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Exposure to environmental variables including declining air quality and increasing temperatures can 
exert detrimental effects on human health including acute exacerbations of chronic diseases. We aim 
to investigate the association between these exposures and acute health outcomes in a rural community 
in Colorado. Meteorological and adult emergency department visit data were retrospectively collected 
(2013-2017); for asthma outcomes, additional data were available (2003-2017). Daily environmental 
exposure data included PM10, maximum daily temperature (MDT), and mean humidity and precipitation. 
Total daily counts of emergency department (ED) diagnoses for myocardial infarction, congestive heart 
failure, urolithiasis, and exacerbation of chronic obstructive pulmonary disease (COPD) and asthma, were 
calculated during the study period. Time series models using generalized estimating equations were fit 
for each disease and included all four environmental factors. Between 2013 and 2017, asthma and COPD 
exacerbation accounted for 30.8% and 25.4% of all ED visits (n=5,113), respectively. We found that for 
every 5˚C increase in MDT, the rate of urolithiasis visits increased by 13% (95% CI: 2%, 26%) and for 
every 10μg/m3 increase in 3-day moving average PM10, the rate of urolithiasis visits increased by 7% (95% 
CI: 1%, 13%). The magnitude of association between 3-day moving average PM10 and rate of urolithiasis 
visits increased with increasing MDT. The rate of asthma exacerbation significantly increased as 3-day, 
7-day, and 21-day moving average PM10 increased. This retrospective study on ED visits is one of the 
first to investigate the impact of several environmental exposures on adverse health outcomes in a rural 
community. Research into mitigating the negative impacts of these environmental exposures on health 
outcomes is needed.
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INTRODUCTION

The negative health impacts of climate-related expo-
sures such as heat and air pollution are well established 
[1]. A large proportion of existing studies on the effects 
of climate-related exposures on cardiovascular, pulmo-
nary, and renal outcomes have been conducted on urban 
populations [2]. More research on relationships between 
human health and environmental exposures in rural areas 
is needed. Rural areas are especially vulnerable to these 
effects due to an aging population, a higher prevalence 
of outdoor workers and laborers, exposure to wildfires, 
and several other social determinants of health including 
access to medical care and healthy food [3,4]. One such 
rural community is the San Luis Valley (SLV), a high-al-
titude community located in south central Colorado cov-
ering approximately 8,000 square miles of the Colorado 
Plateau. The SLV is the highest mountain plain desert in 
North America located between the Sangre De Cristo and 
San Juan mountain ranges. It is approximately the size of 
Connecticut with an average elevation of 7,500 feet. This 
bi-ethnic community is home to approximately 46,000 
residents and experiences the highest poverty level in 
Colorado [5,6]. The community experiences high rates 
of chronic diseases including diabetes, chronic kidney 
disease, and asthma in an aging population with 19.9% of 
people being 65 years of age or older [5,7,8].

Concurrently, the SLV is experiencing the impacts 
of climate change including an increase in the annual 
temperature by 3.2°F since 1962, leading to declining 
snowpack in the past 20 years [9]. This has created en-
vironmental conditions supporting sustained drought 
which decreases the availability of water resources. Re-
duced ground water and surface water can be associated 
with a moisture deprived vadose zone, which prevents 
the growth of ground vegetation playing a key role in 
preventing the uptake of particulate matter by the wind 
[10,11]. Concurrent increase in wildfires contributes to 
increase in airborne particulate matter (PM) and PM 
deposits on snowpack and create a cycle of cumulative 
effects. Particulate deposits on snowpack reduces albedo, 
which accelerates seasonal snowmelt and further exacer-
bates the annual decrease in ground moisture [12,13] – 
further increasing the impacts of regional climate change.

Increasing ambient temperatures have been linked 
to higher incidence of heat-related illness and may entail 
numerous secondary consequences for healthcare sys-
tems [2,14-17]. Increases in the exacerbation of acute-on-
chronic illnesses such as cardiovascular disease (CVD), 
atherosclerosis, and congestive heart failure (CHF) have 
also shown to be of concern during heat waves [17-19]. 
Furthermore, decreased air quality can trigger acute-
on-chronic cardiovascular and respiratory episodes as 
well. Particularly concerning is the effect of increasing 

amounts of particulate matter on individuals with chronic 
respiratory disease and pre-existing CVD [20-26]. Addi-
tionally, acute diseases such as urolithiasis have also been 
associated with environmental factors such as heat and 
humidity; stone formation in the renal collecting system 
may arise from heat-related decreases in urine volume 
and increases in the concentration of lithogenic substrate 
in the urine, although the mechanism is likely multifac-
torial [27-29]. Moreover, pulmonary diseases such as 
asthma and COPD have been associated with heat events 
and air quality [30-36].

In terms of secondary consequences for healthcare 
systems, surges in demand for emergency medical ser-
vices due to acute illness or exacerbation of chronic ill-
ness can result in numerous adverse healthcare worker 
and patient-oriented outcomes including worker fatigue, 
prolonged boarding times, staffing shortages, and poor 
patient outcomes [37].

Presently, there exists a knowledge gap in under-
standing the effects of environmental exposures related 
to climate and air quality on acute and acute-on-chronic 
diseases in rural populations. With research identifying 
multiple factors such as PM and other pollutants contrib-
uting to air quality and directly impacting health [22], we 
can anticipate decreased air quality due to higher ambient 
temperatures and increased aridity induced by climate 
change that will allow for additional mobilization of sur-
face dust and other course particulates. We proposed this 
study to clarify the knowledge gap by looking at ED and 
environmental data from the SLV region.

METHODS AND PROCEDURES

Study Design
This study consists of investigating retrospectively 

collected time series data on environmental exposures 
(temperature, humidity, precipitation, air quality) and 
adult emergency department visits for acute and acute-
on-chronic health outcomes in the SLV of Colorado be-
tween January 2013 and December 2017. Data from two 
EDs were used, the first located in Alamosa, which has 
the largest population density in the SLV, with the second 
ED located 15 miles south in La Jara (which is nearly 
identical in climate).

Meteorological Data
Publicly available meteorological data from the Na-

tional Center for Atmospheric Research (NCAR) and the 
National Oceanic Atmospheric Association (NOAA) was 
used for this study. Air quality monitors for particulate 
matter ≤10 µm in diameter (PM10) located in Alamosa 
City are maintained by the Colorado Air Pollution Con-
trol Division (CAPCD) within the Colorado Department 
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of Public Health and Environment (CDPHE). Daily mea-
surements of PM10 (µg/m3), maximum daily temperature 
(˚C), mean humidity (percent), and mean precipitation 
(mm) were considered. PM10 was measured by two sep-
arate monitors within the study area (one at Adams State 
University and one at a local Municipal Building), there-
fore, the average between the two monitors was used to 
assess PM10 exposure. All other environmental exposures 
were measured from the meteorological station located at 
the SLV Regional Airport 2 miles south of Alamosa. Each 
environmental variable was incorporated into statistical 
models as a continuous measure.

Health Data
Following approval from the Colorado Multiple In-

stitutional Review Board (COMIRB), data on emergency 
room visits were obtained from SLV Health which man-
ages both EDs in the study area. International Classifi-
cation of Diseases (ICD) version 9 and 10 were used to 
identify outcomes of interest, which included myocardial 
infarction (MI) (ICD-9 410 series, ICD-10 I21-I22 se-
ries), stroke (ICD-9 430-437, ICD-10 I60-I63 series), ex-
acerbation of CHF (ICD-9 428 series, ICD-10 I50 series 
and I11.0), asthma exacerbation (ICD-9 493 series, ICD-
10 J45 series), COPD exacerbation (ICD-9 491, 492, and 
496 series, ICD-10 J41-J44 series), and urolithiasis (ICD-
9 599.6, 599.69, 592.0-1, 592.9, 593.89, 274.11, 753.2, 
788.0, ICD-10 N20-N23 series). Patient-level data were 
obtained from January 1st, 2013 to December 31st, 2017 
for subjects over 18 years of age. Variables included date 
of visit, ED facility (Alamosa or Conejos County), sex, 
age, and diagnosis for the underlying cause of visit. Total 
daily counts of each diagnosis of interest were calculated 
over the study period and used as the outcome in sub-
sequent models. Additional data on asthma exacerbation 
were available from January 1st, 2003 to December 31st, 
2012 and included in this analysis to identify any poten-
tial trends spanning beyond the available climate data.

Statistical Analysis
Each outcome of interest consisted of daily total 

counts during the study period, thus, Poisson models 
were used to fit each time series, using generalized esti-
mating equations (GEE) and a first-order autoregressive 
covariance structure to account for serial correlation; a 
scale parameter was included to account for over-/un-
der-dispersion. Model-based standard errors were used 
for all estimates. All four environmental factors, PM10, 
maximum daily temperature, humidity (albeit low), and 
precipitation were included in each model. Also in each 
model, seasonal health trends (eg, influenza) were ac-
counted for by including month, while weekly trends in 
ED visits were accounted for by including day of the week 

(both as class variables). Cubic splines for year were em-
ployed to give the model flexibility and account for any 
time trends not associated with environmental exposure 
or those accounted for by month or day of week. Knots 
were placed at one-year intervals starting at 6 months to 
account for approximate 2-year cycles in ED visits. Each 
outcome was modeled using PM10 with a specific lag 
structure: same-day air pollution (lag 0), 1-day lagged, 
2-day lagged, 3-day moving average, or 7-day moving 
average. Models were also fit for threshold based PM10 
(≥50 µg/m3 vs <50 µg/m3 and ≥100 µg/m3 vs <100 µg/
m3) for all lag structures. It should be noted that 3-day 
and 7-day moving averages included the current day and 
days leading up to the current day. Finally, temperature 
was further examined by including 1-day lagged MDT 
in models with PM10 at various lag structures, as well 
as models that included the PM10-by-MDT interaction 
(lag 0 MDT with various PM10 lags). Note, the primary 
follow-up period for this study was January 1st, 2013 to 
December 31st, 2017 since ED data for all outcomes of 
interest were available during this period. For asthma 
exacerbations, ED data was available starting January 
1st, 2003 which allowed for a 15-year period analysis for 
this specific outcome. As a sensitivity analysis and given 
the extended study period, 14-day, 21-day, and 28-day 
moving averages for PM10 were used for modeling asth-
ma exacerbations over 15 years. Observations for 14-day, 
21-day, and 28-day moving averages were weighted by 
the number of PM10 measurements used for each moving 
average. Statistical significance was considered at α=0.05 
significance level. Analysis was carried out using SAS 
version 9.4 (Cary, NC: SAS Institute Inc, 2013) and R 
version 4.1.1 (R Foundation for Statistical Computing, 
Vienna, Austria, 2021).

RESULTS

From January 2013 to December 2017, there were 
2,240 patients who visited EDs in the SLV with a total 
of 5,113 disease diagnoses of interest. Table 1 shows the 
demographic characteristics for all asthma exacerbations 
(n=1,574), CHF (n=653), COPD (n=1,299), MI (n=388), 
stroke (n=270), and urolithiasis (n=929) diagnoses during 
the study period. Average patient age differed across diag-
noses where asthma exacerbations had the youngest mean 
age at 38.2 years (SD=22.1) and congestive heart failure 
had the oldest mean age at 75.6 years (SD=15.2). The 
distribution of sex across diseases also differed such that 
myocardial infarction had the largest disparity between 
male and female patients (63.1% male) and stroke had 
the smallest disparity between male and female patients 
(53% male). Across all diseases, the primary emergency 
room was Alamosa Regional Medical Center.

Table 2 shows the mean (5th-95th percentile) PM10, 
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study period to include asthma exacerbation diagnoses 
from January 1st, 2003 to December 31st, 2012, we ob-
served an increased rate of asthma exacerbations with 
increasing PM10 (Figure 1). Each 10 µg/m3 increase of 
1-day lagged and 2-day lagged PM10 was associated with 
a 1% (95% CI: 0.02%, 2%) and 1% (95% CI: -0.4%, 2%) 
increased rate of asthma exacerbation diagnoses, respec-
tively. In terms of moving averages, PM10, each 10 µg/
m3 increase was associated with increased rate of asthma 
exacerbation diagnoses, respectively, at 2% (95% CI: 1%, 
4%) for 3-day, 3% (95% CI: 0.4%, 6%) for 7-day, 2% 
(95% CI: -2%, 6%) for 14-day, and 5% (95% CI: 0.4%, 
10%) for 21-day. The 28-day moving average produced 
a similar RR compared to the 21-day moving average. 
However, the RR for 28-day moving average PM10 was 
not statistically significant (p = 0.07).

Given the relationship between MDT, PM10, and inci-
dence of urolithiasis diagnoses, we examined the interac-
tion between PM10 and MDT when modeling urolithiasis 
diagnosis counts. While the PM10*MDT interaction was 
negligible for 1-day-lagged PM10 (p=0.43), a significant 
positive interaction existed for the 3-day moving average 
of PM10 (p=0.04). For the latter, a 5% increase in rate of 
urolithiasis occurred for each 10 µg/m3 increase of PM10 
for MDT at its minimum, whereas it increased to 9% at 
the maximum MDT (Appendix A: Table S1).

MDT, humidity, and precipitation across the four differ-
ent seasons during the study period. Mean daily PM10 
peaked during the spring months with an average 24.4 
µg/m3 while max daily temperature peaked during the 
summer months at an average 26.3˚C. Daily humidity 
was highest during the fall months at an average 44.1% 
whereas daily precipitation was highest during summer at 
an average 1.1 mm/day.

Associations between each environmental variable 
and incidence rates for diseases of interest are shown in 
Table 3 based on GEE models. In most cases, increases 
in environmental factors were associated with an increase 
in disease diagnosis rates although in almost every case 
this relationship was not statistically significant. Interest-
ingly, each 5˚C increase in maximum daily temperature 
was associated with a 13% increase in the mean rate of 
urolithiasis diagnoses (RR=1.13; 95% CI: 1.02, 1.26).

Table 4 shows the association between 1-day lagged, 
2-day lagged, 3-day moving average, and 7-day moving 
average PM10 values and disease diagnosis rates. An 
increase in 10 µg/m3 of PM10 was associated with a 4% 
increase in the rate of urolithiasis diagnoses the following 
day (RR=1.04; 95% CI: 1.00, 1.07). Additionally, a 10 
µg/m3 increase in the 3-day moving average of PM10 was 
associated with a 7% increase in the rate of urolithiasis 
diagnoses (RR=1.07; 95% CI: 1.01, 1.13). Extending the 

Table 1. Population Characteristics by Disease Classification

Note: CHF = Congestive Heart Failure; COPD = Chronic Obstructive Pulmonary Disease; MI = Myocardial Infarction; SD = Standard 
Deviation; ED = Emergency Department.

Characteristic Asthma CHF COPD MI Stroke Urolithiasis
Total count, n 1,574 653 1,299 388 270 929
Age in years, mean (SD) 38.2 (22.1) 75.6 (15.2) 70.2 (12.3) 70.7 (12.6) 72.1 (17.2) 49.1 (16.7)
Sex, n (%)
   Female 900 (57.2) 294 (45) 533 (41) 143 (36.9) 143 (53) 431 (46.4)
   Male 674 (42.8) 359 (55) 766 (59) 245 (63.1) 127 (47) 498 (53.6)
Hospital, n (%)
   Conejos County Hosp. ED 366 (23.3) 151 (23.1) 274 (21.1) 41 (10.6) 38 (14.1) 112 (12.1)
   Alamosa Regional Med. ED 1,162 (73.8) 391 (59.9) 883 (68) 311 (80.2) 216 (80) 815 (87.7)
   Admission to Hospital 46 (2.9) 111 (17) 142 (10.9) 36 (9.3) 16 (5.9) 2 (0.2)

Table 2. Mean (5th, 95th percentile) for Environmental Variables by Season

Note: MDT = Maximum Daily Temperature; ^Seasons were categorized as Winter (Dec., Jan., Feb.), Spring (Mar., Apr., May), 
Summer (Jun., Jul., Aug.), and Fall (Sep., Oct., Nov.)

Season^
Variable Winter Spring Summer Fall
PM10 (μg/m3) 20.5 (6.5, 42.5) 24.4 (7.0, 59.0) 22.2 (11.0, 42.5) 18.8 (8.0, 34.0)
MDT (°C) 2.7 (-5.9, 11.9) 14.7 (5.3, 22.6) 26.3 (22.0, 30.0) 17.0 (5.1, 26.4)
Humidity (%) 40.5 (21.0, 59.9) 23.8 (16.7, 42.6) 30.4 (17.7, 49.3) 44.1 (27.2, 63.8)
Precipitation (mm) 0.4 (0.0, 2.7) 0.7 (0.0, 4.7) 1.1 (0.0, 5.9) 0.7 (0.0, 4.3)
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weeks to months [38]. That said, previous epidemiologic 
studies of stone disease in relation to high ambient tem-
perature have noted that the maximum risk of emergency 
department presentation for urolithiasis occurs within 3 
days of exposure [39,40], which likely relates to concen-
tration of lithogenic solute in the renal collecting system 
(due to dehydration) and rapid progression of stone 
growth. Though our finding is best explained by this 
mechanism, it is also possible that our models may not 
capture additional factors that may contribute to an indi-
vidual’s proclivity for stone disease. For example, dietary 
habits – such as frequent ingestion of foods enriched in 
sodium or dietary oxalate – can increase risk for urolithi-
asis in certain individuals [41]. If dietary habits changed 
seasonally (eg, consumption of potatoes, an oxalate-rich 
food harvested in the SLV), it is conceivable that there 
could be additional seasonal variation in risk of stone 
formation that could compound with the risk conferred 
by high temperature exposure.

Of note, prolonged temperature exposure above 33-
35˚C for several days is considered extreme heat [42]. 
However, during summer, maximum daily temperatures 
in the SLV averaged 26.4˚C with few values exceeding 
30˚C. This suggests that heat and climate acclimatization 
may be playing a role and heat exposure is less about an 
absolute threshold and more of a relative one, which is 
consistent with some previous literature [43]. Across the 

We also examined the effect of 1-day lagged MDT 
in conjunction with 1-day lagged PM10 on the mean rate 
of ED diagnoses for each outcome, shown in Appendix 
A: Table S2. Controlling for humidity, precipitation, 
and 1-day lagged PM10, each 5˚C increase in MDT was 
associated with a 15% increase in the mean rate of uro-
lithiasis diagnoses the following day (RR=1.15; 95% CI: 
1.04, 1.27). In terms of precipitation, a 1 mm increase 
in daily precipitation was associated with a 7% decrease 
in the mean rate of MI (RR=0.93; 95% CI: 0.87, 1.00). 
Additionally, we observed a marginally significant rela-
tionship between mean daily humidity and MI diagnoses 
such that a 10% increase in mean daily humidity was 
associated with a 14% increase in the mean rate of MI 
diagnoses (RR=1.14; 95% CI: 0.99, 1.30).

DISCUSSION

With respect to maximum daily temperature, we 
found that each 5˚C increase in MDT was associated with 
a 13% increase in the mean rate of ED urolithiasis diag-
noses. Additionally, we found that higher MDT the pre-
vious day was also associated with increased mean rates 
of urolithiasis diagnoses. Physiologically, it is difficult to 
explain the short time lag between exposure to elevated 
MDT and the increased rate of urolithiasis diagnosis, as 
stone formation is typically a complex process taking 

Figure 1. The relationship between number of emergency room visits for asthma exacerbations and PM10 
(expressed as rate ratio (RR) with error bars representing 95% Confidence Intervals) across lag structures 
and moving averages (MA), during the 15-year study period.



Baraghoshi et al.: Acute disease exacerbation and climate-related exposures 165

pulmonary outcomes and air quality during the 5-year 
study period of January 1st, 2013 to December 31st, 2017. 
However, utilizing asthma exacerbation and climate data 
spanning January 1st, 2003 to December 31st, 2017 we 
observed a statistically significant increase in the rate 
of asthma exacerbations with increasing 1-day lagged, 
3-day moving average, 7-day moving average, and 21-
day moving average PM10. Thus, a longer study period 
was needed to observe the effects of air quality on some 
pulmonary outcomes.

Limitations, Strengths, and Generalizability
As with all observational studies, these results should 

be evaluated alongside other similar bodies of work. Our 
estimates control for several factors, which is the stan-
dard approach in air pollution modeling. For example, 
PM10 effect estimates adjust for meteorological variables 
and time trends. Raw monitor data was used for this 
study with some days missing meteorological values and 
therefore were excluded from analysis. For the PM10 data, 
days where a measurement was available for only one 
monitor might over-represent that site; however, this is 
likely to be a negligible issue due to the high correlation 
between monitors (r=0.93). Beyond this, we assumed an 
equal exposure among the entire population of the SLV 
from centrally located monitors, which may not accurate-
ly reflect the entire SLV. Aside from anecdotal evidence, 
no data is available that would indicate behavioral change 
(ie, staying indoors) in response to days with extreme PM 
exposure. Occupational data was also not available for in-
tegration into our analysis. Events such as MI and stroke 
are rare in a general population and even sparser in the 
rural population we analyzed in this study, which may 
make it more difficult to estimate effects accurately in 
these disease subpopulations. Lastly, a small percentage 
of health data may have been coded in error where the 
data reflects a condition that was not the underlying cause 
of the ED visit – but is anticipated to be non-differential 
and any bias would reduce associations towards the null 
hypothesis.

The unique geographic location of this population 
makes this study a strong addition to the existing body 
of research on climate associated hazards and health 
outcomes. Rural populations are often overlooked when 
considering large environmental studies, which can result 
in most research focusing on densely populated urban ar-
eas. This study is generalizable to aging populations, per-
haps with a higher burden of chronic disease, as well as 
an agriculturally employed workforce. The temperature 
associations reported in this study are also important be-
cause they reflect an idea of relative rather than absolute 
heat exposure and a population’s acclimatization.

US, some regions may be more likely to see a shift in 
this relative threshold in response to changes in climate 
[27]. Prior studies have further shown that morbidity and 
all-cause mortality as well as heat-related hospitaliza-
tions start to occur at moderate heat index values which 
are usually well below the alert thresholds used by early 
warning systems [44]. Therefore, our data support a more 
nuanced approach to heat alert criteria and highlight the 
opportunity to refine early warning systems to best sup-
port local epidemiological conditions. It should be noted 
that a 5˚C increase of the MDT is distinct from a 5˚C 
increase in the average daily temperature. A difference 
in MDT should not be interpreted in the same way as 
hourly changes during the day (eg, morning to afternoon) 
as it represents the hottest temperature of the entire day 
and should be interpreted as additional risk of warmer 
days and not within an individual day. Additionally, there 
could be other variables that play a role in this exposure 
that were not considered, such as high radiant heat expo-
sure.

In terms of air quality, we found that 1-day lagged 
and 3-day moving average PM10 measurements were as-
sociated with increased mean rates of urolithiasis. Given 
that same day PM10 was not significantly associated with 
increased rates of urolithiasis diagnoses, our findings 
suggest a delayed effect on the mechanism of urolithiasis 
in the context of PM10 exposure. While PM ≤10 μm can 
reach the alveoli, PM smaller than 1μm can penetrate 
deeper, accessing the renal tubules through the blood-
stream, and potentially altering urine metabolite profiles. 
Increased membranous nephropathy and reduced renal 
function has been demonstrated in association with PM2.5 
exposure [45,46]. These findings could suggest the asso-
ciation with PM10 is due to the correlation of occurrence 
of PM2.5 and PM10 [47]. It has also been suggested that 
the vascular damage from oxidative stress caused by PM 
can lead to inflammatory changes that could precipitate 
urolithiasis [46,48,49]. Additionally, we observed an 
increased rate of urolithiasis with higher PM10 exposure 
as MDT increased. The effects of decreased hydration 
status at higher maximum daily temperatures on stone 
formation appear to compound with the effects of poor 
air quality exposure (see Appendix A: Table S2).

Although we did not observe statistically significant 
relationships between same day, 1-day lagged, 2-day 
lagged, 3-day moving average, and 7-day moving aver-
age PM10 values and cardiovascular outcomes, we found 
that thresholding daily PM10 values provided enough sig-
nal to detect increased rates of stroke. We found that days 
with PM10 ≥ 50 µg/m3 have > 2-fold increase in the mean 
rate of ED stroke diagnoses the following day compared 
to days with PM10 < 50 µg/m3 (RR=2.06; 95% CI: 1.12, 
3.79) (Appendix A: Table S3). Interestingly, we did not 
observe any statistically significant relationships between 
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for resilience planning that addresses the unique environ-
mental exposures and health outcomes experienced by 
these populations.
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Appendix A 
 
Table S1. Relationship between number of emergency visits for urolithiasis and PM10, modified by maximum daily temperature 
(MDT), expressed as ratio ratios (RR) with 95% confidence intervals. 

PM10* Temp = -12.6 Temp = 8.2 Temp = 16.2 Temp = 24.2 Temp = 32.2 

 
RR 

(95% CI) p-value 
RR 

(95% CI) p-value 
RR 

(95% CI) p-value 
RR 

(95% CI) p-value 
RR 

(95% CI) p-value 
0-Day Lag 1.01 

(0.97, 1.05) 
0.78 1.02 

(0.98, 1.05) 
0.37 1.02 

(0.99, 1.06) 
0.25 1.02 

(0.99, 1.06) 
0.17 1.03 

(0.99, 1.07) 
0.11 

1-Day Lag 1.03 
(0.99, 1.07) 

0.13 1.04 
(1.00, 1.07) 

0.04 1.04 
(1.00, 1.07) 

0.02 1.04 
(1.01, 1.07) 

0.02 1.04 
(1.01, 1.08) 

0.02 

2-Day Lag 1.01 
(0.98, 1.05) 

0.54 1.02 
(0.99, 1.06) 

0.16 1.03 
(0.99, 1.06) 

0.10 1.03 
(1.00, 1.07) 

0.06 1.04 
(1.00, 1.08) 

0.04 

3-Day MA 1.05 
(0.99, 1.12) 

0.09 1.07 
(1.01, 1.13) 

0.02 1.08 
(1.02, 1.14) 

0.01 1.08 
(1.02, 1.15) 

0.01 1.09 
(1.03, 1.16) 

0.01 

7-Day MA 1.07 
(0.98, 1.17) 

0.11 1.08 
(0.99, 1.18) 

0.08 1.08 
(0.99, 1.18) 

0.08 1.09 
(0.99, 1.19) 

0.08 1.09 
(0.99, 1.20) 

0.08 

*Estimates shown in the table are for increases of 10 μg/m3 in PM10. 
Note: From left to right, min, Q1, Q2, Q3, and maximum daily temperature over study period. RR (95% CI) estimated from 
multivariable Poisson models as described in Methods. p-values are reported to the second decimal place. MA = moving average. 

Table S2. Relationship between number of emergency room visits and PM10 by disease classification. 
Outcome 1-Day Lagged PM10 1-Day Lagged MDT Humidity Precipitation 

 
RR 

(95% CI) p-value 
RR 

(95% CI) p-value 
RR 

(95% CI) p-value 
RR 

(95% CI) p-value 
Asthma 1.01 

(0.98, 1.04) 
0.49 1.04 

(0.96, 1.13) 
0.35 1.02 

(0.94, 1.11) 
0.65 0.98 

(0.95, 1.02) 
0.34 

COPD 1.00 
(0.96, 1.03) 

0.84 1.01 
(0.93, 1.10) 

0.76 1.04 
(0.96, 1.13) 

0.34 0.99 
(0.96, 1.02) 

0.57 

CHF 1.02 
(0.98, 1.06) 

0.23 1.00 
(0.90, 1.12) 

0.99 1.04 
(0.93, 1.16) 

0.47 1.00 
(0.96, 1.04) 

0.93 

MI 0.97 
(0.90, 1.05) 

0.45 0.99 
(0.86, 1.14) 

0.86 1.14 
(0.99, 1.30) 

0.06 0.93 
(0.87, 1.00) 

0.05 

Stroke 1.04 
(0.98, 1.09) 

0.19 1.04 
(0.86, 1.26) 

0.68 1.07 
(0.89, 1.29) 

0.47 0.95 
(0.87, 1.04) 

0.27 

Urolithiasis 1.03 
(1.00, 1.07) 

0.07 1.15 
(1.04, 1.27) 

0.01 1.03 
(0.94, 1.13) 

0.57 0.99 
(0.95, 1.03) 

0.71 

Note: This table describes rate ratio (RR) for incidence of primary health outcomes. RR for PM10 are increases of 10 μg/m3. 
RR for Max Daily Temperature (MDT) is considered at increases of 5˚C. RR for humidity are increases of 10%. RR for 
precipitation are increases of 1 mm. RR (95% CI) estimated from multivariable Poisson models as described in Methods. p-
values are reported to the second decimal place. COPD = Chronic Obstructive Pulmonary Disease; CHF = Congestive Heart 
Failure; MI = Myocardial Infarction.  

 

Table S3. Relationship between number of emergency room visits and threshold based PM10 (≥50 vs. <50 μg/m3). 
 Outcome 0-Day Lag 1-Day Lag 2-Day Lag 3-Day MA 7-Day MA 
 RR 

(95% CI) p-value 
RR 

(95% CI) p-value 
RR 

(95% CI) p-value 
RR 

(95% CI) p-value 
RR 

(95% CI) p-value 
Asthma 0.67 

(0.43, 1.06) 
0.08 0.92 

(0.62, 1.37) 
0.69 0.9 

(0.6, 1.35) 
0.62 1.03 

(0.69, 1.54) 
0.88 1.03 

(0.65, 1.63) 
0.91 

COPD 0.78 
(0.51, 1.18) 

0.23 0.81 
(0.54, 1.22) 

0.32 1.28 
(0.91, 1.8) 

0.16 1.17 
(0.8, 1.71) 

0.41 1.17 
(0.76, 1.8) 

0.49 

CHF 0.51 
(0.25, 1.02) 

0.06 0.84 
(0.48, 1.49) 

0.56 1.13 
(0.69, 1.86) 

0.63 1.01 
(0.58, 1.74) 

0.98 0.75 
(0.37, 1.51) 

0.42 

MI 0.7 
(0.31, 1.61) 

0.40 0.72 
(0.31, 1.65) 

0.43 1.36 
(0.72, 2.56) 

0.34 0.91 
(0.42, 2.01) 

0.82 0.33 
(0.08, 1.37) 

0.13 

Stroke 0.83 
(0.34, 1.98) 

0.67 2.06 
(1.12, 3.79) 

0.02 1.19 
(0.56, 2.52) 

0.64 1.7 
(0.86, 3.37) 

0.13 0.73 
(0.25, 2.11) 

0.56 

Urolithiasis 0.93 
(0.58, 1.5) 

0.77 1.34 
(0.89, 2.04) 

0.17 1.15 
(0.73, 1.81) 

0.55 1.26 
(0.8, 1.98) 

0.32 1.42 
(0.81, 2.46) 

0.22 

Note: Results are expressed as rate ratios (RR) with 95% confidence intervals. Various lag structures are considered for PM10. RR 
(95% CI) estimated from multivariable Poisson models as described in Methods. p-values are reported to the second decimal place. 
COPD = Chronic Obstructive Pulmonary Disease; CHF = Congestive Heart Failure; MI = Myocardial Infarction. 

 


