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Clinical Implications of Pneumococcal Serotypes: Invasive 
Disease Potential, Clinical Presentations, and Antibiotic Resistance

Streptococcus pneumoniae can asymptomatically colonize the nasopharynx and cause a 
diverse range of illnesses. This clinical spectrum from colonization to invasive 
pneumococcal disease (IPD) appears to depend on the pneumococcal capsular serotype 
rather than the genetic background. According to a literature review, serotypes 1, 4, 5, 7F, 
8, 12F, 14, 18C, and 19A are more likely to cause IPD. Although serotypes 1 and 19A are 
the predominant causes of invasive pneumococcal pneumonia, serotype 14 remains one of 
the most common etiologic agents of non-bacteremic pneumonia in adults, even after 
7-valent pneumococcal conjugate vaccine (PCV7) introduction. Serotypes 1, 3, and 19A 
pneumococci are likely to cause empyema and hemolytic uremic syndrome. Serotype 1 
pneumococcal meningitis is prevalent in the African meningitis belt, with a high fatality 
rate. In contrast to the capsule type, genotype is more closely associated with antibiotic 
resistance. CC320/271 strains expressing serotype 19A are multidrug-resistant (MDR) and 
prevalent worldwide in the era of PCV7. Several clones of MDR serotype 6C pneumococci 
emerged, and a MDR 6D clone (ST282) has been identified in Korea. Since the 
pneumococcal epidemiology of capsule types varies geographically and temporally, a 
nationwide serosurveillance system is vital to establishing appropriate vaccination strategies 
for each country.
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INTRODUCTION

Streptococcus pneumoniae (pneumococcus) is an important 
pathogen with high associated morbidity and mortality world-
wide. It causes otitis media, sinusitis, pneumonia, and invasive 
pneumococcal diseases (IPD). Diagnosis of IPD requires pneu-
mococcus isolation from a normally sterile site, such as blood, 
cerebrospinal fluid (CSF), and pleural or ascitic fluid. The inci-
dence of IPD in developed countries is estimated to be 8-34 cas-
es per 100,000 inhabitants with geographical variance (1), and 
the mortality rate ranged from 10% to 30% (2-4). Despite the 
availability of vaccines and antibiotics, a 2008 report from the 
World Health Organization (WHO) indicated that S. pneumoni-
ae is responsible for approximately 1.6 million deaths annually, 
particularly among young children and the elderly (5).
 Pneumococci are spherical, Gram-positive bacteria, which 
have many virulence factors, including capsular polysaccha-
rides, pneumolysin, pneumococcal surface protein A (PspA), 
pneumococcal surface protein C (PspC), and pneumococcal 
surface adhesin A (PsaA). Among these, capsular polysaccha-
rides are considered to be the most important virulence factor 
as they surround pneumococci and shield them from phago-

cytes. Currently, 94 capsular serotypes, including the recently 
reported serotypes 6C, 6D, 11E, and 20A/20B, have been identi-
fied (6-9). Each serotype is distinguished by serological response 
(the ability to react with specific antibodies against the capsular 
antigen), the chemical structure of capsular polysaccharides, 
and other related genetic mutations. Based on these pathogen-
ic mechanisms, a serotype-specific pneumococcal polysaccha-
ride vaccine (PPV) was developed, which contained pooled cap-
sular polysaccharides of various serotypes. In 1983, a 23-valent 
PPV (PPV23) was approved, expanding serotype coverage to 
more than 85% of the organisms causing IPD at the time (10). 
However, the poor immunogenicity of T-cell-independent PPV23 
in infants led to development of the pneumococcal conjugate 
vaccine (PCV). Covalent coupling of the polysaccharide to a pro-
tein carrier effectively converts the T-cell-independent Type 2 
polysaccharide into a T-cell-dependent antigen; carrier proteins 
include a non-toxic mutant of diphtheria toxin (CRM197), as 
well as other proteins such as protein D of non-typeable Hae-
mophilus influenzae (11). The first 7-valent PCV (PCV7) was li-
censed in the United States (US) in 2000 and introduced to Ko-
rea in 2003. This PCV included capsular polysaccharides of se-
rotypes 4, 6B, 9V, 14, 18C, 19F, and 23F, representing approxi-
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mately 80%-90% of IPD in children (12). With serotype shifts re-
sulting from vaccine pressure, however, the protective coverage 
of PCV7 was reduced, and PCV7 did not include serotypes 1, 3, 
and 5, which are common in Europe, Asia, and Africa (13, 14). 
Therefore, a 13-valent PCV (PCV13), which included serotypes 
1, 3, 5, 6A, 7F, and 19A, was introduced for children in 2010 and 
later licensed for adults in 2012.
 Thus, pneumococcal capsules play the most important role 
in pathogenesis, and they have a great implication in vaccine 
development. Of note, serotype distributions of pneumococcal 
capsules vary geographically and temporally in terms of naso-
pharyngeal carriage, pathogenicity and clinical presentation 
(13, 15). This article will review the serotype-specific character-
istics of pneumococcus with regard to the epidemiological and 
clinical aspects, including carriage rate, invasive disease poten-
tial, clinical presentation, and antibiotic resistance.

PNEUMOCOCCAL CARRIAGE RATE

Pneumococcus exists only in the nasopharynx of humans, and 
it has no natural reservoir in animals. Humans are the exclusive 
targets of pneumococcal diseases, with transmission only com-
ing from other human carriers. Thus, carriage is essential for the 
propagation of pneumococcal diseases, and its epidemiology is 
important. Pneumococcal colonization may be influenced by 
multiple factors. Although these factors are not entirely clear, 
there is no doubt that the local host immune response plays an 
important regulatory role in the trafficking of pathogens in the 
nasopharynx. Poorly immunogenic serotypes tend to colonize 
for longer periods, and the low carriage rates in adults suggest 
the existence of immunological protection after previous expo-
sure (16). 

 Pneumococcal carriage occurs early in life, usually with a 
prevalence of about 30%-60% in infants and 1%-10% in adults 
(17, 18). In some cases, more than 95% of children can be colo-
nized with up to six different serotypes by the age of two (19). 
The prevalence of co-colonization by multiple serotypes was 
estimated to range from 1.3% to 48.8% (20, 21). Geographical 
factors, study population, and different detection techniques 
may be responsible for this variation (21). The epidemiology 
and clinical significance of co-colonization needs better clarifi-
cation. As children grow older, the prevalence of pneumococcal 
carriage decreases, and the distribution of colonizing serotypes 
changes to those found in adults. Before the age of nine, the car-
riage rate is maintained above 30%-40%, but it declines progres-
sively afterward (Table 1) (22-24). However, the carriage rate is 
quite variable according to the local epidemiology, trending to-
ward higher carriage rates in impoverished communities with 
low vaccination rates. Studies by Mackenzie et al. and Hill et al. 
showed remarkably high carriage rates (≥ 30%), even in young 
adults (Table 1) (25, 26). In Korea, the pneumococcal carriage 
rate was estimated to be 34.3% among children aged 5 yr or 
younger before the introduction of PCV7 (27), and it was 16.5% 
among those aged 18 yr or less in the era of PCV7 (28). Consid-
ering the difference in study populations, there is a limitation to 
comparing the results of these two studies (Table 1), and data 
on Korean adults is not available.
 Common colonizing serotypes differ between young children 
(< 5 yr) and adolescents/adults. Before the introduction of PCV7, 
serotypes 19F, 6A, 6B, and 23F were prevalent in young children 
aged less than 5 yr, while serotypes 3 and 23F were relatively 
common in adolescents and adults (22, 23, 29). After the intro-
duction of PCV7, these were replaced by non-vaccine serotypes, 
including 19A, 6C, 11A, 15A, and 15B/C (28, 30).

Table 1. Pneumococcal carriage rate by age group

Subjects 
Abdullahi et al.  

(22)
Mackenzie et al.  

(26) 
Hill et al.  

(25)
Adetifa et al.  

(23)
Scott et al.  

(24)
Kim et al.  

(27)
Cho et al.  

(28)

Study period (yr) 2004 2002-2004 2005 2006 2006-2008 2001-2002 2009-2010
Study area Kenya (Kilifi) Australia (Tiwi) Gambia Nigeria USA (native 

American)
Korea Korea

Study subjects Healthy  
subjects

Community  
residences

Community  
residences

Community  
residences 

Pediatric  
outpatients  

and their family 
members

Outpatients  
and inpatients

Patients with  
respiratory  
symptoms

No. of subjects 864 538 2,872 1,005 6,541 213 1,243
Routine use of PCV7 No Yes  

(since late 2001)
No No Yes  

(since 2000)
No Yes  

(since 2003)
Age (yr)
  < 1
  1-2
   3-4
   5-9
   10-19
   20-29
   30-49
  ≥ 50

 
59%
61%
50%
41%
9.6%
7.8%
3.2%
4.7%

 
 
82.4% (2-4 yr)
 
72.7% (5-8 yr)
47.4% (9-15 yr)
19.8% (16-34 yr)
30.7% (35-54 yr)
   38% ( ≥ 55 yr)

 
   97% ( < 1 yr)
   90% (1-4 yr)
 
85.1% (5-14 yr)
 
   65% (15-39 yr)
  
   51% ( ≥ 40 yr)

 
74.4% ( < 2 yr)
 
 
11.9% (5-14 yr)
 
10.8% (15-39 yr)
  6.3% ( ≥ 40 yr)
 

 
 54.8% ( < 2 yr)
 55.8% (2-4 yr)
 
 48.7% (5-9 yr)
 
 11.1% (17-40 yr)
   8.9% (40-64 yr)
 13.8% ( ≥ 65 yr)

 
15.6% (1 yr)

   33.8% (1-2 yr)
   36.3% (3-4 yr)

38.5% (5 yr)
 
 
 
 

 
  16.3% ( < 2 yr)
24.9% (2-4 yr)

    9.6% (5-18 yr)
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 The duration of colonization can range from days to months 
and depends on the serotype (31). Serotype 1 is rarely found to 
colonize the nasopharynx, and serotypes 4, 5, and 7F also colo-
nize to lesser degrees (32, 33). These serotypes are able to initiate 
colonization of the nasopharynx, but colonization may be much 
shorter in duration compared to other serotypes. Sleeman et al. 
(33) estimated the duration of pneumococcal carriage among 
common colonizing serotypes. The duration ranged from 5.9 
weeks for serotype 15C to 19.9 weeks for serotype 6B.
 Causative mechanisms of carriage rate remain unclear. Sev-
eral mechanisms have been postulated, most of which hinge 
on interactions between the bacteria and host immune defens-
es. Serotype-specific polysaccharide capsules protect against 
immune-mediated clearance in several ways, including block-
ing the deposition and function of opsonins (34), trapping by 
neutrophil extracellular traps (NETs), and clearance by mucus 
(35, 36). Both the prevalence of carriage and virulence appear to 
be directly related to the degree of encapsulation. In a murine 
study, Weinberger et al. (37) demonstrated higher carriage rates 
among serotypes with larger capsules. Furthermore, those sero-
type capsules containing more carbon molecules per polysac-
charide repeat unit tend to be smaller and more prone to non-
opsonic killing. Authors from this study suggest that low-carbon 
polysaccharide repeats would require less energy to manufac-
ture and afford a lower “metabolic cost,” allowing a larger poly-
saccharide bulk and therefore improved fitness for carriage.

INVASIVE DISEASE POTENTIAL

Pneumococcal capsule types are known to be associated with 
many important pathogenic processes, including complement 

deposition, inflammation, and binding to the C-type lectin of 
host phagocytes (38, 39). In an animal study by Briles et al. (40), 
a very strong association was demonstrated between capsular 
serotype and virulence (the ability of an isolate to kill mice and 
the length of time between inoculation and death). In mice, se-
rotypes 3, 4, 6A, and 6B were virulent; serotype 1 isolates were 
marginally virulent; and serotypes 14, 19, and 23 were avirulent. 
Clinically, global surveillance demonstrates that a limited num-
ber of capsular serotypes cause more than 70%-80% of IPD (41), 
and the invasive property of pneumococci seems to be deter-
mined by capsular serotype rather than genotype, as determined 
by multilocus sequence typing (MLST) (42). Genetic elements 
may contribute to the heterogeneity of invasive disease poten-
tial among the same serotype (43). 
 Some serotypes commonly colonize the nasopharynx, there-
by having a greater temporal opportunity for invasion. In com-
parison, some serotypes are more likely to cause invasive dis-
ease with each episode of colonization. Several parameters have 
been used to estimate the serotype-specific invasive disease 
potential: invasive odds ratio (OR), invasive capacity (IC), and 
attack rate. Among them, invasive OR has been used most fre-
quently in the literature (29, 42-46). Invasive OR is calculated by 
reference to all the other serotypes as follows: OR = (ad)/(bc), 
where a is the number of invasive A serotypes, b is the number 
of carriage A serotypes, c is the number of invasive non-A sero-
types, and d is the number of carriage non-A serotypes. IC is cal-
culated as the ratio of IPD incidence to carriage prevalence, while 
the attack rate is defined as the ratio of IPD incidence to the inci-
dence of acquisition for each serotype (33, 47). Both are expre- 
ssed as the number of IPD cases per 100,000 carriages or acqui-
sitions. Sleeman et al. (33) classified a high attack rate as 20 or 

Table 2. Capsular serotype-specific invasive disease potential of Streptococcus pneumoniae

Study parameters
Brueggemann  

et al. (42)
Sleeman  
et al. (33)

Hanage  
et al. (44)

Sa-Leao  
et al. (43)

Shouval  
et al. (46)

Kronenberg  
et al. (29)

Rivera-Olivero  
et al. (45)

Yildirim  
et al. (47)

Study period (yr) 1994-2001 1995-1997 1995-1999 2001-2003 2000-2004 2002-2004 2006-2008 2003-2009
Study area (country) UK UK Finland Portugal Israel Swiss Venezuela USA
Routine use of PCV7 No No No No No No No Yes
Method Invasive OR Attack rate Invasive OR Invasive OR Invasive OR Invasive OR Invasive OR Invasive  

capacity
Highly invasive serotypes, 
   statistically significant

1, 4, 14, 18C 1, 4, 5, 7F, 8, 
9V, 9A, 12F, 14, 

18C, 19A

6B, 14, 18C, 
19A

1, 3, 4, 5, 7F, 8, 
9N, 9L, 12B, 14, 

18C, 20

1, 5, 12F 1, 4, 5, 7F, 8, 
9V, 14

1, 5, 7F, 18 3, 7F, 18C, 19A, 
22F, 33F

Highly invasive serotypes, 
   insignificant

7F, 9V, 19A - 4, 7F, 9V, 38 - 9V, 18C, 19A, 
19F

19A 3, 14, 19F -

Less invasive serotypes, 
   insignificant

3, 6B, 15B/C, 
19F

- 3, 9N, 10, 15, 
19F, 22, 23F 

- 3, 6A, 6B, 11A, 
14, 15A, 15B/C, 

21, 23F, 35B

6B, 9, 22, 23F 6A, 6B, 19A, 
23F

11A, 15A, 15B/
C, 19F, 35F

Less invasive serotypes, 
   statistically significant

23F 3, 6A, 6B, 9N, 
10A, 11A, 16F, 
15B/C, 19F, 20, 
21, 22F, 23A, 
23F, 33F, 35F, 

38  

6A, 11A, 35F 6A, 6B, 11A, 
15B/C, 16F, 19F, 
23F, 34, 35F, 37

- 3, 7, 10, 11, 15, 
19F, 23

- 6C, 23A, 35B

OR, odds ratio. 
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more IPD cases per 100,000 acquisitions, and a low attack rate 
as less than 10 IPD cases per 100,000 acquisitions. Table 2 sum-
marizes studies about the relationship between pneumococcal 
serotype and invasive disease potential. Some serotypes (1, 4, 5, 
7F, 8, 12F, 14, 18C, and 19A) were considered highly invasive, 
while others (6A, 6B, 11A, 15B/C, and 23F) were generally less 
invasive in most studies (29, 33, 42, 43, 45-47). Serotype preva-
lence was variable between studies, which may be due to geo-
graphic and epidemiologic differences. Serotype 6B was highly 
invasive according to the report by Hanage et al. (44), but was 
not as invasive in other studies (29, 33, 42, 43, 45, 46). Also, re-
ports of the invasive disease potential of serogroup 9 (9A, 9V, 9N, 
and 9L) showed some variation (29, 33, 42-46). Except for the 
study by Yildirim et al. (47), all the studies of Table 2 were con-
ducted before the widespread use of PCV7. Recently, Scott et al. 
(24) assessed changes in the serotype-specific invasive disease 
potential during the PCV7 era and found no remarkable change 
in the invasive potential among serotypes. Although the sero-
type-specific IPD incidence might be proportional to the carriage 
prevalence, it is important to continue monitoring the change 
in the serotype-specific invasive disease potential.

CLINICAL PRESENTATIONS

Different pneumococcal serotypes are known to cause different 
clinical presentations of pneumococcal diseases. Globally, se-
rotypes 3, 6A, 6B, 9V, 14, 19A, 19F, and 23F were reported to cause 
acute otitis media (AOM) in young children, according to a re-
cent review (48). Particularly, serotype 19A pneumococcal AOM 
increased predominantly after the introduction of PCV7 (49, 50). 
Serotypes 3, 11A, and non-typeable (NT) pneumococci are as-
sociated with acute conjunctivitis (46). Regarding IPD, serotypes 
1, 5, and 7F usually affect healthy young adults with a low mor-
tality rate, while serotypes with low or intermediate invasive 
potential are more likely to affect the elderly with underlying 
comorbidities (32, 51, 52). Yildirim et al. (53) compared the in-
cidence and serotype distribution of IPD among children less 
than 18 yr of age between the early (2001-2006) and late (2007-
2010) periods of the PCV7 era in the US. The overall IPD inci-
dence rate was 7.5 cases per 100,000 inhabitants, without a sta-
tistical difference between these two periods, although the pro-
portion of bacteremic pneumonia among all IPD cases was al-
most three-fold greater in 2009-2010 compared to the early pe-
riod. IPD due to serotypes 19A and 7F increased during the late 
period of the PCV7 era, representing 41% and 20% of all IPD 
cases in the same period, respectively. Changes in the distribu-
tion of serotypes may affect the clinical presentation of IPD.
 A recent meta-analysis evaluated serotype-specific case fatal-
ity rates (CFRs). This study revealed that serotypes 1, 7F, and 8 
were associated with lower mortality, whereas serotypes 3, 6A, 
6B, 9N, and 19F were associated with increased mortality (54). 

In a nationwide, population-based cohort study of IPD in Den-
mark over the period of 1977–2007, serotypes 3, 10A, 11A, 15B, 
16F, 17F, 19F, 31, and 35F were associated with highly increased 
mortality as compared with serotype 1 (adjusted odds ratio ≥ 3, 
P < 0.001) (55). Van Hoek et al. (56) estimated the CFRs of IPD 
by serotype and age group (< 5, 5-64, and ≥ 65 yr) in England 
from April 2002 to March 2011. Among patients younger than  
5 yr, CFR was low (overall 3%), with the highest rate occurring 
with serotype 6A (7%), followed by 19F (5%), 9V (5%), and 3 (5%). 
In the age group of 5-64 yr, the overall CFR was 10%; serotypes 
31 (33%), 11A (30%), and 19F (21%) had the highest CFRs, while 
serotypes 1 (3%), 7F (4%), and 8 (6%) had the lowest rates. Pa-
tients aged 65 yr and older had the highest CFR (overall 30%); 
serotypes 19F (41%), 31 (40%), and 3 (39%) were associated with 
the highest CFRs, whereas serotypes 1 (17%), 7F (20%), and 12F 
(21%) were associated with lower CFRs.   

Pneumonia
S. pneumoniae is the most common cause of community-ac-
quired pneumonia (CAP) in children and adults (57). While the 
majority of pneumococcal pneumonia cases are non-bactere-
mic (60%-80%), bacteremic pneumonia is more severe (58-60). 
Bacteremic and non-bacteremic pneumonia are considered to 
be different clinical entities. In mice, several thousand colony-
forming units (CFUs) of S. pneumoniae of serotypes 2 or 3 in the 
lungs result in bacteremia and death, whereas S. pneumoniae 
of serogroup 19 is unable to induce bacteremia after lung infec-
tion and results in a nonprogressive course unless tens of mil-
lions of CFUs are inoculated (61).
 According to a recent meta-analysis, pneumococcal serotype 
14 was the most prevalent etiologic agent of pneumococcal CAP, 
followed by serotypes 1 and 5, in Latin America and the Carib-
bean (Table 3) (62). Since PCV7 was not adopted into the na-
tional immunization program in the Latin America and Carib-
bean regions during the study periods, it was not possible to 
determine the serotype shift between the pre- and post-vacci-
nation eras. In the studies which included the post-PCV7 peri-
ods, serotype 1 was predominant, followed by serotypes 19A 
and 3. The prevalence of serotype 14 was decreased to around 
5% (60, 63, 64). 
 Among adults, Burgos et al. (65) reported that serotype 14 was 
still one of the most common causes of pneumococcal pneu-
monia in Spain, even after PCV7 introduction. Likewise, in a UK 
study, Bewick et al. (66) also reported that the most common 
serotypes were 14, 1, 8, 3, and 19A in adult pneumococcal CAP, 
while serotypes 19A, 3, and 6A/C were the most prevalent in 
IPD. They emphasized that cohort studies of IPD alone may un-
derestimate the true prevalence of serotype 14. In comparison, 
Cilloniz et al. (60) reported serotypes 1 and 19A as the predomi-
nant agents of invasive pneumococcal pneumonia in Spanish 
adults. Although the vaccination rate and secular trend affect 
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the outcomes, there may be some differences in the serotype 
distributions between invasive and non-invasive pneumococ-
cal pneumonia, particularly among adults. As for the serotype 
distribution in pneumonia, no data was available from Asian 
countries.
 Necrotizing pneumonia is a complicated pneumococcal in-
fection, which is associated with a significant increase in mor-
bidity and mortality. In the pre-antibiotic era, studies of autopsy 
cases described a necrotizing change in about 5% (0.7%-27%) 
of cases, and a recent large-series study (using computed to-
mography) reported its occurrence in 6.6% of adult pneumo-
coccal pneumonia cases (67). Serotype 3 strains have been rec-
ognized as the most common etiologic agents (63, 67, 68).

Empyema
Serotypes 1, 3, 7F, 14, and 19A are known to be associated with 
empyema complications after pneumococcal infection (69-72). 
Empyema was considered rare in children, but it has been in-
creasing worldwide over the last decade (69, 73-75). Lee et al. 
(76) evaluated 62 Korean children with empyema, where sero-
type 19A was most frequently identified (46.2% of pneumococ-
cal empyema). In a recent US study of 49 cases of pediatric em-
pyema, serotypes 3 (26.5%) and 19A (22.4%) were the most com-
mon etiologies, followed by serotypes 7F (14.3%) and 1 (12.2%) 
(77). However, many studies showed that most pediatric empy-
ema cases were more directly linked to non-PCV7 serotype 1, 
due to selective PCV7 pressure (64, 78, 79). According to the 
MLST of serotype 1 isolates, sequence types (ST) 227, ST228, 
and ST304 were genotypes that previously existed, while ST306 
was newly detected after PCV7 introduction (78, 80). Serotype 1 
pneumococcal empyema was also common in adults aged be-
tween 18 and 50 yr; according to the report by Burgos et al. (81), 
more than 40% of pneumococcal empyema were caused by se-
rotype 1. It is also possible that serotype 1 is associated with em-
pyema due to the zwitterionic polysaccharides found in its cap-
sule, which have been related to abscess formation in animal 

models (32).

Meningitis
S. pneumoniae is estimated to cause more than 60,000 menin-
gitis-associated deaths and long-term disabilities in children 
five years of age or younger worldwide annually (82). The inci-
dence of pneumococcal meningitis is highest in children under 
one year of age, but data on the serotype distribution remain in-
sufficient in Asian countries. According to surveillance in Ugan-
dan children aged less than five years, the most common sero-
type was 6A/6B (40%), followed by 22A, 23F, 14, and 19A (83). 
Previously, serotypes 1, 3, and 5 were rarely reported in cases of 
meningitis (52). However, recent studies in the African menin-
gitis belt revealed that 60%-80% of pneumococcal meningitis 
was caused by serotype 1, with higher incidence and case fatal-
ity ratios compared to meningococcal meningitis (84). Com-
pared to the US and Europe, where a bimodal age distribution 
is observed, the pneumococcal meningitis epidemiology of the 
African meningitis belt is quite different. Serotype 1 is predomi-
nant, and older children and working-age adults are more likely 
to be infected, with a high case fatality rate. Such differences 
might be due to the properties of the African lineage of serotype 
1, rather than the general characteristics of serotype 1 (85). MLST 
has identified three clonal lineages of serotype 1, and these were 
geographically segregated. As for travelers to African meningitis 
belt areas, PCV13 vaccination is recommended in addition to 
the meningococcal vaccination.
 Serotype prevalence in the US has undergone a significant 
shift since routine immunization with PCV7 commenced. Com-
paring data from 1998-1999 to 2004-2005, there has been a signif-
icant reduction in pneumococcal meningitis among the PCV7 
serotypes, from 59 to 23 percent of cases (P < 0.001) (86). Non-
PCV7 serotype disease has expectantly increased, from 28 to 65 
percent (P < 0.001), with a preponderance of the increase being 
attributed to serotypes 19A and 22F (86). Despite the observed 
serotype shift, the overall incidence of pneumococcal meningi-

Table 3. Serotype distribution in patients with pneumococcal pneumonia

Serotypes Gentile et al. (62) Bender et al. (63) Resti et al. (64) Bewick et al. (66) Cilloniz et al. (60)

Study design Meta-analysis Retrospective study Observational study Prospective  
observational study

Prospective  
observational study

Study period (yr) 1980-2008 1997-2006 2007-2009 2008-2010 2006-2009
Study area Latin America  

and Caribbean
USA Italy UK Spain

Age of study population < 5 yr < 18 yr 0-16 yr ≥ 16 yr Adult (age not specified)
Pneumonia type CAP Pneumonia Bacteremic CAP CAP Invasive CAP
Serotypes     14 (33.0%)

      1 (11.0%)
      5 (10.8%)
  6B (7.4%)
15C (5.2%)
19A (4.7%)

      1 (22.6%)
      3 (11.3%)
  19A (10.5%)

  14 (5.6%)
  6B (4.8%)
19F (4.8%)

      1 (32.5%)
  19A (15.0%)
      3 (12.5%)
    5 (6.2%)
19F (6.2%)
  14 (3.8%)

       14 (18.6%)
         1 (16.5%)

      8 (14.5)
    3 (8.3)
19A (8.3)

       4 (1.7%)

    1 (32.1%)
19A (17.9%)

7F (6.0%)
14 (6.0%)
  5 (4.8%)
  4 (3.6%)

CAP, community-acquired pneumonia.
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tis in the US has decreased by 30 percent to 0.79 cases/100,000 
(86). 

Peritonitis
Primary pneumococcal peritonitis in children has been recog-
nized for more than a century (87, 88). Its peak incidence occurs 
in children between the ages of 5 and 7 yr, and it is more com-
mon in girls than in boys (89). Pneumococcal peritonitis is usu-
ally associated with nephrotic syndrome in children, while it is 
related to cirrhosis in adults (90-92). In healthy adults, pneu-
mococcal peritonitis is unusual, but it typically occurs in young 
women as a result of serotype 1 pneumococci (93, 94), causing 
pelvic abscesses or other reproductive tract infections. Pneu-
mococci are still common etiologic agents of spontaneous bac-
terial peritonitis in cirrhotic patients; however, there is no pub-
lished data on the serotype distribution.

Hemolytic uremic syndrome
Hemolytic uremic syndrome (HUS) is characterized by the tri-
ad of microangiopathic hemolytic anemia, thrombocytopenia, 
and acute renal failure. Typical HUS usually follows an episode 
of gastroenteritis with enterotoxigenic Escherichia coli. Although 
S. pneumoniae-associated HUS (SP-HUS) occurs after bacterial 
infection, similar to typical HUS, the clinical outcomes are worse 
than typical HUS, with a higher dialysis requirement (82% vs 
42%) and mortality rate (< 11% vs < 5%) (95). SP-HUS is known 
to occur exclusively in children after IPD, with a low incidence 
rate (0.4%-0.6%) (96, 97). However, SP-HUS is often mistaken 
for disseminated intravascular coagulation (DIC), and, as result, 
not all SP-HUS cases may have been reported. Nevertheless, case 
reports are increasing after the introduction of PCV7 (98-100). 
 The hypothesized pathogenic mechanism of SP-HUS sug-
gests that neuraminidase-producing pneumococcus exposes 
the normally hidden Thomsen-Freidenreich antigens (T-Ag) of 
erythrocytes, platelets, and renal endothelial cells. Free T-Ag re-
acts with anti-T immunoglobulin, resulting in hemolysis, poly-
agglutination, endothelial damage, and thrombotic microangi-
opathy (101, 102). Positive T-Ag activation and a direct Coombs’ 
test are predictive of SP-HUS after IPD, and these aid in differ-
entiating typical and atypical HUS (95, 99). 
 Considering the pathogenic mechanism, SP-HUS develop-
ment may not be dependent on the capsule serotype. Limited 
data suggest a weak association of SP-HUS with specific sero-
types (1, 3, 6A, 7F, 12F, 14, 19A, 22F, and 23F), as well as a high 
concurrence with empyema (103, 104). In mouse models, pneu-
mococcal neuraminidase expression was higher in the lungs 
than in blood and was greater in bacteria growing in biofilms 
than in planktonic forms, potentially explaining the strong asso-
ciation between SP-HUS and empyema (105). Pneumococcal 
serotypes with a high predilection to cause complicated pneu-
monia accompanying empyema may be major etiologies of  

SP-HUS. Before the introduction of PCV7, serotype 14 was the 
most common, but a serotype shift was observed, with increas-
ing cases of serotypes 1, 3, 7F, and 19A, with serotype 3 being 
predominant (100, 106-108).

ANTIBIOTIC RESISTANCE

The ability of S. pneumoniae to undergo horizontal gene trans-
fer leads to its genetic diversity and helps the organism adapt to 
environmental changes, including antibiotic pressure. Theoret-
ically, the genotype should primarily correlate with antibiotic 
resistance. However, strategies for pneumococcal vaccines are 
actually based on serotype distribution, and therefore serotype-
related antibiotic resistance has also been studied with interest. 
Herein, the relations between the pneumococcal serotype and 
genotype were addressed with regard to antibiotic resistance. 
Hsieh et al. (109) showed that different serotypes of S. pneu-
moniae possess different levels of genetic competence, which
is the ability of a cell to take up extracellular DNA from its envi-
ronment. Isolates belonging to serotypes 3 and 18C that were 
100% sensitive to penicillin were significantly less competent 
than isolates belonging to serotypes 6B, 14, 19F, 9V, and 23F, 
which were frequently resistant to penicillin. Intriguingly, the 
capsule (cps) locus of S. pneumoniae is flanked by the pbp2x 
and pbp1a genes, which code for penicillin-binding proteins 
(PBPs) (110). PBPs are enzymes involved in cell wall synthesis 
and are targets for β-lactam antibiotics. Under the natural selec-
tion imposed by host immunity and antibiotics, the recombina-
tion events would involve PBP genes, as well as the cps operon, 
and would change both the serotype and the resistance profile 
of the strain. 
 The prevalence of antibiotic-resistant S. pneumoniae has in-
creased worldwide and might be related to the spread of pedi-
atric pneumococcal serotypes (6A, 6B, 9V, 14, 15A, 19F, 19A, and 
23F). After the introduction of PCV7, the prevalence of PCV7 
serotypes and serotype 6A were reduced and subsequently re-
placed by non-PCV7 serotypes, including serotype 19A. Although 
Spain23F-ST81 and Spain6B-ST90 were well-established multi-
drug-resistant clones in the 1980s and 1990s, their prevalence 
decreased after the introduction of PCV7 (111).
 Serotype 19A is the most prominent serotype worldwide, both 
clinically important and multidrug-resistant (non-susceptible 
to ≥ 3 antibiotic classes) in the era of PCV7. More than 30% of 
serotype 19A isolates were multidrug resistant (112, 113). With 
dual macrolide resistance mechanisms (ermB and mefA), they 
showed resistance to erythromycin (high level, MIC ≥ 32 μg/
mL), tetracycline, clindamycin, cefuroxime, and trimethoprim/
sulfamethoxazole (114, 115). Erythromycin resistance was high-
ly correlated with azithromycin and clarithromycin resistance 
(113). Although the resistance rate for penicillin is quite low (min-
imum inhibitory concentration [MIC] ≥ 8 μg/mL, < 5%) based 
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on the revised 2008 Clinical and Laboratory Standards Institute 
(CLSI) breakpoint, multidrug-resistant serotype 19A isolates 
showed relatively high penicillin MICs (MIC50, 1.5 μg/mL) (116).
 In addition, some strains of recently identified serotypes 6C 
and 6D S. pneumoniae showed multidrug resistance (117-119). 
While serotype 6C was first described in 2006, it has been iden-
tified from isolates dating back to 1962 (117). Serotype 6D S. 
pneumoniae isolates were reported in several regions, includ-
ing Korea, Japan, China, Hong Kong, Fiji, Australia, Finland, 
Poland, Peru, and Canada (7, 120-128).

Serotype 19A S. pneumoniae
Of note, serotype 19A pneumococci with multidrug resistance 
had already been reported in some regions before the introduc-
tion or widespread use of PCV7. According to a surveillance 
study in Korea, serotype 19A had already increased among chil-
dren aged less than 5 yr before the introduction of PCV7 (8% in-
crease between 1991 and 1997 and an 18% increase between 
1997 and 2003) (116). The pre-existing ST320 genotype was re-
sponsible for the expansion of multidrug-resistant serotype 19A, 
which belonged to the clonal complex (CC) 320/271. ST320 se-
rotype 19A isolates showed a higher rate of antibiotic resistance 
compared to non-ST320 isolates: penicillin (MIC ≥ 2 μg/mL, 
47.8% vs 34.1%), cefuroxime (82.6% vs 63.7%), erythromycin 
(71.7% vs 65.9%), clindamycin (73.9% vs 59.3%), and trime-
thoprim/sulfamethoxazole (82.6% vs 64.8%) (113). Antibiotic 
abuse/overuse might facilitate the spread of multidrug-resis-
tant serotype 19A strains. CC320/271 serotype 19A strains were 
not limited just to Korea, having become prevalent in several 
Asian countries. The Asian Network for Surveillance of Resis-
tant Pathogens (ANSORP) study surveyed ten Asian countries 
(Korea, Japan, Hong Kong, Taiwan, Malaysia, Philippines, Thai-
land, Saudi Arabia, India, and Vietnam) during the period of 
2008-2009 and found that 5.6% of clinical pneumonia isolates 
were serotype 19A pneumococci, and 51.6% of them were ST320 
strains (129).
 In the US and Canada, CC320/271-expressing serotype 19A 
emerged and expanded after PCV7 introduction, which may 
have arisen from a capsular switch with Taiwan19F-ST236 (130). 
The Active Bacterial Core Surveillance system of the US Centers 
for Disease Control and Prevention (CDC) reported that the 
proportion of IPD by penicillin non-susceptible S. pneumoniae 
(PNSP) expressing serotype 19A increased significantly during 
2004-2008, reaching 43.7% (MIC ≥ 2 μg/mL) by 2008 (131). The 
proportion of CC320/271 serotype 19A isolates increased in par-
allel, from 20.9% to 32.9% of IPD isolates during 2005-2007. In 
2007, 82.1% (202 among 246) of serotype 19A isolates belonged 
to CC320/271.
 In Europe, ST230 and ST276, the members of CC230, have 
been identified as a major serotype 19A lineage responsible for 
causing IPD (111, 132). Compared to Korea and North America, 

the STs were diverse, and ST320 was infrequent. In a Portuguese 
surveillance study from 2001 to 2006, ST320 was absent, and 
ST230 was the most common genotype (133). A French study 
characterizing invasive isolates also identified ST276 as a repre-
sentative clone (132). In Italy, the increased prevalence of sero-
type 19A was due to expansion of CC199 (ST416 and ST199)  
after PCV7 introduction (134). According to the Spanish Pneu-
mococcal Reference Laboratory (SPRL) study, however, the 
prevalences of ST81 and ST202 were decreasing, while those of 
ST878 and ST320 showed increasing trends (135). During the 
study period, serotype 19A increased from 5.7% in 2000 to 16.8% 
in 2008 (135). Therefore, continuous monitoring is required to 
detect the spread of multidrug-resistant clones, and strict con-
trol of antibiotic use might be an important strategy to minimize 
further spread.
 
Serotype 6C/6D S. pneumoniae
In the late PCV7 period, the prevalence of serotype 6C pneumo-
cocci increased in the US, Spain, and Portugal (117, 119, 136). 
The rate of multidrug resistance increased, and the strains were 
genetically diverse. In the US, the two main clonal clusters were 
ST473 and ST1292 (117). Both STs were non-susceptible to eryth-
romycin and trimethoprim/sulfamethoxazole, and ST1292 
showed decreased susceptibility to penicillin and ceftriaxone. 
In Spain, the increase of serotype 6C prevalence was associated 
with the emergence of ST386/ST4310/ST4825, which were non-
susceptible to penicillin, erythromycin, tetracycline and clinda-
mycin (119). Considering that serotype 6C was more common 
in older children and adults, fluoroquinolone resistance should 
be monitored, although its frequency has remained low (119, 
137).
 While serotype 6D S. pneumoniae has been isolated in sever-
al regions, it is characteristically prevalent in Korea, comprising 
more than 10% of serogroup 6 isolates (138, 139). Among the 
three clones of serotype 6D S. pneumoniae found in Korea (ST189, 
ST282, and ST3171), ST189 and ST282 strains are related to CC81 
(138). Ko et al. (118) reported that all ST282 isolates were non-
susceptible to penicillin and cefuroxime, and more than 50% of 
them were resistant to trimethoprim/sulfamethoxazole. In com-
parison, ST3171 isolates showed resistance to only macrolides 
and clindamycin. Fortunately, ST282 strains have only been  
reported in Korea, and STs of serotype 6D pneumococci were 
very diverse worldwide: Japan (ST2924), China (ST982 and 
ST4190), Hong Kong (ST5085 and ST5086), Fiji (ST639, ST473, 
and ST4240), Australia (ST4241), Finland (ST5163), Poland 
(ST948, ST2181, ST1612, and ST4734), and Peru (ST6148) (118). 
While currently insignificant, the trend of antibiotic resistance 
in serotype 6D S. pneumoniae should be monitored with vigi-
lance.
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CONCLUSION

Pneumococcal serotype appears to be much more important 
in determining colonization, disease development, and clinical 
phenotype compared to the genetic background. Among the 
current 94 serotypes, a limited number of serotypes cause more 
than 70%-80% of IPD (41). Serotypes 1, 4, 5, 7F, 8, 12F, 14, 18C, 
and 19A are more likely to cause IPD (29, 33, 42, 43, 45-47). 
Though serotypes 1 and 19A are predominantly responsible for 
invasive pneumococcal pneumonia, serotype 14 is still one of 
the most common etiologic agents of non-bacteremic pneu-
mococcal pneumonia among adults in the era of PCV7 (65, 66). 
Serotype 1 pneumococcal meningitis is prevalent in the African 
meningitis belt, with a high case fatality rate (84), while menin-
gitis by non-PCV7 serotypes has increased, with a preponder-
ance for serotypes 19A and 22F in the US since routine PCV7 
immunization (86). New manifestations of IPD, such as pediat-
ric empyema and HUS, became more common in the era of 
PCV7 (69, 74, 98-100). Serotypes 1, 3, and 19A pneumococci are 
likely to cause empyema and HUS (76, 81, 100, 106, 107). 
 In contrast to the capsular serotype, the genotype is more 
closely associated with antibiotic resistance. CC320/271 strains 
with serotype 19A are multidrug-resistant and prevalent world-
wide, particularly in North America and many Asian countries 
(129, 131). Several clones of multidrug-resistant serotype 6C 
pneumococci emerged in the US and Europe, and a multidrug-
resistant 6D clone (ST282) has been identified in Korea (117-
119, 138, 139).
 After the introduction of PCV7 for pediatric patients, pre-ex-
isting nonvaccine serotypes expanded (serotype 19A), and new 
serotypes were identified (serotypes 6C, 6D, and 11E). Interest-
ingly, serotype 6D comprises more than 10% of serogroup 6 in 
Korea, although it remains relatively uncommon in other areas 
(138, 139). Meanwhile, PCV13 was introduced for children in 
2010. In turn, it was additionally licensed for adults in 2012 as 
the first conjugate vaccine for adults. In addition to the econom-
ic aspects (vaccination rates and cost-effectiveness), serotype 
distribution should be monitored to detect the emergence and 
expansion of undiscovered serotypes and recombinant capsu-
lar clones.
 The pneumococcal epidemiology of capsule types varies geo-
graphically and temporally (13, 15). Knowledge of the serotype 
distribution is necessary for conjugate vaccine usage, but the 
seroepidemiological data is inadequate in many countries in-
cluding Korea. A nationwide serosurveillance system is vital to 
establishing appropriate vaccination strategies for each coun-
try.
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