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Abstract

The robustness and resilience of complex networks have been widely studied and dis-

cussed in both research and industry because today, the diversity of system components

and the complexity of the connection between units are increasingly influencing the reliability

of complex systems. Previous studies have focused on node failure in networks, proposing

several performance indicators. However, a single performance indicator cannot compre-

hensively measure all the performance aspects; thus, the selected performance indicators

and recovery strategies lack consistency with respect to the targeted complex systems.

This paper introduces a novel stress–strength-balanced weighted network model based on

two network transmission hypotheses. Then, with respect to different concerns of the com-

plex network, we propose two modified network performance measurement indicators and

compare these indicators in terms of their trends in the attack process. In addition, we intro-

duce several network recovery strategies and compare their efficiencies. Our findings are

as follows: (1) The evaluation and judgment of the network performance depend on the per-

formance measurement indicators we use. (2) Different recovery strategies exhibit distinct

efficiencies in recovering different aspects of network performance, and no strategy exists

that can improve all the network performance aspects simultaneously. (3) The timing of the

recovery is proved to have a deep influence on the cost and efficiency of network recovery;

thus, the optimal recovery strategy for a damaged network varies with the extent of the dam-

age. From the results of the simulation of the attack-recovery process, we conclude that

while defining and analyzing complex network models, we should adjust our network topol-

ogy, weight assignment, and performance indicators in accordance with the focal character-

istics of complex systems so that we can use the network model to build robust complex

systems and efficient logistics and maintenance strategies.

Introduction

Since the end of the 20th century, the notion of a network has attracted huge attention in sci-

entific research. Network models can be studied as an abstraction and simplification of real-

life complex systems, e.g., electrical power grids, the Internet, transportation networks,
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biological networks, and other self-organizing systems [1,2]. The nodes of a network represent

the units or hubs of the real system, and the edges represent the paths carrying substances,

information, energy, service, or even failure. However, in network models, the diversity of the

internal properties or the individual behavior of nodes are simplified or even neglected. Such

simplification ignores some specific attributes of the real systems but provides us with an

approach to study the joint effects of large quantities of components that constitute a large

system.

The last decade has witnessed an intensive study of the robustness and resilience of complex

networks, and the study has been boosted by a series of discoveries about the dynamic charac-

teristics of networks, including cascading failure [3,4], phase transition, percolation [5], and

synchronization [6,7]. In the last few years, several studies have investigated the network

response to node failures, i.e., the network robustness to node removal [8]. However, in real-

life systems, edge failure is also an important factor responsible for performance degradation.

In evolving systems, e.g., power grids and the Internet, the overload of network components is

a major cause of failure [9,10]. An overloaded sensitive edge of a power grid can lead to capac-

ity loss in the edge, and an overloaded edge in the central flow of the network can result in cas-

cading breakdowns [11]. In communication networks, damage to optical fiber cables can

partially overload data delivery, resulting in a regional interruption of Internet services [12]. In

biological neural networks, edge failure such as the malfunction of neural conduction can

cause a local or systemic paralysis. Cats et al. [13] developed a public transport robustness

assessment model that evaluates the performance of a transportation network by computing

edge criticality and affirmed the importance of considering edge capacity reduction in the

optimization of public transportation systems. As the scale of the model network increases, the

effect of edge failure on network robustness becomes greater and the neglect of edge attributes

will generate one-sided conclusions.

To investigate network performance, scientists have proposed different performance mea-

surement indicators based on network topological characteristics. The performance of a net-

work can involve different aspects, and some classic tools have been developed to investigate

these aspects, e.g., the size of the largest connected component (the number of nodes present

in the giant cluster) and the characteristic path length (the average topological distance

between a pair of connected nodes) [14]. In network science, whether network performance

can be determined by a given set of measurements is termed as network observability [15].

With regard to the vulnerability of network topology, Shunkun et al. [16] investigated the net-

work observability and proposed efficient network augmentations based on their findings.

Boas et al. [17] carried out a detailed analysis on the sensitivity of different network perfor-

mance measurements, compared the stability and discriminability of the measurements, and

found effective performance indicators for different types of networks. Nogal et al. [18] built a

performance indicator that accounts for recovery patterns under disruptive events and exam-

ined its validity using a dynamic restricted equilibrium model. Sun and Zeng [19] proposed a

local betweenness-based performance measurement indicator and applied it to analyze their

hybrid recovery method. Their results corroborated the advantages of their recovery strategy

for public transportation.

In the last few years, the resilience of a network has also been widely discussed in both

research and industry. Resilience is the ability of a network to bounce back to a desired perfor-

mance level after facing malicious attacks or random failures [20,21]. Vlacheas et al. [22] con-

ceptualized the idea of network resilience and validated an end-to-end resilience ontology by

categorizing the exchanged information into Profiles, Context, and Policies. Previous studies

[23–25] have proposed a comprehensive methodology for topology generation, and the analyt-

ical and experimental techniques used for evaluating the network attributes depend on the
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efficiency of the recovery strategy, i.e., the reconnection sequence. The efficiency of a recovery

strategy indicates how much network performance can be recovered in a given number of

edges or nodes once they are reconnected. Di Muro et al. [26] proposed a recovery strategy to

repair the nodes in the mutual boundary of functional clusters in two interdependent networks

based on a critical probability of recovery above which the system is restored and below which

it collapses. The recovery process of a network is analogous to the establishing process of a

new network, but a partially destroyed network retains some microscopic topological charac-

teristics of the initial network, which affect the efficiency of the recovery [19]. Additionally, the

timing of recovery, i.e., the point of intersection of the attack and recovery processes, affects

the efficiency of the recovery. Costa [27] compared the efficiencies of different approaches for

network augmentation, and the results indicated that the initial growth scheme has little effect

on the network resilience enhancement and that different augmentation schemes vary in

terms of the efficiency of recovery.

In this study, we first develop different types of edge attack strategies and recovery strate-

gies, using which we compute different sequences for edge removal and reconnection. Then,

we simulate the process of performance degradation and performance recovery of a model net-

work according to the developed attack strategies and recovery strategies. By comparing the

trends of network performance under different combinations of attack strategies, recovery

strategies, and recovery timing, we study the robustness and resilience of a complex network

and thereby propose a series of rules for network fault prevention.

Model and methods

In this section, we introduce the model network, attack strategies, recovery strategies, and net-

work performance measurement indicators.

Stress–strength-balanced Barabási–Albert network model

We propose a stress–strength-balanced network model on the basis of the Barabási–Albert

(BA) network model to study the robustness and resilience of scale-free networks. This

Fig 1. Stress–strength-balanced Barabási–Albert network consisting of 150 nodes and 149 edges.

https://doi.org/10.1371/journal.pone.0203894.g001
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500-node, 996-edge model network is used in the simulation and analysis, described in the fol-

lowing section. A smaller model network is shown as an example in Fig 1. The thickness of the

edge represents the weight associated with it, and the weight reflects the capacity of each edge.

To construct the stress–strength-balanced model, we developed two basic hypotheses:

1. Transmission hypothesis: the model network is designed to transmit information or sub-

stances between nodes, such that a fixed and equal quantity of information or substances is

transmitted between all pairs of nodes.

2. Stress–strength-balanced hypothesis: the network is designed properly and the initial con-

figuration of a stress–strength-balanced network perfectly satisfies the transmitting demand

of the network.

In this manner, the stress and strength (or capacity) should be balanced in the initial config-

uration of the network. To accord with the above hypotheses, we assign the edge capacity, i.e.,

the weight of each edge, as a linear normalization of the edge betweenness centrality before

edge removal.

First, we adopt the topology of the BA network model in this research. The connectivity of

the BA network follows a scale-free power-law distribution, i.e., P(k)~k-γ, which is in accor-

dance with the growth and preferential attachment features of many real-life complex systems

[28]. We generate a BA network consisting of 500 nodes and 996 edges; in this network, the

nodes and edges are added to the network sequentially and stochastically according to the con-

nectivity algorithm of the BA network model.

Then, we add stress–strength-balanced weights to the edges based on the stress of each

edge. The specific steps are as follows:

i. According to the above transmission hypothesis, the main function of the model network is

to transmit information or substances between nodes and that an equal quantity of informa-

tion or substances is transmitted between each pair of nodes. The weight of each edge indi-

cates the transmission capacity of the edge.

ii. Based on the hypothesis above, we compute the stress of each edge by calculating the edge

betweenness centrality, which is the number of shortest paths from all nodes to others that

pass through that edge [29]. The higher the betweenness centrality of the edge, the higher

the stress acting on the edge.

iii. Based on the stress–strength-balanced hypothesis, the initial configuration of the network

is supposed to perfectly satisfy the transmitting demand of the network; i.e., the capacity of

each edge is designed to be adaptive to the quantity of information or substance flow.

Hence, we assign the weight of each edge to be the linear normalization of the edge

betweenness centrality. This can be mathematically represented as follows:

wi ¼
b0i

maxðb01; b02; . . . b0nÞ
ð1Þ

where b0i represents the initial betweenness centrality of edge i and wi represents the

weight associated with edge i.

Before the attack, the stress and capacity of a network are balanced. Once the weight of each

edge is assigned (i.e., once the capacity is assigned), it will not change (unless the edge is

removed) during the evolution of the network. As the edges are removed, however, the struc-

ture and topology of the network change, thereby influencing the route of the transmission
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flow. This will destabilize the stress of each edge, induce component failure, and eventually

break the balance of the load distribution, degrading network performance.

Network performance measurement

We use two network performance measurement indicators described in the literature and pro-

pose connection rate and stress–strength index as novel performance indexes based on the

stress–strength model network.

LCC size. The largest connected component (LCC) size, i.e., the size of the largest con-

nected subgraph in the network, is frequently used as a measure of network performance

[2,8,14,28]. In a real-life network, the LCC can reflect how many nodes or members in a net-

work can transmit substances, information, or energy or provide services to each other; how-

ever, the weakness of the LCC measure is that it neglects the remaining subgraphs and

components of the network. In addition to the nodes in the LCC, some groups of locally con-

nected nodes can function in a degraded mode as inferior communities [30–32]. Based on this

concern, we propose a new measurement, connection rate, which reflects the situation not

only in the largest component, but also in other smaller subgraphs.

Connection rate. We measure the network performance by calculating the proportion of

the connected pairs of nodes. Note that a connected pair of nodes means there is a path (a sin-

gle edge or a series of edges and nodes) between them. Statistically, connection rate is a func-

tion of the sizes of each subgraph in a network. Therefore, when using connection rate to

calculate the network performance, all the subgraphs are concerned, which overcomes the

shortcoming of LCC size. The connection rate can be mathematically represented as follows:

Cr ¼
2ncp

NðN � 1Þ
� 100% ð2Þ

where ncp represents the number of connected node pairs and N(N– 1)/2 is the number of all

node couples in the network. For a globally coupled network, the connection rate Cr = 1.

Based on our hypothesis that an equal quantity of substances or information is transmitted

between each pair of nodes, as long as there is a path between two nodes, the nodes can sustain

the transmission between them irrespective of the component the nodes belong to. In this

manner, the connection rate can reflect the network performance, considering both the large

components and inferior communities.

Weighted efficiency (EFF). We use a network performance measurement indicator pre-

sented by Bellingeri and Cassi [8], which accounts for edge weights. In binary networks where

each pair of nodes can only be either connected or disconnected, the shortest path is the mini-

mum number of edges needed to travel from one node to another. Relatively, in weighted net-

works, the shortest path is the minimum sum of weights needed to travel between a pair of

nodes. In a network that weight represents the transmission capacity, higher weight implies

“wider and faster routes”, so we take the reciprocal of the weight of each edge to calculate the

shortest weighted path. The minimum lengths of shortest weighted paths between all pairs of

nodes constitute a square matrix, and the weighted efficiency (EFF) is the mean of the values

in this square matrix. A detailed description can be found in Bellingeri and Cassi’s paper [8].

Note that the weighted efficiency (EFF) is a performance measurement, which is distinct from

the term “efficiency of attack/recovery strategy”. In the following sections, we use the abbrevia-

tion “EFF” to avoid confusion with the term “efficiency of attack/recovery strategy”.

Our study reveals a weakness of EFF as a measurement indicator. By assessing the mini-

mum weighted path between the nodes, EFF shows the connectivity of the network but

neglects the balance between the stress and strength of the network. An edge becomes
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overloaded when the stress applied to it exceeds its capacity. From the perspective of failure

mechanics, overloading an isolated device can lead to component performance degradation or

failure [33], whereas in a network an overloaded edge can result in the loss of capacity, ulti-

mately triggering a cascading failure [11]. In existing network performance measurements, the

transmission between nodes is implemented through a path that has the shortest weighted

length. In this case, if an edge has a very high transmission capacity, the reciprocal of its weight

will be low, and consequently it might be frequently chosen as the shortest path to transmit

and might end up suffering from overstress. However, the EFF measurement cannot reflect

the overload in a network.

An example of this phenomenon is shown in Fig 2. Fig 2 shows two networks, in which the

capacity (c) of edges is artificially assigned, and the stress (s) is calculated through its between-

ness centrality to simulate the phenomenon of load balancing. As shown in the network on the

left in Fig 2, when we assign an equal capacity to edge (1,2) and edge (3,4), the load of the net-

work is balanced. The network shown on the right in Fig 2 is identical, except that the capacity

of edge (1,2) is artificially increased from 1 to 1.5. As a consequence of this alteration, edge

(1,2) lies in the shortest weighted path between nodes 3$4, 1$4, and 2$3. Worse still, the

EFF of the network increases from 0.3313 to 0.3491, which represents a 5.4% increase in net-

work performance. However, this change to a single edge induces 50% more stress on edges

(1,3) and (2,4) and a 33% overload on edge (1,2) (s > c). Therefore, an increase to the weight

of a pivotal edge in a network can increase the stress of a network and break the balance of the

transmission, but the EFF algorithm does not reflect this degradation in performance.

Stress–strength index. We propose a stress–strength index as a supplement to the above

measurement:

i. Stress: Calculate the edge betweenness centrality as described above. A higher value of the

edge betweenness centrality indicates that an edge is chosen more number of times to be in

the shortest weighted path and that a greater amount of substances and information is trans-

mitted through this edge, which implies that more stress is exerted on this edge. We used

the ratio of the current value of the edge betweenness centrality to its initial value before

edge removal. The stress of edges can be mathematically represented as follows:

sji ¼
bji

b0i
ð3Þ

where sji represents the stress of edge i after the attack or recovery step j, and bji represents

the betweenness centrality of edge i after the attack or recovery step j.

Fig 2. Example of overload phenomenon. “s” represents the stress applied to the edge, and “c” represents the strength

of the edge.

https://doi.org/10.1371/journal.pone.0203894.g002
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ii. Strength: The strength is the transmission capacity of each edge, derived by Eq (1), in the

initial configuration of the network. As the attack process begins, the strength of the edges

does not change.

iii. Stress–Strength Index: The ratio of the strength to the stress of the edge reflects the load

condition of each edge. We define the stress–strength index as the average ratio of the

strength to the stress of all edges. A higher stress–strength index implies that the edges

(i.e., the transmission system) are working under lower loads compared to their capacity.

This can be mathematically represented as follows:

Zj ¼

Pn
i¼1

wi
sji

n
ð4Þ

where wi represents the strength of edge i derived by Eq (1), sji represents the stress of edge

i in the attack or recovery step j, and ηj represents the stress–strength index in the attack or

recovery step j.
In the simulation of the example shown in Fig 2, the stress–strength index decreases from

0.1363 to 0.0889, which indicates that network load balancing has degraded by 34.8% after

changing the weight of a single edge. Therefore, the stress-strength index reflects network

overload.

The stress–strength index is not concerned with how many nodes or system members are

served. Rather, it calculates the average ratio of edge capacity to stress, and hence is a direct

reflection of the network load and redundancy. Relatively, the connection rate focuses more

on the proportion of the nodes that can transmit substances or information between them, but

it does not account for the operating condition. Different network performance measurement

indicators actually emphasize different aspects of the network performance.

Attack strategies

We use the following attack strategies:

Highest weight. Edges are removed according to the weight. In each attack step, we

remove the edge that is assigned the highest weight. Because the weights of the edges are

assigned to reflect the betweenness centrality, in this attack strategy, the edges are also removed

according to the betweenness centrality.

Random removal. Edges are removed randomly. In each step, we randomly choose an

edge and remove it, which is consistent with the situation in the random failure stage in a

product life cycle.

Recovery strategies

Inspired by the node attack strategies found in the literature, we use the following recovery

strategies:

Subgraph. La Rocca et al. [34] studied the efficiency of reconnecting the subgraphs to the

LCC based on a probability measure that renders the network more resilient to failure. Corre-

spondingly, our strategy involves reconnecting nodes according to the size of the subgraphs of

the network; i.e., larger separated connected clusters are preferentially reconnected to the

LCC. Without loss of generality, we randomly choose a node from each selected subgraph for

reconnection.

Degree. Nodes are reconnected according to the degree. If two nodes together have the

largest sum of degree but they are not neighbors, they are connected first [35].
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Path shorten. Nodes are reconnected according to the weighted distance between them.

If the weighted shortest path between a pair of nodes is the longest among all pairs of nodes,

we connect this pair of nodes first. As described above, the weighted shortest path is the mini-

mum sum of weights needed to travel between a pair of nodes.

Hub to farthest. In a network, nodes that possess a high degree are termed as hub nodes.

In this recovery strategy, we preferentially choose a hub node and connect it to a node that is

farthest from it.

Random. In each recovery step, we randomly choose two nodes that are not neighbors

and connect them. We use this random recovery strategy for comparison with the abovemen-

tioned targeted recovery strategies.

In all the abovementioned recovery strategies, the weights of the new edges are assigned to

be the average weight of all the existing edges.

Simulation and results

We simulate the attack-recovery process on the model network described above. In the simula-

tion, we remove the edges from the network, recover the network, and measure the network

performance during the process according to the attack strategies, recovery strategies, and per-

formance measurement indicators introduced in the previous section. To eliminate the influ-

ence of randomness, trials that contain a random process are repeated three times and their

results are averaged.

In this section, we (1) present the simulation results, (2) compare different network perfor-

mance measurement indicators by analyzing their trends in the attack-recovery process, (3)

compare the robustness of the network when edges are removed by different attack strategies,

and (4) compare the efficiencies of different recovery strategies.

Network performance measurement fluctuation in attack process

In the simulation of the attack process, we sequentially remove edges from the model network

according to the attack strategies. By the end of the simulation, all the edges (996) are removed.

During the attack process, we observe the trend of the network performance by computing the

given measurement indicators. As introduced in the previous section, we have two attack strat-

egies and four network performance measurement indicators. Our results and findings are as

follows.

The graphs shown in Fig 3 indicate that different attack strategies exhibit different efficien-

cies. The measurement indicators in the two graphs on the left are derived from the literature,

whereas in the right graphs, we use modified measurement indicators to observe the features

that are considered in this study. From the trends of the LCC size and connection rate, we can

see that the efficiency of the highest-weight strategy is less than that of the random-removal

strategy at the early stage of attack. In the random-removal strategy, both the LCC size and

connection rate start to decline from step 50, whereas in the highest-weight strategy, these two

measurement indicators do not decline until step 300. When the performance starts to decline,

the decline is rapid for the highest-weight strategy, and the performance of this strategy

declines to zero earlier than that of the random-removal strategy. This phenomenon is called

bond percolation in statistical physics [36–38], and percolation becomes more obvious when

we use the weighted-removal strategy. In terms of EFF, the highest-weight strategy declines

more sharply from the beginning and reaches zero earlier (step 600) than the random-removal

strategy (step 800). In the highest-weight strategy, the stress–strength index decreases to zero,

whereas in the random-removal strategy, the stress–strength index does not decrease to zero.

In addition, after the network is completely destroyed, the stress–strength index can bounce
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back faster in the highest-weight strategy than in the random-removal strategy. Overall, the

highest-weight strategy is more efficient in destroying the connection of the network; however,

its efficiency has a lag when we observe the connection scale of the network.

In this study, we develop two modified measurement indicators—connection rate and

stress–strength index—as supplements to the two original measurement indicators from the

literature. The overall trend of the connection rate in the attack process is similar to that of the

LCC size in our model and simulation, but the connection rate reaches zero earlier, which

implies that the connection rate is more sensitive to edge failure than the LCC size. Another

observation made in the simulation is that the stress–strength index shows a down–up trend,

which indicates that the load of the network increases under early phase of failure, but as more

edges are removed, the load of the network decreases. This is because when we remove a large

proportion of the edges from the network (40% in our model), the network breaks down to

pieces and most pairs of nodes are disconnected, resulting in lower edge loads and lower

stress–strength index values. However, indicators other than the stress–strength index

decreased monotonically. Consequently, these indicators fail to reflect overload in a network

component.

Comparison of different recovery strategies in recovery process

In the simulation of the recovery process, we first break the network down by randomly

removing edges from the network (random removal). When 60% of the edges (600 edges) are

removed, we stop the removal and begin to the recover the network. In each recovery step, we

add one edge to the network according to the recovery strategies. In both the attack and recov-

ery processes, we trace the network performance by computing the performance measurement

indicators in each step. We use the five recovery strategies and compare their efficiencies by

observing the trend of the performance measurement indicators. The results are shown in Figs

4 and 5.

The efficiency of the recovery process varies with the recovery strategies we use. When we

simply consider the connection scale of the network, i.e., the number of nodes that are con-

nected to each other, we use the LCC size (Fig 4A) and connection rate (Fig 4B) as the mea-

surement indicators of the network performance, and we find that subgraph and path shorten

Fig 3. Trends of four performance measurement indicators in attack process. The horizontal coordinates represent

the steps of the attack process, i.e., the number of edges that are sequentially removed from the network. The vertical

coordinates represent the performance measurement indicators.

https://doi.org/10.1371/journal.pone.0203894.g003
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are the optimal recovery strategies. However, the hub-to-farthest strategy is the most efficient

when we expect the paths between nodes to be averagely short and use EFF (Fig 4C) as the

measurement indicator. When we consider the balance between the stress and strength of the

edges, we use the stress–strength index as the measurement indicator, and the degree recovery

strategy is the fastest in recovering the load condition of the network. Fig 5 shows the efficiency

of different strategies at recovery step 300. Table 1 illustrates the optimal recovery strategy for

each performance measurement indicator.

Note that when EFF and Stress–strength index are used as the measurement indicators (Fig

4C and 4D), the performance trends of the random attack strategy and random recovery strat-

egy (purple curves) are not symmetrical. This is because in the attack process, the weights of

the removed edges are arranged such that the stress and strength are balanced, whereas in the

recovery process, the weights of newly added edges are assigned at random. However, this

kind of asymmetry does not exist for the LCC size and connection rate because they do not

account for the weight of the edges. Another observed phenomenon is that the stress–strength

index does not increase monotonically during the recovery process; instead, it shows fluctua-

tion. This is because some isolated subgraphs in the network are reconnected to each other in

Fig 4. Trends of performance measurement indicators in attack and recovery processes. The horizontal

coordinates are the steps of the process, and the vertical coordinates are the four performance measurement indicators

described in the previous section. The mark “R” shows the starting point of the recovery process.

https://doi.org/10.1371/journal.pone.0203894.g004

Fig 5. Network performance under different recovery strategies at recovery step 300.

https://doi.org/10.1371/journal.pone.0203894.g005
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the recovery process, thus connecting large quantities of node pairs in one step and increasing

the loads of the edges in the network.

Comparison of different timings of recovery process

To analyze how the timing of recovery influences the efficiency of network recovery, we simu-

late the attack-recovery process at different timings by beginning the recovery at attack steps

100, 300, 500, 700, and 900 relatively. We select degree, hub to farthest, and subgraph as the

recovery strategies and select the connection rate, weighted efficiency (EFF), and stress–

strength index as the network performance measurement indicators. The trends of the mea-

surement indicators under different combinations of timings and recovery strategies are

shown in Figs 6 and 7. To control the uncertainty of the random attack process, all the recov-

ery timings are simulated on a single attack process; thus, the attack sections for all the curves

in each graph coincide with each other.

Table 1. Optimal recovery strategy for different performance measurement indicators.

Network Performance

measurement

LCC size Connection rate Weighted efficiency (EFF) Stress–strength index

Definition of measurement Number of nodes in

giant cluster

Probability of pair of nodes

being connected

Average of minimum weighted path

(reciprocal of weights) between all pairs of

nodes

Proportion of overload

edges in network

Description of measurement Connection scale in

giant cluster

Connection scale in all

components of network

Average length of paths between nodes Balance between stress and

strength of all edges

Optimal recovery strategy Subgraph Subgraph Hub to farthest Degree

Steps needed to recover

performance to initial state

149 (24%) 148 (23.9%) 343 (55.3%) 620 (100%)

https://doi.org/10.1371/journal.pone.0203894.t001

Fig 6. Trends of network performance indicators under different timings of recovery. Each row of graphs

represents a recovery strategy, and each column of graphs represents a network performance measurement indicator.

Different colors are used to represent curves with different timings of recovery.

https://doi.org/10.1371/journal.pone.0203894.g006
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The above results indicate that the timing of recovery can influence the efficiency of recov-

ery and that different strategies are more or less efficient at network recovery. In the degree

strategy (Fig 6C, 6D and 6E), deeper damage to the network does not result in a longer recov-

ery process. Instead, as more edges are removed from the network, the process of the recovery

of the network performance to the initial stage becomes shorter, especially when we consider

the connection rate of the network (Fig 6C). However, it should be clarified that the process to

ensure the complete recovery of the network performance cannot be immoderately short;

therefore, the curves will eventually become parallel to each other if we cause deeper damage

to the network.

However, similar phenomena do not occur in the hub to farthest or subgraph recovery

strategies (Fig 6A, 6B, 6F and 6G). In these two strategies, as we delay the timing of recovery,

the slopes of the recovery curves become slightly smaller, which implies that more recovery

steps are required to completely restore the network to the initial stage. As mentioned above,

the subgraph strategy exhibits better efficiency in recovering the connection rate than the

other strategies when the recovery is started at attack step 600. However, the above results indi-

cate that the degree strategy is more efficient than the subgraph strategy when the network is

deeply damaged (900 edges removed). This result indicates that the subgraph strategy is not

the optimal recovery strategy for every degree of network damage.

Another observed phenomenon is that in the degree strategy, the stress–strength index (Fig

6E) of the network always increases monotonically at any degree of damage, whereas in the

hub-to-farthest strategy, the stress–strength index (Fig 6H) exhibits a distinct decrease at the

beginning if the recovery starts after half of the edges (500) are removed. This is because the

network breaks into pieces when more edges are removed and the recovery process reconnects

these isolated pieces, thereby rapidly increasing the transmission flow and edge stress. How-

ever, in the degree recovery strategy, the nodes with high degrees are reconnected first and the

effect of load sharing surpasses the effect of an increase in the transmission flow; thus, the

stress–strength index increases monotonically.

In Fig 7, we compare the recovery efficiencies of different recovery strategies under differ-

ent timings. As the timing of the recovery process is delayed, the recovery efficiency of the

degree strategy increases parabolically, but the efficiency of the subgraph and hub-to-farthest

strategies fluctuates. This implies that the degree strategy is more suitable for recovering deeply

destroyed (60% removed edges) networks.

From the above analysis, we can conclude that the timing of recovery can influence the effi-

ciency of the recovery process. Overall, when the network is under slight edge failure, the hub-

to-farthest strategy can restore the network performance fast; however, if most of the edges in

the network (more than 80%) are removed, the degree strategy can provide the maximum

recovery efficiency.

Fig 7. Comparison of recovery efficiencies under different timings. The horizontal coordinates represent the timing

of recovery, i.e., the number of removed edges at the beginning of the recovery process. The vertical coordinates

represent the performance recovery rate during the first 300 steps of recovery for each timing.

https://doi.org/10.1371/journal.pone.0203894.g007
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Discussion

In this paper, we propose a stress–strength-balanced BA network model, which corresponds

to real-life complex networks in terms of their growth and self-adaptive organizing character-

istics. In the simulation and evaluation of the attack strategies, the neglect of the edge weight of

complex networks will produce misleading network performance results [8]. Our study on the

weight assignment algorithm shows the advantage of the stress–strength-balanced weighted

network model over the randomly weighted ones found in the literature [17]. The effect of the

edge assignment algorithm on the network performance and its influence on the attack and

recovery strategies will be considered in future research.

We find that our analysis and judgment of the performance of complex networks depend

on the measurement indicators we use. Different measurement indicators represent different

aspects of the network performance. As a result, the optimal recovery strategies for different

performance measurement indicators are different. A reliable performance measurement indi-

cator should be adjustable in accordance with the characteristics of a complex system rather

than providing narrow network performance just for simplification.

The results of our simulation of the network recovery process indicate that no recovery

strategy exists that can be the fastest at simultaneously recovering all aspects of the network

performance. The results in Figs 4 and 5 indicate that different strategies are more or less effi-

cient at recovering network performance based on different indicators. Furthermore, the tim-

ing of recovery is also an influential factor in network recovery, and no recovery strategy exists

that can provide the fastest improvement in performance at any degree of network damage.

Our findings can be used to formulate better maintenance and logistics strategies for real-life

complex systems. For complex systems in which the edge capacity can be considered to be infi-

nite, e.g., a sea transportation network, the subgraph is the optimal recovery strategy; for sys-

tems in which the edge overload can cause severe component failures, e.g., power grids, the

degree strategy can be applied to schedule an optimized maintenance strategy that accounts

for the loads of edges. By applying the proposed network performance measurement indica-

tors and recovery strategies, future research may examine whether these methodologies can be

extended to other types of complex systems and whether these results can be replicated in

other systems.

When comparing the results derived from different network models, we find that some

simplifications of real systems produce one-sided results. For decades, the simplification and

abstraction of complex networks has provided insight into the collective effect of network

components [14,39]. However, our research results reveal that the inordinate simplification of

networks will produce differentiated judgments of the network performance and will inadver-

tently give us impractical suggestions on recovering the complex systems from structural

failures.

This study will open practical and straightforward extensions. First, to develop a practical

network model and an optimal recovery strategy for a given system, it is important to recog-

nize the focal and influential characteristics of the system and adjust both the model network

and the performance measurement indicators in accordance with these characteristics. The

topology and the weight assignment algorithm of the model network are desirable and realiz-

able elements to adjust. Second, we can test the quality of the performance measurement indi-

cators by comparing their trends in both attack and recovery process. When examining

network performance, we should select the indicators that accord with our concerns or make

appropriate modifications to them. Further, the timing of recovery is also an influential factor

in the resilience process of weighted networks. We can maximize the efficiency of maintenance

and logistics strategies for a complex system by optimizing their timings.
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