD major advocacy forum, AlzForum, at the

time of writing this article lists 39 ongoing clinical trials

which include NGF (nerve growth factor), DHA (docosahex-

anoic acid), vitamin A, anti-Ab antibodies, c-secretase

inhibitors, a-secretase activators, oestrogen, natural IgG,

melatonin, a calcium channel agonist, anti-inflammatory

Figure 2 Transgenesis supports the amyloid cascade hypothesis in mice
Crossing P301L tau mutant JNPL3 mice with APP mutant Tg2576 mice causes a 7-fold increased NFT induction, but no increased Ab
pathology (A). Similarly, intracerebral (i.c.) injections of synthetic Ab42 preparations cause a 5-fold induction of NFTs in P301L tau
mutant pR5 mice (B). 3xtg-AD mice (P301L tau/APPsw/PSENM146/2 knockin), that combine an NFT and plaque pathology, show a
prominent role for Ab (C). A stereotaxic approach was used to inject extracts from Ab plaque-forming APP23 mice [and not synthetic
Ab as in (B)] into P301L tau mutant JNPL3/B6 mice, again showing a role for Ab in inducing a tau pathology (D).
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substances [NSAIDs (non-steroidal anti-inflammatory drugs)],

a nicotinic a7 agonist, statins and the chelator PBT2 (http://

www.alzforum.org).

Many of these therapies have their foundation in animal

work. This includes the vaccination approach, which has been

pioneered by researchers of the biotech company Elan. Using

both an active and passive immunization approach, existing

plaques/Ab pathology could be removed, the formation of

plaques/Ab pathology prevented, and age-dependent learn-

ing deficits reduced or prevented (Schenk et al., 1999; Bard

et al., 2000). In follow-up work in 3xtg-AD mice, which

present with a combined Ab plaque and NFT pathology, these

improvements were correlated with reductions in soluble Ab

and tau (Oddo et al., 2006). The last years have seen many

modifications of the initial approach that has been tested in

mice, using different routes of administration, changes to the

peptide, alterations to the adjuvans, a DNA vaccination

strategy, or as has been done recently, by coupling of Ab to

retro-particles (Bach et al., 2009). As the brain is generally

conceived to be immune-privileged, the efficacy of the Ab-

targeted immunization approach came as a surprise, most

likely also for those who had initiated the first vaccinations.

In the case of tau, one would think that efficacy would be

even more difficult to achieve as, different from Ab, tau is

intracellular and hence, at least at first sight, not seen by the

immune system. However, it seems as if tau is presented as an

antigen or released into the extracellular space, because

immunization of tau transgenic mice with the PHF1 phospho-

tau-peptide (which contains the phospho-sites Ser396 and

Ser404) causes a reduction of aggregated tau levels, a shift

from the insoluble to the soluble pool of tau and a slowing of

the progression of an NFT-related motor phenotype (Asuni

et al., 2007).

The fact that our way of life affects our health in old age

comes as no surprise. Several recent studies in mice address

stress, diet, exercise and environmental enrichment. One of the

earliest studies addressing the impact of an enriched

environment used the APPsw/PS1DE9 mice with a plaque

pathology. Housing of the mice was in large cages and they

were given running wheels, coloured tunnels, toys and

chewable material to play with. This caused reductions in Ab

levels and plaque load; furthermore, levels of the Ab-

degrading enzyme neprilysin and of learning-related genes

were up-regulated (Lazarov et al., 2005). When plaque-forming

Figure 3 Critical role for tau in Ab toxicity
That tau is critical for Ab-mediated toxicity, has been shown in primary neuronal cultures: wild-type (wt) neurons (A) degenerated
when incubated with Ab42, as did tau-transfected neurons (C). Primary neurons derived from tau knockout (KO) mice, however, were
resistant to the toxic effects of Ab (B). This has been translated in vivo. Most, if not all, APP mutant strains with a robust Ab plaque
pathology are characterized by premature death of unknown cause. This includes APP mutant J20 mice (D). By crossing these on to a
hetero- or homo-zygous tau knockout background many clinical features could be ameliorated (E).
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Tg2576 mice were fed with the green tea active compound

EGCG (epigallocatechin gallate), this had similar effects: again,

Ab levels and plaque load were reduced, and this was

dependent on the up-regulation of the a-secretase ADAM (a

disintegrin and metalloproteinase) 10 (Rezai-Zadeh et al.,

2005; Obregon et al., 2006).

The deacetylase Sir2 is a critical regulator of the ageing

process. SIR2 is a longevity gene and SIRT1 is its human

homologue. Resveratrol, a well-known active compound in

red wine, activates SIRT1. When p25 transgenic mice [p25 is

an activator of the kinase cdk5 (cyclin-dependent kinase 5)]

were intra-hippocampally injected with SIRT1 lentiviruses,

this protected the p25 mice from neurodegeneration (Kim

et al., 2007). Finally, the typical Western diet is not well

balanced with a ratio of unsaturated fatty acids of n23

(omega-3)/n26 (omega-6)51:24, whereas the ideal diet

would be 1:5. When Tg2576 mice were fed with n23, this

reduced Ab levels by 70% and the plaque burden by 40% (Lim

et al., 2005). Taken together this indicates a role for

environmental factors in the progression of AD.

Both tau and APP are phospho-proteins, and phosphoryla-

tion is regulated by a balanced interplay of kinases and

phosphatases; hence, numerous molecules which interfere

with their function have been tested in vitro and in animals

(Pei et al., 2008). Very recently, a zebrafish model has been

established which reproduced tau hyperphosphorylation, NFT

formation, and neuronal and behavioural disturbances, as

well as cell death. Of the many inhibitors of the kinase GSK3b

(glycogen synthase kinase 3b) tested in the fish model,

AR-534 turned out to reduce tau hyperphosphorylation

in vivo (Paquet et al., 2009).

Another strategy is the targeting of phosphatases as has been

suggested recently (Iqbal and Grundke-Iqbal, 2008). Here, PP2A

(protein phosphatase 2A) is particularly attractive, as instead of

modulating general catalytic activity it may be possible to

activate specifically the one of its many regulatory subunits that

confers specificity for tau as a substrate (Kins et al., 2001; Schild

et al., 2006). Together this presents a strategy that modulates

either kinases or phosphatases as an attractive therapeutic

approach (Iqbal and Grundke-Iqbal, 2008).

WHAT HAVE WE ACHIEVED SO FAR AND
WHAT DOES THE FUTURE HOLD?

What has been achieved so far? Depending on how much

emphasis is placed on the different aspects of AD modelling

in animals (symbolized by the ‘M’ in Figure 4), the balance of

Figure 4 Modelling in animals and what has been achieved so far
Depending on how much weight we put on the different aspects of AD modelling (symbolized by the ‘M’) in animals the balance of
‘achievement’ will vary. The distribution is not meant to be taken at face value, but thought to provide an idea of which aspects of
the human disease need further development. Protein aggregation has been very faithfully modelled in animals, as have aspects
of behavioural impairment. Support has been provided for all hypotheses proposed for AD and FTD. Some insight has been achieved
into the molecular mechanisms of how soluble tau and the different assembly states of Ab cause and initiate cellular demise, but a
real understanding is still lacking. The more we move to the right, the less has been authentically modelled. There are indeed aspects
which, for obvious reasons, cannot be modelled in animals at all, such as the language variants of FTD.
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‘achievement’ will vary. The difference in emphasis is not

meant to be taken at face value, but should rather provide an

idea for further opportunities of advancement.

In discussing what the future holds, we would like to

highlight two selected aspects, selective vulnerability and the

functional domains of APP. Selective vulnerability charac-

terizes AD and FTD but the cellular and molecular basis of it is

not at all understood (Götz et al., 2009). In AD, both the Braak

staging outlined above (Braak and Braak, 1991) and the

distribution of NFTs reflect selective vulnerability.

Interestingly, in the AD brain some areas are spared from

degeneration until very late in disease. Also, in the basal

forebrain all neurons that die appear to contain NFTs (Cullen

and Halliday, 1998), whereas in the CA1 region, up to 20% of

the neuronal loss cannot be explained by NFT formation,

suggesting that modes of death differ (Gomez-Isla et al.,

1997; Kril et al., 2002; Giannakopoulos et al., 2003). How can

transgenic mouse models be exploited to dissect selective

vulnerability and identify genes and proteins that either

protect from degeneration or confer an increased risk? This is

exemplified for two selected mouse models, one character-

ized by memory impairment and the other in addition by

parkinsonism (Figure 5): rTg(tauP301L)4510 mice with an

inducible and hence very strong P301L mutant tau expression

are characterized by massive brain weight loss and gross

atrophy of the forebrain (Santacruz et al., 2005). By 5.5

months, 60% of CA1 hippocampal pyramidal neurons are lost,

and by 8.5 months only 23% remain (Santacruz et al., 2005).

K3 mice are characterized by loss of TH-positive, K369I tau-

expressing neurons in the substantia nigra, long after the first

clinical symptoms become apparent (Ittner et al., 2008, 2009).

Interestingly, this loss is only partial, with 60% of the TH

neurons lost by 24 months of age. What protects a subset of

morphologically indistinguishable neurons within this brain

area from cell death while others degenerate?

We previously used the tools of functional genomics to

dissect pathogenic mechanisms, including mitochondrial

dysfunction and AGE formation that not only operate in

the transgenic mouse but also in human diseased brain (Chen

et al., 2004b; Hoerndli et al., 2004; David et al., 2005a, 2005b;

Hoerndli et al., 2005; David et al., 2006; Hoerndli et al., 2007).

Functional genomics not only assists in dissecting disease

mechanisms, but also emerges as a powerful tool in

identifying cell-type-specific gene expression, which ulti-

mately may be useful to understand selective vulnerability. In

an impressive study, Sugino and colleagues used four GFP

(green fluorescent protein)-expressing transgenic mouse lines

to obtained eleven fluorescently labelled neuronal popula-

tions from different brain areas (Sugino et al., 2006). They

triturated the neurons and by an elaborate panning process,

manually isolated between 30 and 120 neurons from each

brain area that they had characterized previously using

current-clamp recordings. The subsequent analysis of the

transcriptomic profile allowed them to construct a taxonomic

tree that showed clear distinctions between neuronal cell

types such as cortical interneurons and projection neurons

(Sugino et al., 2006). We believe that crossing GFP-marked

mice with AD or FTD mouse models such as those described

above should allow identification of genes that confer

susceptibility to or protection from neuronal degeneration.

Ultimately, these genes can be reintroduced into the germline

of mice for a functional validation (Figure 5).

Another aspect which is likely to receive more attention

in the future is the realization that in pathogenesis func-

tional domains of APP, other than Ab, may have a role. APP

overexpression causes an axonal transport defect (Stokin

et al., 2005, 2008). However, by fusing the Ab domain with

the BRI protein, it could be shown that the APP-induced

axonal defects are not caused by Ab as one might have

expected (Stokin et al., 2008). Similarly, in more recent work,

APP was found to be a ligand of the DR (death receptor).

Binding of an N-terminal APP fragment was further shown to

trigger neuronal degeneration, leading to the notion that an

extracellular APP fragment, in addition to Ab, contributes to

AD (Nikolaev et al., 2009).

Therefore it is obvious that more transgenic models are

needed to dissect the role of the different functional domains

of APP. Certainly, for any gene implicated in AD and FTD,

more sophisticated cell-type-specific and/or inducible trans-

genic systems need to be developed. Animals need to be

humanized by using BAC-transgenic approaches as has been

done previously (Andorfer et al., 2003). More tools need to be

developed, such as additional conformation- and epitope-

specific antibodies, to better characterize and isolate toxic

species (Habicht et al., 2007; Glabe, 2008). Finally, insight

gained from the various animal species needs to be fully

Figure 5 Selective vulnerability examined in two mouse models with
neuronal loss
Selective vulnerability characterizes two selected mouse strains, one
characterized by memory impairment [rTg(tauP301L)4510 line] and the other,
in addition, by parkinsonism (K369I tau mutant K3 strain). The
rTg(tauP301L)4510 mice lose 60% of CA1 hippocampal pyramidal neurons
by 5.5 months, and only 23% remain by 8.5 months. In the K3 mice, loss of TH
neurons is also only partial, with 60% lost by 24 months of age. What
protects a subset of morphologically indistinguishable neurons within the
respective brain area from cell death while others degenerate?
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integrated, taking into consideration the species-inherent

limitations, but also the complementary potential. In

conclusion, animal models will continue to be an important

tool in AD and FTD research. While the mouse is likely to

remain the major species, a larger contribution of inverteb-

rate models can be foreseen.
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Götz J, Ittner LM (2008) Animal models of Alzheimer’s disease and
frontotemporal dementia. Nat Rev Neurosci 9:532-544.
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Kurosinski P, Götz J (2002) Glial cells under physiologic and pathological
conditions. Arch Neurol 59:1524–1528.

Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, Combarros
O, Zelenika D, Bullido MJ, Tavernier B, Letenneur L, Bettens K, Berr C,
Pasquier F, Fievet N, Barberger-Gateau P, Engelborghs S, De Deyn P,
Mateo I, Franck A, Helisalmi S, Porcellini E, Hanon O, de Pancorbo MM,
Lendon C, Dufouil C, Jaillard C, Leveillard T, Alvarez V, Bosco P, Mancuso
M, Panza F, Nacmias B, Bossu P, Piccardi P, Annoni G, Seripa D,
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J. Götz and N.N. Götz
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