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Abstract: Tuberculosis (TB) is a major public health problem worldwide, and the burden of drug-resistant TB is rapidly increasing. 
Although there are literatures about the Mtb biofilms, their impact on immune responses has not yet been summarized. This review 
article provides recent knowledge on Mycobacterium tuberculosis (Mtb) biofilm-immunity interactions, their importance in 
pulmonary TB pathology, and immune-based therapy targeting Mtb biofilms. Pellicle/biofilm formation in Mtb contributes to 
drug resistance, persistence, chronicity, surface attachment, transfer of resistance genes, and modulation of the immune response, 
including reduced complement activation, changes in the expression of antigenic proteins, enhanced activation of T-lymphocytes, 
elevated local IFNγ+ T cells, and strong antibody production. The combination of anti-TB drugs and anti-biofilm agents has recently 
become an effective strategy to improve TB treatment. Additionally, immune-targeted therapy and biofilm-based vaccines are 
crucial for TB prevention. 
Keywords: Mycobacterium tuberculosis, immune response, biofilm, treatment

Background
Mycobacterium tuberculosis (Mtb), an intracellular pathogen that causes tuberculosis (TB), continues to be 
a global public health concern.1 According to the latest report from the World Health Organization (WHO), 
approximately 10.6 million people received a TB diagnosis in 2021, an increase of 4.5% from 2020, and 
1.6 million people died of the disease (including 187,000 HIV-positive individuals).2 The highest percentage of 
TB cases was found in the WHO regions of Southeast Asia (44%), Africa (25%), and the Western Pacific (18%).3 

Between 2020 and 2021, the burden of drug-resistant TB increased by 3%, with 450,000 new cases of rifampicin- 
resistant TB in 2021.2,4 The mechanisms of Mtb survival under antibiotic therapy include the acquisition of gene 
mutations conferring drug resistance, cell wall structure alteration, production of certain efflux pumps, and biofilm 
formation.5

Costerton et al first described the modern concept of biofilm in 1978.6 Today, as reviewed by Flores-Valdez et al, 
research on Mtb biofilms/pellicles is receiving more attention, which is engaged in antibiotic resistance, persistence, 
chronicity, surface attachment, and transfer of resistance genes.7,8 However, the immunological effects of Mtb biofilms 
have not yet been thoroughly investigated. Studying about biofilm-immunity interactions is crucial to improve TB 
treatment, modify host immunity, and applying new vaccine strategies. In this review article, Mtb pellicle/biofilm 
formation, their interaction with host immunity, and their role in TB pathology are described. Moreover, indications 
for the application of immune-based therapies and biofilm-based vaccines targeting Mtb biofilms to enhance host defense 
mechanisms against TB infection are discussed.
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Literature Search Method
This narrative review of recent literature was performed using Google Scholar and PubMed databases on available 
articles published without publication year restrictions. The following keywords were used: (“immune response” OR 
“immunity” OR “innate immunity” OR “adaptive immunity” OR “antibody” OR “vaccine”) AND (“tuberculosis” OR 
“TB” OR “Mycobacterium tuberculosis” OR “M. tuberculosis” OR “Mtb” OR “pulmonary tuberculosis”) AND (“bio-
film” OR “pellicle”). Although the search and study selection were not conducted systematically, the articles were 
restricted to the English language and full text, and the references of the included literature were also assessed. Search 
results were precisely summarized using the following headings: “biofilm formation in Mtb”, “how Mtb biofilms involve 
and affect the lung phenomenon?”, “Mtb biofilms and the immune system”, “current solutions for Mtb biofilms”, and 
“application of biofilm-based vaccines: future perspectives”.

Biofilm Formation in Mtb
Recently, research on mycobacterial biofilms revealed that M. tuberculosis can form multicellular biofilms composed of 
bacteria and the extracellular polymeric substances (EPSs) they produce, including proteins, DNA, and 
polysaccharides.9,10 Mycobacteria can aggregate on surfaces (biofilms), and Mtb typically grows in the liquid–air 
interface (pellicles), which is related to the distinctive features of the mycobacterial cell wall, including the high lipid 
content that enables bacteria to live in unfavorable environments.11 Beginning with bacterial adhesion, Mtb biofilms 
develop in a series of stages including surface attachment, sessile growth, matrix production, and dispersal.12 It is 
regulated by molecules including polysaccharides, structural proteins, glycopeptidolipids, GroEL1 chaperones, shorter- 
chain mycolic acids, genetic material, and environmental conditions (nutrients, ions, and carbon sources).9,11

The presence of biofilms lowers the susceptibility of Mtb to drugs, which is supported by a study demonstrating that 
the pellicle-defective Mtb1mma A4 mutant strain is more susceptible to rifampicin in vitro.13 Leukocyte extracts favor 
Mtb biofilm production and drug tolerance in vitro.14 Intracellular thiol reductive stress induces Mtb biofilm develop-
ment in vitro, which includes drug-tolerant but metabolically active bacteria.15 Moreover, mutation analysis revealed that 
isonitrile lipopeptide (INLP) is essential for the architectural formation of Mtb biofilms, providing insight into the 
resilience of biofilms to antibiotic exposure and identifying INLP as a possible biomarker.16 Polyketide synthase (Pks1) 
gene and Mtb protein tig (Rv2462c) are involved in Mtb biofilm formation.17,18 The Mtb disease reactivation and 
inhibition of antimicrobial treatment attributed to the smoking-induced enhancement of biofilm formation.19 

Additionally, the Protein O-mannosyltransferase Rv1002c decreases cell permeability and promotes biofilm formation.20

How Do Mtb Biofilms Involve and Affect the Lung Phenomenon?
Pulmonary infection with Mtb causes granulomatous lesions that develop in lung tissue. Inhalation of Mtb droplets leads 
to the formation of granuloma in the alveolar macrophages at 4 weeks post-infection (termed original granulomas) and 
then becomes mature. A granuloma is a dense immunological structure primarily composed of macrophages at the center 
that can differentiate into other cells such as foamy macrophages and multinucleated giant cells with lipid droplets. The 
periphery of the granuloma is comprised of T and B lymphocytes. The Mtb bacilli can form a biofilm structure at the 
periphery of the TB granuloma near T and B lymphocytes, which is composed of an extracellular matrix. Those Mtb 
biofilms interferes with anti-TB drugs (Isoniazid and Rifampicin), affect host defense mechanisms by hindering the 
entrance of immune cells, and they are a source of TB persistent cells.21

The growth of Mtb pellicles/biofilms in lung cavities could be clinically essential in the pathogenesis of TB 
contributing to caseous necrosis and cavity formation in lung tissue, Mtb persistence in the infected host, and expansion 
of drug tolerance.22 During the transmission of Mtb, expectorated aerosols can harbor single cells, which may be shed 
from pellicle-like biofilms growing in the Mtb cavities.23,24 These mycobacteria can persist for a long time, possibly 
within pellicles/biofilms, and hidden from immune cells. It has been hypothesized that the extracellular Mtb micro-
colonies seen in animal models are biofilms that develop in vivo.25,26 Some sources suggest that pellicles may be present 
in the lung–air interface when humans develop secondary tuberculosis.22 Furthermore, a study found that the ability to 
form biofilms is common among Mtb isolates, suggesting that this trait is important for TB propagation or persistence.17
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Mtb Biofilms and the Immune System
Innate Immune Responses
Innate immunity, the non-specific defense, fights infections from the moment of first contact without previous exposure.27 

The earliest innate immune cells involved in lung infection primarily include macrophages (MΦs), dendritic cells, 
monocytes, and neutrophils, which readily phagocytose and degrade Mtb.28 Although there is a higher clinical sig-
nificance of biofilms, studies at large have focused on the immune response to microorganisms in the planktonic state 
than on pathogenic biofilms.29 Therefore, it is imperative to comprehend the interplay between Mtb biofilms and defense 
mechanisms to identify novel targets and approaches for immune intervention against biofilm-associated pulmonary 
complications.

MΦ, neutrophils, dendritic cells, natural killer cells, mast cells, and complement are the main players of innate 
immunity and airway epithelial cells also participate in the defense effort against Mtb and could be considered 
components of innate immunity.30 Recently, shreds of evidence on biofilm-immunity interactions among different 
pathogenic bacteria have been developed in vitro and in vivo experimental models. Kaya et al established an in vitro 
host cell-biofilm interaction model and demonstrated that not only Pseudomonas aeruginosa biofilms induced higher 
activation and response of human peripheral blood mononuclear cell response (PBMC), but also PBMC or their 
supernatants significantly increased biofilm-associated P. aeruginosa, indicating a complex reciprocal relationship 
between host blood cells and the bacterium.31 Another study by Gries et al using a novel murine model of 
Staphylococcus aureus implant-associated infection demonstrated that S. aureus biofilms inhibit neutrophil chemotaxis, 
redirecting their migratory patterns to prevent biofilm invasion.32 In vitro, biofilms aid Mycobacterium avium complex in 
epithelial cell invasion, protect from phagocytosis, and cause premature apoptosis in macrophages.33

Similarly, Mtb pellicles/biofilms also had an interaction with host immunity.8 The development of biofilm made Mtb 
more resilient to host immunity and increased the difficulty of its treatment and cure.34 Small molecules that bacteria 
release when they change from planktonic to biofilm-associated might exacerbate inflammation, cause cell death, or even 
result in necrosis.35 Biofilms minimize the activity of both polymorphonuclear neutrophils and macrophages. 
Additionally, in the presence of these cells, biofilm formation is actively enhanced, and components of the host immune 
cells are assimilated into the EPS matrix.35 The TB bacilli in the lung cavities are also separated from the host’s immune 
defense by the cavity wall that keeps the penetration of viable cells.36

The role of the complement cascade in infection and Mtb disease progression is largely unknown, but C5 and C7 
components likely play a protective role, and high expression of C1q correlates with worsening clinical status and is 
associated with latent TB and active TB, but its significance remains uncertain in terms of pathogenesis.37 A study 
highlighted the role of carbohydrate alterations during the biofilm growth of Mtb and subsequent modulation of the innate 
immune response through avoiding of phagocytosis due to a reduced complement activation with lower C3b/iC3b 
deposition.38

Adaptive Immune Responses
The adaptive immune response, also known as specific resistance, recognizes identical or similar pathogens through 
memory cells.39 In planktonic bacteria, the activation of adaptive immunity often results in the clearance of the infection, 
due to the combined activity of the innate and adaptive immune reactions. But in the case of biofilm infections, it is very 
difficult to clear the pathogen.40 Dendritic cells are essential in linking the innate and adaptive immune systems and have 
the exclusive capacity to prime naïve T cells into subsequent Th1, Th2, or Th17 cells and responses.41

The protective immunity against Mtb has been suggested to be associated with polyfunctional T cells. Notably, the 
quantity of T cells specific to Mtb that generate a mix of IFN-gamma, IL-2, and/or TNF-alpha has been observed to be 
associated with the mycobacterial load; additionally, other research has connected the existence of this particular 
functional profile as a sign of TB disease activity.42 It is generally accepted that CD8+ T cells contribute to immunity 
and protection, even if their exact role in tuberculosis (TB) is less understood than that of CD4+ T cells.43 The CD4+ 
T cell helps promote CD8+ T cell effector functions and prevents exhaustion, and the helped CD8+ T cells restrict 
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intracellular mycobacterial growth. The synergy between CD4+ and CD8+ T cells promotes Mtb survival during murine 
tuberculosis.44

A study indicated that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8 +T cells 
contribute to host immune responses against Mtb infection.45 Chávez-Galán et al reported that TB patients had a high 
frequency of CD8+ cells in peripheral blood.46 The relative and absolute number of the effector memory type 1 CD3 
+CD8+ cells increased in the peripheral blood of patients with pulmonary tuberculosis compared to the control group.47 

Immunization with a BCG1416c mutant raises IFN-gamma+ in CD4+ and CD8+ lymphocytes.48 In comparison to the 
BCG wild type, the BCG1419c and BCG1416c strains grown as surface pellicles, which is the condition used to 
manufacture the BCG vaccine, both altered the expression of antigenic proteins like DnaK, HbhA, PstS2, 35KDa antigen, 
GroEL2, as well as AcpM, a protein involved in the synthesis of mycolic acids, molecules relevant to modulating 
inflammatory responses.48

Although the exact role of humoral adaptive immunity in tuberculosis remains unknown, new research indicates that 
humoral immunity and B cells may be able to control the immune response to a variety of intracellular infections, 
including Mtb.49 According to a study, mice exposed intradermally to an exoproteome extract of an exopolysaccharide- 
dependent S. aureus biofilm developed a humoral immune response and produced IL-10 and IL-17.50 Moreover, 
vaccination of BALB/c mice with immune structural proteins extracted from Mtb biofilm elicited a strong humoral 
immune response with high IgG1 and IgG2a titers and showed a higher Th1 response relative to a control group that had 
more Th2/Treg responses51 (Table 1).

Current Solutions for Mtb Biofilms
The microbial biofilm serves as the best model for analyzing the effectiveness of antibacterial therapies. Scientists have 
shown the effects of different agents against many Mycobacterium species, but in this review, we have focused on recent 
targets against Mtb biofilms (Table 2). As reviewed by Oluyori et al, the administration of anti-TB drugs along with anti- 
biofilm agents such as bioactive natural products and synthetic analogs has been a recent effective strategy to improve TB 
treatment.55 In a study of the nanobiotechnology approach, the biofilm formation of Mtb is inhibited by titanium dioxide 
(TiO2) nanoparticles, and an increase in TiO2 nanoparticle concentration was found to cause a three- to four-fold 

Table 1 The Relationship Between Mtb Pellicle/Biofilm and Immune Response

Author, Year Experimental 
Model

Finding Ref

Mishra et al, 2023 C3HeB/FeJ mice Biofilm-like intracellular Mtb cords compress host cell nuclei, suppress immune 

signaling, and reduce tissue inflammation.

[52]

Keating et al, 2021 In vitro assay Alterations in Mtb biofilm cell wall carbohydrates reduced complement 

activation with lower C3b/iC3b deposition.

[38]

Segura- Cerda et al, 2018 BALB/c mice In comparison to the BCG Pasteur vaccinated group, the CD4+ T and  

CD8+ T lymphocytes recovered from the BCGDBCG1416c vaccinated group 

displayed a larger proportion of IFN-c+ T cells in response to the purified 
protein derivative.

[48]

Pedroza-Roldán et al, 2016 BALB/c mice Mice vaccinated with the BCGΔBCG1419c strain, which generates more 
pellicles in vitro, showed reduced bacterial burden in the lungs of the mice, 

improved activation of some T lymphocytes, and higher local IFNγ+ T cells.

[53]

Kerns et al, 2014a Guinea pig Guinea pigs infected with Mtb produce host humoral response against specific 

proteins present in vitro-grown biofilms.

[54]

Kerns, 2014b BALB/c mice Immunogenic proteins extracted from a biofilm for the formulation of a sub-unit 

vaccine elicited a strong IFN-γ response and humoral immune response with 

high IgG1 and IgG2a titers against Mtb.

[51]
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decrease in mycobacteria metabolic activity.56 The inhibition of the trehalose catalytic shift, which is required for Mtb 
persister formation in the biofilm model, is a viable strategy to target persisters using trehalose analogs.57 A gene 
expression profile analysis showed inhibition of the Rv1217c and Rv1218c gene expression repressed Mtb biofilm 
formation.58

Application of Biofilm-Based Vaccines: Future Perspectives
Nowadays, several vaccine candidates for the prevention of TB have been identified. However, no effective vaccine is 
available to prevent infection with drug-resistant Mtb strain.67 Despite the significance of biofilms in disease, vaccines 
are typically prepared from bacteria grown as planktonic cells in the laboratory. Vaccines based on planktonic bacteria 
may not be enough to protect biofilm-associated infections.68 Several studies demonstrated new strategies against 
Mycobacteria biofilms to enhance patient outcomes and treatment effectiveness. This narrative review gives insight 
into preparing vaccines from biofilm sources in addition to planktonic cells. Finding viable vaccines and immunological 
therapies to end TB requires examining the immune response to Mtb biofilms.69

By applying immunology to compare the cellular and humoral immune responses mounted by immunized subjects/ 
models in vivo and/or ex vivo toward particular components relevant to biofilm production, novel vaccine candidates 
may arise from specific analyses around the biofilm mode of growth.70 A five-sub-unit biofilm vaccine formulation 
elicited a strong immune humoral response and reduced lung burden in animals vaccinated with the purified antigen 
subunits and DDA/MPL adjuvant.51 Further confirmation of those vaccines is needed for their application in vivo. 
Vaccines prepared from Mtb biofilms will be more efficacious for protecting in vivo biofilm growth during the 
pathogenesis of TB and more effective against drug-resistant strains, and different stages of the clinical disease such 
as the chronic state.

Conclusion
Mycobacteria can aggregate on surfaces as biofilms and they tend to develop as pellicles at the liquid–air interface. 
According to the reports, biofilms can stimulate a unique immune response than planktonic cells. The Mtb pellicles/ 

Table 2 Key Studies Reported Anti-Biofilm Inhibitors of Mtb

Author, Year Finding Ref

Kalera et al, 2024 Azidodeoxy and aminodeoxy -D- trehalose analogs inhibit the trehalose catalytic shift, which is required for Mtb 
persister formation in the biofilm model.

[57]

Kumar et al, 2022 D-cycloserine and its metabolite hydroxylamine have a potent anti-Mtb biofilm activity. [59]

Mashele et al, 2022 All anti-TB medication combinations containing Clofazimine demonstrated synergistic inhibitory and bactericidal 

effects in biofilm-forming cultures, especially when combined with Rifampicin and Isoniazid.

[60]

Bekier et al, 2021 Derivatives of imidazole-thiosemicarbazide can enter human macrophages infected with Mtb, profoundly inhibiting 
the intracellular proliferation of tubercle bacilli and suppressing the production of Mtb biofilms.

[34]

Jiang et al, 2019 Compound 1, Arisaema sinii’s active ingredient, can destroy mature biofilms, disperse preformed biofilms, and inhibit 
the production of new biofilms in a dose-dependent manner.

[61]

Kumar et al, 2019 Cyclosporine-A, acarbose, or GaNP suppressed Mtb H37Rv biofilm formation. [62]

Wang et al, 2019 Recombinant CwlM treatment decreased the development of M. smegmatis and Mtb’s biofilms while increasing their 

autolytic potential.

[63]

Ackart et al, 2014b 2-aminoimidazole derivatives inhibit in vitro-grown Mtb biofilms. [64]

Dalton et al, 2014 Ascorbic acid (vitamin C) can suppress and kill Mtb biofilms. [65]

Wang et al, 2013 The bacillary load in the lungs of infected BALB/c mice is decreased by TCA1, a tiny chemical that suppresses Mtb 
biofilms in vitro.

[66]
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biofilms alter both innate and adaptive immune responses such as reduced complement activation with lower C3b/iC3b 
deposition, change in the expression of antigenic proteins, a better activation of specific T lymphocytes, increased local 
IFN-gamma+ T cells, and strong antibody production. A combination of anti-TB drugs with anti-biofilm agents has been 
a recent effective strategy to improve TB treatment. Additionally, immune-targeted therapy and biofilm-based vaccines 
should be considered as a new candidate to prevent TB.
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