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Abstract

Background: This study aims to establish a radiomics analysis system for the diagnosis and clinical behaviour
prediction of hepatocellular carcinoma (HCC) based on multi-parametric ultrasound imaging.

Methods: A total of 177 patients with focal liver lesions (FLLs) were included in the study. Every patient underwent
multi-modal ultrasound examination, including B-mode ultrasound (BMUS), shear wave elastography (SWE), and
shear wave viscosity (SWV) imaging. The radiomics analysis system was built on sparse representation theory (SRT)
and support vector machine (SVM) for asymmetric data. Through the sparse regulation from the SRT, the proposed
radiomics system can effectively avoid over-fitting issues that occur in regular radiomics analysis. The purpose of
the proposed system includes differential diagnosis between benign and malignant FLLs, pathologic diagnosis of
HCC, and clinical prognostic prediction. Three biomarkers, including programmed cell death protein 1 (PD-1),
antigen Ki-67 (Ki-67) and microvascular invasion (MVI), were included and analysed. We calculated the accuracy
(ACC), sensitivity (SENS), specificity (SPEC) and area under the receiver operating characteristic curve (AUC) to
evaluate the performance of the radiomics models.

Results: A total of 2560 features were extracted from the multi-modal ultrasound images for each patient. Five
radiomics models were built, and leave-one-out cross-validation (LOOCV) was used to evaluate the models. In
LOOCV, the AUC was 0.94 for benign and malignant classification (95% confidence interval [CI]: 0.88 to 0.98), 0.97
for malignant subtyping (95% CI: 0.93 to 0.99), 0.97 for PD-1 prediction (95% CI: 0.89 to 0.98), 0.94 for Ki-67
prediction (95% CI: 0.87 to 0.97), and 0.98 for MVI prediction (95% CI: 0.93 to 0.99). The performance of each model
improved when the viscosity modality was included.

Conclusions: Radiomics analysis based on multi-modal ultrasound images could aid in comprehensive liver tumor
evaluations, including diagnosis, differential diagnosis, and clinical prognosis.
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Background
Hepatocellular carcinoma (HCC) is the most common
type of primary liver cancer and the most common
cause of death in people with liver cirrhosis [1]. Early
and accurate diagnosis of HCC is of vital importance in
clinical decision-making and treatment. Currently,
although various treatments have been proven effective
in the treatment of HCC, recurrence remains an import-
ant clinical challenge, with its aggressive biological
behaviour and negative impact on overall patient
survival. Conventional B-mode ultrasound (BMUS), as a
non-invasive, easy and safe procedure, is currently the
first-line imaging modality for the diagnosis of HCC.
However, BMUS has a limited role in the clinical
diagnosis of focal liver lesions (FLLs) and of complicated
recurrent lesions. Recent technical advances in shear
wave elastography (SWE) and viscosity ultrasound
increase the diagnostic efficiency of ultrasound and
allow it to evaluate liver stiffness with the aim of asses-
sing hepatic fibrosis and cirrhosis. To date, only a few
studies have focused on the quantification of SWE
stiffness in FLLs [2–4].
More recently, as an emerging method for medical

image processing, radiomics is used to convert medical
images into high-dimensional, mineable features that
reflect underlying pathophysiological information [5].
Radiomics employs a variety of state-of-the-art machine
learning or deep learning techniques to complete a
variety of clinical tasks, which greatly pushed the
development of precision medicine [6]. Microvascular
invasion (MVI) and antigen Ki-67 (Ki-67) are regarded
as high-risk factors for HCC recurrence. As an immuno-
therapy target, programmed cell death protein 1 (PD-1)
has also become increasingly meaningful for the treat-
ment of patients with HCC.
According to previous research, radiomics has great

potential for the diagnosis and treatment of liver diseases.
In a study by Virmani et al. [7], 48 features were extracted
from gray-scale ultrasound images to differentiate normal
livers, cirrhotic livers and HCC. A genetic algorithm and
support vector machine (SVM) were used as feature
selection and classification methods. Owjimehr et al. [8]
performed a wavelet packet transform on the gray-scale
ultrasound image and extracted 61 features to differentiate
normal, fatty and heterogeneous livers. SVM and
k-nearest neighbour classifiers were applied to classify the
images into three groups. Furthermore, some studies ap-
plied artificial neural networks to diagnose abnormal livers
[9], chronic liver disease [10] and HCC malignancy [11].
These studies demonstrate the feasibility of ultrasound
imaging in liver disease diagnosis and imply the great
potential of radiomics analysis.
Current radiomics methods have several limitations

when analysing the data of our study. First, traditional

engineered features (intensity, shape, margin, calcifica-
tion, wavelet, etc.) are designed for different diseases and
are poorly adaptable for HCC. Second, the deep learning
algorithms are easily over-fitted when dealing with data
with a small sample size. Finally, most of the above
studies used a single modal ultrasound imaging, without
utilizing comprehensive information provided by
multi-modal ultrasound images.
Due to its good performance in signal representation

and reconstruction, sparse representation (SR) is widely
used in feature selection [12, 13] and image classification
[14, 15]. By training the optimal texture to represent im-
ages, SR can adaptively learn image features with a small
amount of imaging data. Furthermore, as a nonparamet-
ric model, SR can effectively avoid over-fitting and has
strong robustness [16].
A radiomics analysis system based on SR and SVM

was proposed in our study. We trained the model with
multi-modal ultrasound images and used histology as
the gold standard measure. Our study aims to evaluate
the feasibility of ultrasound radiomics models in the
differential diagnosis and characterization of histologi-
cally proven FLLs and to determine an initial prognosis
of HCC.

Methods
Patients and materials
Between July 2017 and June 2018, 177 consecutive pa-
tients (102 women and 75 men; age range: 15–91 years,
mean: 55.5 ± 10.4 years) who were referred to our insti-
tution for FLL SWE assessment were included in the
prospective study. For patients under the age of 16 years,
informed consent was obtained from a parent and/or
legal guardian. All patients underwent multi-modal
ultrasound examination, including BMUS, shear wave
elastography (SWE), and shear wave viscosity (SWV)
imaging before surgery. The final diagnoses for all 177
patients were based on histopathological results obtained
from liver biopsy during surgery.
Data collected included the patient’s age, gender, and

focal liver lesion location. Among all 177 patients in-
cluded in this study, 66 were excluded, and the exclusion
criteria were as follows: (1) missing important pathology
results; (2) poor imaging quality; (3) accompanied with
other diseases, including cirrhosis and fatty liver.
Characteristics of the 111 FLL patients enrolled are sum-
marized in Table 1, which include patient gender and
age. Statistics show that the gender and age of patients
are related to the benign and malignant classification of
tumors (p < 0.05). In addition, patient age was statisti-
cally related to the type of malignant tumor (p < 0.05).
The flow chart of the proposed radiomics system is

shown in Fig. 1. We first classified the benign and malig-
nant cases. Then, we separated patients with HCC from

Yao et al. BMC Cancer         (2018) 18:1089 Page 2 of 11



the remaining 65 patients with malignancies. Finally,
multi-modal ultrasound images of 47 patients with HCC
were used to predict PD-1, Ki-67 and MVI indicators of
HCC. Benign tumors in the study mainly include cyst
and focal nodular hyperplasia (FNH). Other malignant
tumors that differ from HCC include adenocarcinoma
and cholangiocarcinoma.
Multi-modal ultrasound examinations were performed

using Toshiba Aplio i900 ultrasound equipment (Canon
Medical, Japan). A PV1-475BX convex array probe (1–
8 MHz) was used. Patients lied in a supine position with
the right arm in maximal extension. The transducer was
positioned in a right intercostal space to visualize the
right liver lobe. Large vessels were avoided. Optimally,
patients were instructed to perform a transient breath
hold in a neutral position. Regions of interest (ROIs)
were placed a minimum of 1–2 cm and a maximum of
8 cm beneath the liver capsule [17]. An ROI was placed
inside the lesion or surrounding the hepatic parenchyma
at the same depth as the lesion. In the ROIs of lesions
and the parenchyma, SWE and viscosity were measured.
A multi-modal ultrasound image includes four differ-

ent modalities, as shown in Fig. 2, where the upper left
panel is an elastography image, the lower left panel is a
gray-scale ultrasound image and the lower right panel is
a viscosity image. The propagation map in the upper
right panel reflects the image quality (> 90% was

considered to be good quality for measurement). The re-
gions with optimal and stable imaging qualities were
manually selected by an experienced sonographer and
marked as ROIs.

Overall design
The overall methods include three steps: feature extrac-
tion, feature selection and classification. First, the SR
dictionary was trained to extract features. Then, an itera-
tive algorithm based on SR was used for feature selec-
tion. Finally, we trained an SVM model with the selected
features. We validated the model by leave-one-out
cross-validation (LOOCV).

Feature extraction
We adopted an SR-based feature extraction method to
extract image features. First, we used the K-singular
value decomposition (KSVD) algorithm to learn the cor-
responding structural texture dictionary from each type
of image [18]. Then, the various types of dictionaries
were combined into a feature extraction dictionary
(FED), and the FED was used to sparsely represent the
test images. The representation coefficients reflect the
relationship between the test images and each type of
dictionary (each class), so the coefficients can be

Table 1 Beseline characters of patients

Parameters All patients Male (N; %) Ages (mean ± variance)

Tumor category

benign 46 21; 46% 50.5 ± 13.4

malignant 65 54; 83% 56.6 ± 8.3

P value – 0.00004 0.0040

Malignant subtyping

HCC 47 41; 87% 55.3 ± 8.4

others 18 13; 72% 60.2 ± 7.0

P value – 0.1550 0.0267

PD-1 prediction

PD-1 present 15 14; 93% 53.0 ± 8.8

PD-1 absent 24 20; 83% 56.2 ± 8.9

P value – 0.3831 0.2782

Ki-67 prediction

≤ 25 21 19; 90% 53.9 ± 9.6

> 25 23 19; 83% 56.6 ± 7.6

P value – 0.4647 0.2441

MVI prediction

MVI present 21 18; 86% 53.9 ± 8.0

MVI absent 22 19; 86% 56.0 ± 8.9

P value – 0.9677 0.3810
Fig. 1 The flowchart of the proposed HCC diagnostic and
prediction system
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classified as the test image features. We used the orthog-
onal matching pursuit (OMP) algorithm to calculate the
SR coefficients and extract the coefficients for features.
The detailed process of feature extraction can be found
in Appendix: Feature extraction.

Feature selection
Redundant and irrelevant features can seriously affect
the performance of the classification. Hence, we adopted
an iterative SR method to select some crucial features
for the classifier. We used sample features to sparsely
represent sample labels, and the absolute value of the SR
coefficient was the importance of the feature. To
improve the stability of feature selection, we performed
iterative SR for feature selection. We selected a partial
sample for SR in each iteration and then averaged the
results of multiple SRs to determine the final coeffi-
cients. Finally, we sorted the features according to the
absolute value of the SR coefficients. Specific mathemat-
ical models for feature selection can be found in Appen-
dix: Feature selection.

Classification
There are many types of classifiers in radiomics, and
SVM is widely used for stability and optimal perform-
ance. In this work, we used LibSVM for classification,

which can solve the problem of sample imbalance [19].
A specific mathematical model of LibSVM is shown in
Appendix: SVM model. By adjusting the penalty factor,
we eliminated the effects of sample imbalance. A re-
ceiver operating characteristic (ROC) curve was used to
show the overall performance of the model. We also
calculated some indexes to evaluate the performance of
the classifier, including accuracy (ACC), sensitivity
(SENS), specific (SPEC) and area under the ROC (AUC).

Cross-validation
Each time LOOCV takes one sample as a test sample,
and all the remaining samples are used as training sets.
This process was repeated until all the samples were
traversed. We used LOOCV to evaluate our model.

Statistical analysis
Descriptive statistics are summarized as the mean ± SD.
The Mann-Whitney U test was used to test whether a
feature has discriminative power in different tasks, and p
values less than 0.05 indicated statistical significance.
SPSS statistics 20.0 software (SPSS, Chicago, IL, USA)
and MedCalc software (V.11.2; 2011 MedCalc Software
bvba, Mariakerke, Belgium) were used to perform the
statistical analysis.

Fig. 2 Multi-modal colour ultrasound image. a. Elastography. b. Propagation map, which reflects the image quality. c. Gray-scale ultrasound. d.
Viscosity modality
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Results
Multi-modal ultrasound image feature extraction and
feature analysis
Because the model establishment process was similar for
the five radiomics models, we used benign and malig-
nant differentiation as an example analysis. A schematic
diagram of the dictionary training is shown in Fig. 3.
Figure 3a shows a blank dictionary that has not been
trained. Because the initial discrete cosine transform
(DCT) dictionary cannot optimally represent the image
information of each category simultaneously, it was
necessary to train different dictionaries that include the
texture structure features of each type based on the
DCT dictionary. We use the KSVD algorithm to train
the dictionary, and we finally obtained a dictionary with
rich texture information, as shown in Fig. 3b.
The overall flowchart of feature extraction is shown in

Fig. 4. We manually selected three corresponding square
measurement areas as the ROIs in the multi-modal im-
ages. The size of the dictionary we used in this study is
64 × 256. A dictionary contains 256 atoms, correspond-
ing to 256 sparse coefficients, which can be taken as 256
features. In the case of using only gray-scale ultrasound
images, two dictionaries need to be trained separately
for the two categories, so a total of 512 features can be
extracted. Particularly, when extracting features from
elastography or viscosity modality images, because the
image is three channels (RGB), we first performed HSV
(hue, saturation, value) conversion on the RGB images.
Then, we used the hue (H) and value (V) channels to
train the dictionary separately. Hence, for elastography
or viscosity images, we trained four dictionaries to
obtain 1024 features. Finally, after multi-modal feature
combination, the gray-scale modality (GM), gray-scale
and elastography modality (GEM) and gray-scale, elasto-
graphy and viscosity modality (GEVM) corresponded to
512, 1536 and 2560 features, respectively.
We randomly selected two cases (one benign and the

other malignant) to analyse the features of their GM
images. The feature amplitudes of the two cases and two

corresponding benign and malignant dictionaries are
shown in Fig. 5. Figure 5a and b correspond to benign and
malignant dictionaries, respectively, and they together
form an FED. In the two dictionaries, 512 atoms corres-
pond to 512 features of a case. It is obvious that the two
dictionaries have quite different textures and that the
malignant dictionary has more structural information.
The linear combination of atoms in FED makes up the en-
tire ROI, and the different feature magnitudes represent
the different proportions of atoms. The special region in
Fig. 5 is marked by a red arrow. The area with the highest
amplitude of the benign patient is located in the feature
interval corresponding to the benign dictionary (1 to 256),
while the area with the highest amplitude of the malignant
patient is located in the 257 to 512 feature interval, which
corresponds to the malignant dictionary. This result
indicates that the image of the benign case is mainly
composed of textures from the benign dictionary, while
the image of the malignant case is mainly composed of
textures from the malignant dictionary. This significant
difference can distinguish benign and malignant tumors
effectively.

Feature selection results
Eliminating redundant and invalid features is critical to
the performance of the classifier. As an example, we
analysed the importance of feature selection in benign
and malignant tumor classification. Figure 6 shows a
comparison of the performance of the features before
and after feature selection. Under all imaging modalities,
each evaluation indicator of the model has been
improved by feature selection. Figure 6a shows a com-
parison of the ROC curves of the models. The dashed
line and solid line correspond to the results before
feature selection and after feature selection, respectively.
The histogram in Fig. 6b describes the AUC before and
after feature selection. The blue bar represents the AUC
before feature selection, while the yellow bar corresponds
to AUC after feature selection. The results clearly show

Fig. 3 A schematic diagram of dictionary training. a. Initial DCT dictionary; b. dictionary after training
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Fig. 4 The overall flowchart of feature extraction. Features were extracted from different modal images and then combined. GM represents the
gray-scale modality; GEM represents the gray-scale and elastography modality; GEVM represents the gray-scale, elastography and
viscosity modality

Fig. 5 Benign and malignant dictionaries and the feature amplitudes of the two cases. The feature amplitudes of the two cases are concentrated
in different areas so that they can be distinguished. a. Benign dictionary; b. malignant dictionary; c. feature amplitude of the benign case; d.
feature amplitude of the malignant case
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that our feature selection strategy has achieved good re-
sults. The detailed statistical results are shown in Table 2.

Classification of benign and malignant liver tumors
A total of 111 cases were used in this experiment, of
which 65 were malignant cases. We compared the per-
formance of GM, GEM and GEVM in the classification
of benign and malignant liver tumors. Some indicators
of the model are summarized in Table 3.
The AUCs of GEVM and GEM reach 0.94 (95% confi-

dence interval [CI]: 0.88 to 0.98) and 0.89 (CI: 0.81 to
0.94), respectively, which are 0.06 and 0.01 higher than
that of GM (CI: 0.80 to 0.93). The AUC of GEVM is
0.05 higher than that of GEM. The ROC curves of these
models are shown in Fig. 7. We calculated the statistical
significance level of the AUCs for GM and GEVM
(p = 0.14). Although the application of multi-modal
images increased the AUCs, multi-modal images do
not exhibit significant differences from single BMUS
in terms of differentiation between benign and malig-
nant tumors.

Malignant liver tumor subcategories
A total of 47 HCC and 18 other malignant tumor cases
(11 adenocarcinoma cases and 7 cholangiocarcinoma

cases) were studied in this experiment. The AUC of GM
reached 0.90 (CI: 0.85 to 0.96). The AUCs of GEM and
GEVM are slightly greater than that of GM, reaching
0.92 (CI: 0.86 to 0.97) and 0.97 (CI: 0.93 to 0.99),
respectively. The ROC curves of these models are shown
in Fig. 8. The calculation results show that there are sig-
nificant differences between GM and GEVM (p = 0.04).
The application of multi-modal images achieved better
results in distinguishing the subtypes of malignant
tumors. The results for classification of the subtypes of
malignant liver tumors are shown in Table 4.

PD-1, Ki-67, and MVI indicator prediction
The classification criterion of PD-1 is whether or not the
indicator is expressed. The Ki-67 indicator is classified
by a 25% threshold value (≤25% or > 25%). The MVI
indicator is divided into two categories according to low
risk and high risk. The prediction results of the three
indicators are summarized in Table 5. The ROC curves
of each indicator are shown in Fig. 9. GEVM resulted in
significant differences in the AUCs of the three pre-
dictive indicators (p = 0.02 for PD-1, p = 0.04 for
Ki-67, p = 0.0006 for MVI) relative to those of GM.
Better performance can be obtained by predicting
three indicators using multi-modal ultrasound images.

Fig. 6 Comparison of benign and malignant classification model performance before (dashed line) and after (solid line) feature selection. a.
Comparison of the ROC curves of the model. b. Histogram comparison of model performance. Both figures show that feature selection has
achieved good effects

Table 2 Performance comparison of models before and after feature selection

GM GEM GEVM

AUC ACC SENS SPEC AUC ACC SENS SPEC AUC ACC SENS SPEC

BF 54 55 52 57 42 54 40 74 56 60 82 30

AF 88 82 80 83 89 84 85 83 94 88 91 86

AUC area under the receiver operating characteristic curve, ACC accuracy, SENS sensitivity, SPEC specificity, GM gray-scale modality, GEM gray-scale and shear
wave elastography modality, GEVM gray-scale, shear wave elastography and viscosity modality, BF before selection, AF after selection. The auc, acc, sens and spec
are expressed as a percentage
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Discussion
Multi-modal ultrasound technology increases the
diagnostic efficiency of ultrasound and makes it possible
to diagnose FLL before surgery. In contrast to the
evaluation of diffuse parenchymal liver disease, little is
known about FLL characterization using SWE or SWV
technology. Here, we investigate the value of
multi-modal ultrasound technology for the differential
diagnosis of benign and malignant FLLs using radiomics
analysis. Previously, Dong et al. [20] applied ElastPQ
measurements for differential diagnosis of benign and
malignant FLLs and successfully found the optimal
threshold of shear wave speed. Ozmen et al. [21] used
the optimal threshold of SWE to differentiate benign
and malignant liver tumors and obtained an AUC of
0.77. However, the cut-off values of measurement for
differentiating benign and malignant liver tumors tend
to show great variability. In our study, innovative
multi-modal ultrasound images were used to diagnose
liver tumors. By converting the images into
high-throughput features, radiomics was used to mine
the rich texture information in the patient images in
order to classify the images. We found that malignant
tumor images have more complex textures and more

structural information. The experimental results also
show that the model has achieved good results on the
classification of benign and malignant liver tumors (0.94
AUC for differentiating between benign and malignant
liver tumors).
The most common type of histology of primary liver

cancer is HCC, which represents 90% of cases [22, 23].
Difficulties in treatment and poor prognosis make it
important to accurately detect HCC. In addition, early
diagnosis of HCC is also crucial for optimizing
treatment options. In a study by Thomas et al.,
alpha-fetoprotein (AFP) was used to detect HCC [24].
However, AFP is only a supplement to the ultrasound
image information, and the accuracy of detecting HCC
is not satisfactory. In our experiments, multi-modal
ultrasound images were used to directly distinguish
between HCC and other malignancies noninvasively,
and the model performed well (0.97 AUC for liver tumor
subtyping). This result illustrates the great potential of
ultrasound images for tumor diagnosis.
Patients with HCC have a poor prognosis due to a

high recurrence rate. It has been reported that the
5-year recurrence rate of primary liver cancer is as high
as 45%~ 60% [25]. We mainly studied two factors that

Table 3 Diagnostic performance of GM,GEM and GEVM for
classifying benign and malignant tumors

AUC(%) ACC(%) SENS(%) SPEC(%)

GM 88 82 80 83

GEM 89 84 85 83

GEVM 94 88 91 86

AUC area under the receiver operating characteristic curve, ACC accuracy, SENS
sensitivity, SPEC specificity, GM gray-scale modality, GEM gray-scale and shear
wave elastography modality, GEVM gray-scale, shear wave elastography and
viscosity modality

Fig. 7 Receiver operating characteristic (ROC) curves of benign and
malignant classifications

Fig. 8 Receiver operating characteristic (ROC) curves of
tumor subcategories

Table 4 Diagnostic performance of GM,GEM and GEVM for liver
tumor subtyping

AUC(%) ACC(%) SENS(%) SPEC(%)

GM 90 89 83 91

GEM 92 92 89 94

GEVM 97 97 89 100

AUC area under the receiver operating characteristic curve, ACC accuracy, SENS
sensitivity, SPEC specificity, GM gray-scale modality, GEM gray-scale and shear
wave elastography modality, GEVM gray-scale, shear wave elastography and
viscosity modality
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affect the recurrence of liver cancer. One of the factors
is MVI. MVI has been reported as one of the major risk
factors related to HCC recurrence and represents a poor
prognosis [26, 27]. Many previous studies have focused
on identifying radiologic features (such as tumor size,
tumor margin, and number of lesions) in various types
of medical images for the preoperative prediction of
MVI [28–30]. However, the best predictive feature of
MVI in HCC remains controversial. In addition, another
study used a radiomics nomogram to predict MVI pre-
operatively, resulting in a C-index of 0.84 [31]. However,
the results of these studies are not satisfactory. Our
radiomics-based model achieved better results (0.98
AUC) in predicting MVI than did previous studies using
multi-modal ultrasound images.
Another factor we studied that has an effect on HCC

recurrence is Ki-67. A previous study suggested that a
higher Ki-67 index confers poor prognosis in patients with
HCC [32–34]. Clinically, immunohistochemistry is needed
to detect the Ki-67 index. Studies have analysed the
correlation between the expression of other proteins (such
as PDIA3) and Ki-67 [35]. However, to the best of our
knowledge, no study has applied medical images to pre-
dict Ki-67 noninvasively. Our results (0.94 AUC for Ki-67
prediction) demonstrated that it is feasible to noninva-
sively predict Ki-67 based on radiomics. In our study, we
successfully determined MVI and Ki-67 for HCC progno-
sis by applying multi-modal ultrasound images.

Recent studies have shown that immunotherapy is a
promising approach for HCC treatment and that PD-1 is
crucial for tumor immunity [36]. Accurate assessment of
PD-1 can be useful in assessing the range of applications
of PD-1/PD-L1 blockers in liver cancer patients. In
addition, an increase in PD-1 predicts a poorer progno-
sis for HCC [37]. The prediction of PD-1 is important
for the progression and postoperative recurrence of
HCC. The model we built for PD-1 prediction has
achieved good results (0.97 AUC for PD-1 prediction).
By integrating multi-modal ultrasound image informa-
tion, the radiomics model can determine PD-1
noninvasively.
To investigate the effects of feature selection on classi-

fier performance, we compared the performance of
models before and after feature selection in benign and
malignant tumors. Feature selection truncates redundant
and invalid features, so the model becomes robust. The
experimental results show that the performance of the
model after feature selection is better than that
before feature selection (significant level in ROC
curves, p < 0.0001).
There are some limitations to our research. It should

be mentioned that our study lacks multi-centre valid-
ation, which would provide more convincing results. In
addition, more samples should be collected to build a
more robust model. Furthermore, we employed only the
image information from diseased livers, and some text

Table 5 Performance of GM,GEM and GEVM for indicators prediction

PD-1 Ki-67 MVI

AUC ACC SENS SPEC AUC ACC SENS SPEC AUC ACC SENS SPEC

GM 84 85 80 88 86 84 86 83 85 84 86 81

GEM 94 90 93 88 92 89 86 91 95 93 91 95

GEVM 97 92 100 88 94 93 95 91 98 95 91 100

AUC area under the receiver operating characteristic curve, ACC accuracy, SENS sensitivity, SPEC specificity, GM gray-scale modality, GEM gray-scale and shear wave
elastography modality, GEVM gray-scale, shear wave elastography and viscosity modality, PD-1 programmed cell death protein 1, Ki-67 antigen Ki 67, MVI micro
vascular invasion. The auc, acc, sens and spec are expressed as a percentage

Fig. 9 Receiver operating characteristic (ROC) curves of indicator prediction. a. ROC curve of PD-1 prediction. b. ROC curve of Ki-67 prediction. c.
ROC curve of MVI prediction
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descriptions of the cases and biomarkers were not
applied.

Conclusions
In summary, we successfully established an HCC diagno-
sis and prognosis system based on ultrasound radiomics
and proved its potential feasibility and effectiveness.
Simultaneously, we demonstrated the potential value of
multi-modal ultrasound-based radiomics analysis in
computer-aided diagnosis (CAD).

Appendix
Feature extraction
The SR method can adaptively learn and extract texture
features of images. First, we exploited the KSVD algo-
rithm to train the dictionary corresponding to different
categories. This algorithm trains different categories of
dictionaries by iteratively updating each atom in the
dictionary. We denote i ∈ {1, 2,…, I} as all sample cat-
egories. Di is the corresponding i-class dictionary. Then,
the process of feature extraction can be written as:

α̂¼ arg minα y−Dαk k22þμ αk kp ð1Þ

where y is classifier label; D = [D1,D2,⋯,DI] is a collec-
tion of all SR dictionaries; α is the SR coefficients, which
can be considered as features of the samples; α̂ is the
estimated value of α; ‖∙‖p represents the lp norm; μ is
the regularization parameter. μ‖α‖p can be regarded as
the error term that can be discarded. We used the OMP
algorithm to solve (1) to obtain the image features.

Feature selection
Different from the traditional feature selection method,
the SR method adopts the strategy of the sliding win-
dow, so it can comprehensively utilize the information
of all samples in the window. An iterative process can be
expressed as:

d̂
kð Þ¼argmind s kð Þ−F kð Þd

�
�

�
�
2

2þε dk k0 ð2Þ

where s(k) is the label used for the k-th iteration; F(k) is
the feature selected for the k-th iteration; ε is a small
constant; d̂

ðkÞ
is the coefficient calculated by the k-th it-

eration. Then, we calculated the average of d̂
ðkÞ

for the
k-th iteration:

d kð Þ¼1
k

X
k
i¼1 d̂

kð Þ ð3Þ

The d(k) was used for feature selection. After the iter-
ation, each feature obtained a score that combines all
the sample information due to the averaging operation.
The higher the score, the higher the importance of

the feature. In this way, the feature selection results
are obtained.

SVM model
The LibSVM model can solve the sample imbalance
problem by adjusting different penalty coefficients. The
improved SVM mathematical model can be written as:

minw;b;ξ
1
2
ωTωþCþ

X

yi¼1
ξiþC−

X

yi¼−1
ξi ð4Þ

subject to yi ωTϕ xið Þþb
� �

≥1−ξi ð5Þ

ξi≥0;i¼1;…;l

where ω is the hyperplane normal vector and b is the
bias, which collaboratively determines the hyper-
plane; ϕ(xi) is the feature vector mapped by xi; yi is the
sample label; ξi is a small constant; C+(−) is the penalty
parameter, which assigns weights to different propor-
tions of samples. By assigning an appropriate C, we can
eliminate the sample imbalance problem.
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