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Abstract

and pRb, and the up-regulation of p53, p21, and p27.

Background: Hepatocellular carcinoma (HCC) still is a big burden for China. In recent years, the third-generation
platinum compounds have been proposed as potential active agents for HCC. However, more experimental and
clinical data are warranted to support the proposal. In the present study, the effect of lobaplatin was assessed in
five HCC cell lines and the underlying molecular mechanisms in terms of cell cycle kinetics were explored.

Methods: Cytotoxicity of lobaplatin to human HCC cell lines was examined using MTT cell proliferation assay. Cell
cycle distribution was determined by flow cytometry. Expression of cell cycle-regulated genes was examined at
both the mRNA (RT-PCR) and protein (Western blot) levels. The phosphorylation status of cyclin-dependent kinases
(CDKs) and retinoblastoma (Rb) protein was also examined using Western blot analysis.

Results: Lobaplatin inhibited proliferation of human HCC cells in a dose-dependent manner. For the most sensitive
SMMC-7721 cells, lobaplatin arrested cell cycle progression in G; and G,/M phases time-dependently which might
be associated with the down-regulation of cyclin B, CDK1, CDC25C, phosphorylated CDK1 (pCDK1), pCDK4, Rb, E2F,

Conclusion: Cytotoxicity of lobaplatin in human HCC cells might be due to its ability to arrest cell cycle
progression which would contribute to the potential use of lobaplatin for the management of HCC.

Background

Hepatocellular carcinoma (HCC) is one of the most
common cancers with poor prognosis. In China alone,
more than 401,000 new patients were diagnosed with
HCC and more than 371,000 patients died of this dis-
ease in 2008 [1]. The poor outcome of HCC is mainly
due to it rarely presents with characteristic symptoms at
early stage and over 80% of patients lose the chance of
curative hepatectomy when the diagnosis of HCC was
confirmed [2].

For the management of advanced HCC, systemic che-
motherapy with classical cytotoxic agents offers a marginal
survival benefit [3,4]. To improve the chemotherapeutic
efficacy, a few of novel cytotoxic agents have been
employed to treat patients with HCC. Oxaliplatin, a third-
generation platinum compound, has exhibited promising
activity against advanced HCC with tolerable toxicity in
phase II clinical trials [5,6]. Recently, a randomized
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controlled phase III trial has been performed to evaluate
the efficacy of FOLFOX4 (oxaliplatin plus 5-fluorouracil/
leucovorin) in Asian patients with advanced HCC. The
data from first interim analysis have shown a significant
advantage of FOLFOX4 over doxorubicin in terms of
overall response rate (ORR), disease control rate (DCR),
and time to progression (TTP) [7].

As another third-generation platinum compound, loba-
platin (D-19466; 1, 2-diammino-methyl-cyclobutaneplati-
num(II)-lactate) has shown encouraging anti-cancer
activity in a variety of tumor types without evident hepa-
totoxicity [8-10] and has been approved in China for the
treatment of chronic myelogenous leukemia (CML),
metastatic breast cancer and small cell lung cancer [11].
It is noteworthy that some tumors resistant to cisplatin
are still sensitive to lobaplatin [8]. Base on these consid-
erations, we speculate lobaplatin might be useful for
advanced HCC patients but more experimental and clini-
cal data are warranted. In the present study, the effect of
lobaplatin was assessed in five human HCC cell lines and
the underlying molecular mechanisms in terms of cell
cycle kinetics were explored.
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Materials and methods

Cell culture

Lobaplatin and oxaliplatin were purchased from Hainan
Chang’an International Pharmaceutical (Hainan, China)
and Sigma (St. Louis, MO, USA), respectively. The human
HCC cell lines, SMMC-7721, Bel-7402, HepG2, and Huh-
7, were obtained from the Institute of Biochemistry and
Cell Biology, Chinese Academy of Sciences (Shanghai,
China). Hep 3B was kindly provided by Dr. X. Wang
(Department of Oncology, Changzheng Hospital, Shang-
hai, China). All cell lines were maintained in Dulbecco’s
modified Eagle’s medium (Gibco BRL, Carlsbad, CA, USA)
supplemented with 10% fetal bovine serum (Gibco) at
37°C in a humidified atmosphere containing 5% CO,.

Proliferation assay

Cytotoxicity of lobaplatin to human HCC cell lines was
examined using cell proliferation assay. Cells were seeded
in a 96-well microtiter plate at 5 x 10> cells/well, and
cultured for 24 hours prior to exposure to lobaplatin or
oxaliplatin of varying concentrations for 48 hours. Ten pl
3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium
bromide (MTT, 5 mg/ml) in phosphate buffered saline
(PBS) were then added to each well. Four hours later the
culture media was discarded and the dark blue crystals
were dissolved in 100 pl dimethylsulfoxide (DMSO). The
optical density (OD) was measured at 560 nm using a
microplate reader (Thermo labsystems, Helsinki, Fin-
land). Six wells were used for each concentration. The
50% inhibitory concentration (ICs,) was calculated by
nonlinear regression fit of the mean values of the data
obtained in triplicate independent experiments.

Flow cytometric (FCM) analysis

The effect of lobaplatin on human HCC cell cycle distri-
bution was determined by FCM analysis. Cells were
seeded in six-well plates at 5 x 10° cells/well and cul-
tured for 24 hours prior to lobaplatin exposure for 0,
24, 36 and 48 hours. Control cells received only solvent
for the indicated time durations above. Cells were col-
lected by trypsinization, washed twice with ice cold PBS,
fixed in 70% ethanol, and stained with propidium iodide
(PL; 5 ug/ml PI in PBS containing 0.1% Triton X-100
and 0.2 mg/ml RNase A) overnight at 4°C in the dark
until analyzed using a FACScan flow cytometer (BD
Biosciences, San Jose, CA, USA). Cell fluorescence was
measured in duplicate at each time point and all experi-
ments were performed in triplicate.

Reverse transcription polymerase chain reaction (RT-PCR)

analysis

The mRNA expression of cell cycle-regulated genes was
examined by RT-PCR. Total RNA was extracted using
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Trizol solution (Invitrogen, Carlsbad, CA, USA). Single-
stranded cDNAs were synthesized with oligo (dT) primers
in a reaction starting with 2 pg of total RNA using Super-
script II reverse transcriptase (Fermentas Life Sciences,
Hanover, MD, USA). PCR amplification was carried out in
25 ul total volume containing: 2 ul cDNA, 200 pM each
dNTP, 0.25 units Taq polymerase, and 1 uM each primer
(Sangon, Shanghai, China). Reaction conditions were opti-
mized as follows: activation at 95°C for 5 min, followed by
30-35 cycles at 94°C for 45 s, 55-64°C for 45 s, and 72°C
for 1 min. A series of calibration experiments verified that
the conditions were within the exponential phase. The pri-
mers of cell cycle-regulated genes are listed in Table 1.
The PCR product was analyzed by agarose gel electro-
phoresis and quantified using an image analyzer (Bio-Rad,
Hercules, CA, USA). The result was verified in three inde-
pendent experiments.

Western blot analysis

The protein expression of cell cycle-regulated genes was
examined by Western blot. Cell extract was prepared
using a non-denaturing lysis buffer. Protein concentra-
tion was determined using a Bio-Rad detergent-compati-
ble protein assay kit (Bio-Rad). Samples (50-70 pg
protein) were denatured in 5 x SDS-PAGE loading buf-
fer and separated in 10% SDS-PAGE gels. The proteins
were electro-transferred to nitrocellulose membranes
followed by blocking with 5% (w/v) non-fat dry milk in
Tris-buffered saline for 2 hours at room temperature.
Membrane was probed with primary antibody at 1:400
dilution for 2 hours at room temperature and then
washed three times with 0.1% Tween 20/PBS prior to
incubation with an appropriate secondary antibody con-
jugated with peroxidase (Santa Cruz Biotechnology,
Santa Cruz, CA, USA) for 1.5 hour. Signal detection was
conducted using the enhanced chemiluminescence
detection system (Bio-Rad). The blots shown are repre-
sentative of three independent experiments. The primary
antibodies to cyclin B, cyclin D1, CDK1, CDK4, CDKs,
CDC25C, p53, pl6, p21, p27, Rb, E2F, and GAPDH
were purchased from Santa Cruz Biotechnology. To
determine the levels of phosphorylated CDKs (pCDKs)
and retinoblastoma (pRb) protein, the phospho-specific
antibodies (Santa Cruz Biotechnology) targeting pCDK1
(Tyr15), pCDK4 (Tyr15), and pRb (Ser780) were used.

Results

Lobaplatin inhibited proliferation of human HCC cells

As shown in Figure 1A, lobaplatin inhibited cell prolifera-
tion of cultured human HCC cell lines with the ICs,
values (48 h) ranging from 1.45 to 5.22 pg/ml. The rank
order of sensitivity was p53 wild-type SMMC-7721 >
Bel-7402 > p53 null Hep 3B > p53 mutant Huh-7.
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Table 1 Primers for RT-PCR analysis
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Gene Forward primer Reverse primer

cyclin B GCACTTTCCTCCTCCTCAA CTTCGATGTGGCCATCTTG

cyclin D1 CTGTGCTGCGAAGTGGAAACCAT TTCATGGCCAGCGGGAAGACCTC
CDK1 GATTCTATCCCTCCTGGTC TAGGCTTCCTGGTTTCC

CDK4 CTGAGAATGGCTACCTCTCGATATG AGAGTGTAACAACCACGGGTGTAAG
CDK6 CCGAGTAGTGCATCGCGATCTAA CTTTGCCTAGTTCATCGATATC
cbc2s5C GAACAGGCCAAGGCTGAAGC GCCCCTGGTTAGAATCTTCC

p53 GAGGCGCTGCCCCCACCATGA AGCTCTCGGAACATCTCGAAGC
plé AGCCTTCGGCTGACTGGCTGG CTGCCCATCATCATGACCTGG

p21 TTAGGGCTTCCTCCTGGAGGAGAT ATGTCAGAACCGGCTGGGGATGTC
p27 CCTCTTCGGCCCGGTGGAC TTTGGGGAACCGTCTGAAAC
GAPDH GGGAAGGTGAAGGTCGGAGTC AGCAGAGGGGGCAGA

The p53 wild-type HepG2 cell line showed a similar sen-
sitivity to lobaplatin as the Huh-7 cells. In addition, loba-
platin appeared to have similar cytotoxicity profiles to
oxaliplatin in these human HCC cell lines.

The dose-response curve of lobaplatin in SMMC-7721
cells was specially shown in Figure 1B. In a range of
0.25 to 4.5 pg/ml, lobaplatin inhibited cell proliferation
of SMMC-7721 cells in a dose-dependent manner. The
ICs0 value of 1.45 pg/ml was chosen as a working
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Figure 1 Lobaplatin inhibited proliferation of human HCC cells.

(A) A comparison of lobaplatin and oxaliplatin in five human HCC

cell lines. The ICs value was determined using cell proliferation

assay. (B) The dose-response curve of lobaplatin in SMMC-7721

cells. The cell proliferation rate of untreated cells was defined as

100% and that of treated cells was expressed as a percentage of

the untreated cells. The data represented the mean + standard

deviations of three independent experiments.

concentration for subsequent cell cycle experiments in
SMMC-7721 cells.

Lobaplatin arrested cell cycle progression in G; and G,/M
phases time-dependently

The effect of lobaplatin on cell cycle distribution of
SMMC-7721 cells was shown in Figure 2. After adjust-
ment with their corresponding controls, the proportions
of Gy, S, and G,/M phases in cells treated with lobapla-
tin were 45.31, 22.88, and 31.81% at 0 h, 59.91, 11.92,
and 28.17% at 24 h, 56.89, 2.83, and 40.28% at 36 h, and
53.80, 2.07, and 44.13% at 48 h, respectively. Under the
induction of lobaplatin, accumulation of cells in G,
phase occurred from 24 to 48 h and G,/M phase arrest
appeared from 36 to 48 h. A concurrent reduction of
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Figure 2 Lobaplatin arrested cell cycle progression in G; and
G,/M phases time-dependently. SMMC-7721 cells were treated
with 145 pg/ml lobaplatin. In the course of treatment, cell cycle
distribution was analyzed by FCM at 0, 24, 36, and 48 h. The profiles
showed dual-variable plots of cell number versus Pl uptake. G, S,
and G,/M cell populations were quantified.
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the cell population in S phase was observed. These data
suggested that lobaplatin could arrest cell cycle progres-
sion in G; and G,/M phases time-dependently.

Lobaplatin down-regulated cyclin B, CDK1, CDC25C,
pCDK1, and pCDK4

As shown in Figure 3A and Table 2, the mRNA levels of
¢yclin B, CDK1, and CDC25C phosphatase were moder-
ately repressed at 24 h after lobaplatin treatment and
significantly down-regulated at 36 and 48 h (changes >
2-fold). Meanwhile, the mRNA levels of cyclin D1,
CDK4, and CDK6 were slightly enhanced or inhibited
but the changes less than 2-fold compared to their con-
trols. Lobaplatin did not appear to affect the mRNA
levels of cyclin D1, CDK4, and CDKB6.

The protein expression of genes mentioned above was
generally consistent with the mRNA expression. As shown
in Figure 3B and Table 3, the fold changes of genes at the
mRNA level were further confirmed by the protein level.

A
213 bp — cyclin B
240 bp — cyclin D1
302 bp — CDK1
540 bp — CDK4
406 bp — CDK6
178 bp — CDC25C
375 bp — GAPDH
B
B3 kDa —  A—— — cyclin B
38kDa— M s e cyclin D1
34 kDa — | S CDK1
34kDa— o w— pCDK1
34 kDa — e - CDK4
34kDa— e SN pCDK4
40kDa—[ e = - = CDKG6
55KDa — | w e s == == CNC25C
37 kDa — [ AP D H
Oh 12h 24h 36h 48h
Figure 3 Lobaplatin down-regulated cyclin B, CDK1, CDC25C,
pCDK1, and pCDK4. Expression of cell cycle-regulated genes was
determined at 0, 12, 24, 36, and 48 h in SMMC-7721 cells after 1.45
pg/ml lobaplatin treatment. GAPDH as a control. (A) The mRNA
level. (B) The protein level.
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Moreover, lobaplatin could regulate the phosphorylation
status of CDKs and significantly reduce both pCDK1 after
24 h of treatment and pCDK4 after 36 h.

Lobaplatin up-regulated p53, p21, and p27

The effect of lobaplatin on p53 and CDK inhibitors (p16,
p21, and p27) was subsequently examined at both the
mRNA and protein levels (Figure 4, Table 2, 3). The
results indicated that the expression of p53 was signifi-
cantly increased within 24 h after lobaplatin treatment and
p27 was up-regulated at somewhat later time points. The
expression of p21 continued to be up-regulated and
reached a peak of 7-fold increase at 36 h at the protein
level. No significant change of p16 was found after loba-
platin treatment.

Lobaplatin down-regulated Rb, E2F, and pRb

During the lobaplatin treatment, the significant down-
regulation of Rb appeared at 24 h followed by a persis-
tent low level while its phosphorylation status (pRb) was
significantly reduced in the late course of treatment.
E2F also became significantly down-regulated after 36 h
of lobaplatin treatment (Figure 5 and Table 3).

Discussion

The present study aimed at evaluating cytotoxicity of
lobaplatin in human HCC cells in vitro. Among the five
human HCC cell lines used, SMMC-7721 was the most
sensitive one to lobaplatin and hence was selected as the
cell model to reveal the underlying cytotoxic mechan-
isms of lobaplatin in terms of cell cycle kinetics. The
results suggested that (i) lobaplatin could inhibit the
proliferation of human HCC cells through arresting cell
cycle progression in G; and G,/M phases; (ii) The cell
cycle arrest on human HCC cells induced by lobaplatin
might be associated with the down-regulation of CDK1/
cyclin B and Rb/E2F complexes and the up-regulation
of CDK inhibitors.

Lobaplatin has shown favorable activity in various types
of cancers including breast, oesophageal, lung, and ovarian
cancers as well as CML [8]. In this study, lobaplatin exhib-
ited evident cytotoxicity to human HCC cells. Interest-
ingly, the p53 wild-type SMMC-7721 and Bel-7402 were
the most sensitive cell lines to lobaplatin than Huh-7
which was p53 mutant. It indicates an important role for
p53 phenotype in response to lobaplatin. However, the
fact that p53 wild-type HepG2 cell line was resistant to
lobaplatin suggests p53 phenotype is not the sole determi-
nants of sensitivity to lobaplatin for human HCC cells.
Moreover, characterized by p53 phenotype in these HCC
cell lines, lobaplatin appeared to have similar cytotoxicity
profiles to oxaliplatin which was active for advanced HCC
patients [5,6]. The results indicate that lobaplatin may
have potential value for the management of human HCC.
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Table 2 Genes/GAPDH ratio at the mRNA level (The densitometric data are presented as fold changes as compared

with their corresponding controls)

Treatment time cyclin B cyclin D1 CDK1 CDK4 CDKé6 CDC25C P53 pl1é p21 p27
0h 1 1 1 1 1 1 1 1 1 1

12 h 0.89 147 0.83 1.21 1.10 0.51 303 1.22 2.05 1.26
24 h 053 1.36 053 0.95 1.14 0.54 269 1.85 250 132
36 h 0.18 0.87 0.25 0.52 1.18 0.21 1.30 1.59 3.14 2.05
48 h 0.09 0.59 0.13 0.53 1.04 0.12 0.79 1.77 364 1.95

From the viewpoint of cell cycle, cytotoxicity of loba-
platin might be due to its ability to arrest cell cycle pro-
gression in our study. Upon incubation with lobaplatin,
SMMC-7721 cells were continuously arrested in G;
phase after 24 h of treatment. It is well known that the
complexes of CDK4, 6/cyclin D play an important role
in G;-S transition by phosphorylating Rb [12,13]. As a
consequence of Rb phosphorylation, E2F is released
from the Rb/E2F complex, thereby activating the expres-
sion of the genes that are required for S phase transition
[14]. Our results showed that the expression of CDK4,
6/cyclin D1 complexes was not affected by lobaplatin.
Thus, there may be other mechanisms contributed to
G; phase arrest in this study. For the reason that the
activity of CDKs is negatively controlled by binding
CDK inhibitors to CDK/cyclin complexes [15], we
examined the expression of CDK inhibitors both at the
mRNA and protein levels. The results indicated that
lobaplatin drastically enhanced the expression of p21
and p27, suggesting that CDKs activity may be inhibited
by these two CDK inhibitors. Furthermore, lobaplatin
down-regulated the expression of Rb/E2F complex and
consequently inhibited the expression of E2F target
genes. Meanwhile, the changes of pCDK4 and pRb were
revealed in accordance with this cell cycle variation.

The cell cycle analysis in this study revealed a promi-
nent G,/M phase arrest in the late course of lobaplatin
treatment. G,-M transition is partly governed by the
activity of CDK1, which is positively regulated by cyclin
B [16]. CDK1 activation is also controlled by depho-
sphorylation at Tyrl5 by CDC25C phosphatase [16,17].
Lobaplatin significantly down-regulated cyclin B, CDKI,
and CDC25C as well as pCDK1. Absence of cyclin B and
CDK1 after 36 h of treatment might have contributed to

G,/M phase arrest as a late event. The reduced expres-
sion of CDC25C may have contributed to the lower
CDK1 activity.

As an essential cell cycle regulator, the p53 tumor sup-
pressor plays an important role in the cellular response
to platinum agents. For example, 1,2-diaminocyclohex-
ane-acetato-Pt could arrest the wild-type p53 cells in G,
phase and the mutant p53 cells in G,/M phase in ovarian
cancer [18]. P53 transcriptionally activates a series of
genes involved in both G;-S and G,-M transitions in
response to genotoxic stress [19,20]. Among these genes,
p21 is a well-established negative regulator of G;-S tran-
sition [19]. It also inhibits the CDK1/cyclin B complex
and keeps G, arrest maintenance [20]. In the present
study, lobaplatin induced a rapid accumulation of p53
which occurred within 24 h of lobaplatin treatment. Con-
sistent with this finding, p21 was strongly up-regulated
with a 7-fold increase at 36 h after lobaplatin treatment.
The data suggest that the p53-p21 pathway may contri-
bute to G; and G,/M cell cycle arrests in this p53 wild-
type SMMC-7721 cells [21,22].

Being similar to cisplatin, lobaplatin induces intra-strand
DNA-Pt crosslinks [23] but somewhat less efficiently [24].
Lobaplatin shows incomplete cross-resistance with cispla-
tin [23] which suggest the former might have an underly-
ing action mechanism different from the latter. Cisplatin
can reduce the DNA synthesis rate with a subsequent
accumulation in S phase followed by G,/M phase arrest
[25-27]. The results in our study lobaplatin arrested
SMMC-7721 cells in G; and G,/M phases demonstrate
the existence of a different action mechanism of lobapla-
tin. Oxaliplatin, another third-generation platinum com-
pound, could activate G;-S checkpoint and block G,-M
transition completely in p53 wild-type HCT-116 colon

Table 3 Genes/GAPDH ratio at the protein level (The densitometric data are presented as fold changes as compared

with their corresponding controls)

Treatment time cyclin B cyclin D1 CDK1 pCDK1 CDK4 pCDK4 CDK6 CDC25C p53 pl16 p21 p27 E2F Rb  pRb
0h 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12 h 094 117 0.79 1.50 115 0.75 1.21 1.25 416 087 215 158 114 098 101
24 h 047 128 0.59 0.39 0.95 0.51 1.04 1.58 241 166 532 204 081 039 055
36 h 0.26 0.77 0.23 0.15 0.56 0.36 1.1 0.63 157 139 700 300 046 045 029
48 h 0.07 0.64 0.09 0.02 0.65 0.19 1.19 047 063 174 563 19 040 039 034
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Figure 4 Lobaplatin up-regulated p53, p21, and p27. Expression
of p53 and CDK inhibitors was determined at 0, 12, 24, 36, and 48
h in SMMC-7721 cells after 145 pug/ml lobaplatin treatment. GAPDH
as a control. (A) The mRNA level. (B) The protein level.

carcinoma cells [28]. As revealed in this study, the effect of
lobaplatin on cell cycle seems similar to that of oxaliplatin.
Further studies should be conducted to examine whether
the effect of lobaplatin on G;-S transition is associated
with its incomplete cross-resistance with cisplatin.

In conclusion, the present study demonstrated the
encouraging efficacy of lobaplatin against human HCC
in vitro. Lobaplatin could arrest cell cycle in G; and G,/
M phases which was possibly associated with the down-
regulation of cyclin B, CDK1, CDC25C, pCDKI1,
pCDK4, Rb, E2F, and pRb, and up-regulation of p53,
p21, and p27. These alterations of cell cycle kinetics
might contribute to a better understanding for cytotoxi-
city of lobaplatin and facilitate its potential use for the
management of HCC.
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Figure 5 Lobaplatin down-regulated Rb, E2F, and pRb. The
protein expression of Rb, E2F and pRb was examined at 0, 12, 24,
36, and 48 h in SMMC-7721 cells after 1.45 pg/ml lobaplatin
treatment. GAPDH as a control.
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