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SUMMARY
Multi-omic data-driven studies are at the forefront of precision medicine by characterizing complex disease
signaling systems across multiple views and levels. The integration and interpretation of multi-omic data are
critical for identifying disease targets and deciphering disease signaling pathways. However, it remains an
open problem due to the complex signaling interactions among many proteins. Herein, we propose a
multi-scale multi-hop multi-omic network flow model, M3NetFlow, to facilitate both hypothesis-guided
and generic multi-omic data analysis tasks. We evaluated M3NetFlow using two independent case studies:
(1) uncovering mechanisms of synergy of drug combinations (hypothesis/anchor-target guided multi-omic
analysis) and (2) identifying biomarkers of Alzheimer’s disease (generic multi-omic analysis). The evaluation
and comparison results showed thatM3NetFlow achieved the best prediction accuracy and identified a set of
drug combination synergy- and disease-associated targets. Themodel can be directly applied to other multi-
omic data-driven studies.
INTRODUCTION

Multi-omic data-driven studies are at the forefront of precision

medicine and healthcare. Recently, multi-omic datasets, like ge-

netic, epigenetic, transcriptomic, and proteomic, have been

generated to characterize dysfunctional biological processes

and signaling pathways from multiple levels/views and to eluci-

date the panoramic view of the disease pathogenesis.1–3 For

example, The Cancer Genome Atlas (TCGA) program has gener-

ated multi-omic datasets of over 20,000 samples spanning 33

cancer types, to understand the key molecular targets and

signaling pathways of cancer. Moreover, the multi-omic data of

>10,000 cancer cell lines were profiled in the Cancer Cell Line

Encyclopedia (CCLE) project, which are valuable to investigate

the mechanism of cancer response to given drugs and drug

combinations.4 In addition, the multi-omic data of Alzheimer’s

disease (AD) are generated and publicly available in The

Religious Orders Study and Memory and Aging Project

(ROSMAP5) project to uncover the pathogenesis of AD. Also,

the exceptional longevity (EL), like the Long-Life Family Study

project, has been generating multi-omic data6,7 to identify pro-

tective biomarkers and pathways for long and healthy life. The

multi-omic data are valuable and essential for understanding
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the key molecular targets and mechanisms of diseases, identi-

fying novel therapeutic targets, predicting effective drugs and

drug cocktails to guide the development of precision medicine.

However, it remains an open problem and a challenging task

to integrate multi-omic data and mine core disease signaling

pathways from the complex and intensive signaling interactions

among a large number of proteins in the cell signaling system.8

The two problems to be tackled in this study are (1) hypothesis/

anchor-target guided multi-omic data analysis and (2) generic

multi-omic data analysis. The hypothesis/anchor-targets can be

known as disease-associated targets, or drug targets; and the ex-

pected outcome is the upstream or downstream signaling path-

ways of given anchor-targets. Specifically, the drug combination

synergy score prediction task (as the hypothesis/anchor-target

guidedanalysisexample) isdefinedas follows. In twoexperimental

datasets (National Cancer Institute [NCI] 60 and the O’Neil), the

synergyscores (label information to train themodel) of a set ofpair-

wise drug combinationswere experimentallymeasured ona set of

cancer cell lines. The multi-omic data of these cancer cell lines

were also measured and publicly accessible. The biological and

computational problems are if a computational model can (1) pre-

dict synergy scoreofdrugcombinationsand (2) investigate thepo-

tential mechanism of synergy (MoS) using (model inputs) the
rch 21, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
NC license (http://creativecommons.org/licenses/by-nc/4.0/).

mailto:fuhai.li@wustl.edu
https://doi.org/10.1016/j.isci.2025.111920
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2025.111920&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/


iScience
Article

ll
OPEN ACCESS
multi-omic data of cancer cell lines, known drug targets (drug-

target interactions), and Kyoto Encyclopedia of Genes and

Genomes (KEGG9) signalingpathways (agraphwithsignaling/pro-

tein-protein interactions). So each data point for themodel can be

represented as <DrugA (drug targets), DrugB (drug targets),

Cell_Line (multi-omic data), SynergyScore (label to train the

model)> (in addition to KEGG signaling pathways). The expected

model outcomes/output are (1) synergy scorepredictioncapability

of the model and (2) MoS of effective drug combination on given

cell lines, i.e., important signaling targets and cascades/flows

within cell lines that can explain which drug combinations are

effective and which are not. For the generic multi-omic data anal-

ysis demonstrated using AD sample classification task, the multi-

omic datasets of AD and control human samples are publicly

accessible. The biological and computational problems are if a

computational model can (1) predict sample categories and (2)

identify disease-associated targets and pathways. Specifically,

the model inputs are the (1) multi-omic data of samples, (2)

KEGG signaling graph, and (3) sample categories (label informa-

tion to train the model): AD vs. control. So each data point for the

model canberepresentedas<Sample (multi-omicdata),Category

(AD vs. control, label to train the model)> (in addition to KEGG

signaling pathways). The expected model outputs are (1) model

prediction capability to classify samples into AD vs. control and

(2) the potential AD-associated targets.

A comprehensive review of existing multi-omic data integration

analysis models was reported.8 Specifically, these models were

clustered into a few categories, like similarity, correlation,

Bayesian, multivariate, fusion, and network-based models.8 The

pathway representation and analysis bydirect inference ongraph-

icalmodels (PARADIGM10) isoneof themostwidelyusedmethods

among these traditional computational methods. The mixOmics11

and timeOmics12models and toolswere developed to identify dis-

ease-associated genes using multivariate analysis on the multi-

omic datasets of one and multiple time points, respectively, in

which the signaling network information was not integrated. The

mechanism of action generator involving network analysis

(MAGINE)13 is an enrichment-based framework, in which the

differentially expressed genes from multi-omic data are identified

first, and enriched pathways and network modules are then iden-

tifiedbasedon the identifiedgenes. TheGLUE14 (graph-linkeduni-

fied embedding)modelwasproposed to integratemulti-omicdata

by mapping raw omic data/features into a new embedding space

for the cell clustering and correlation analysis. In the GLUEmodel,

the signaling network information was converted to embedding

features to adjust the embedding of raw omic data, which did

not directly use the network information to calculate the signaling

flow on the network. Recently, graph neural networks (GNNs)

have gained prominence due to their capability to model relation-

ships within graph-structured data.15–17 And numerous studies

have applied the GNN with the integration of the multi-omic data.

Multi-omics graph convolutional networks (MOGONET18) initially

creates similarity graphs among samples by leveraging each

omic data and then employs a graph convolutional network

(GCN17) to learn a label distribution from each omic data indepen-

dently. Subsequently, a cross-omic discovery tensor is imple-

mented to refine thepredictionby learning thedependencyamong

multi-omic data. Multi-omics integration model based on graph
2 iScience 28, 111920, March 21, 2025
convolutional network (MoGCN19) adopts a similar approach by

constructing a patient similarity network using multi-omic data

and then using GCN to predict the cancer subtype of patients.

The universal framework for the integration of single-cell multi-

omicsdatabasedongraphconvolutional network (GCN-SC20) uti-

lizes a GCN to combine single-cell multi-omic data derived from

varying sequencing methodologies. Nevertheless, none of these

models contemplate incorporating structured signaling data like

KEGG into the model. Moreover, general GNNmodels are limited

by their expression power, i.e., the low-pass filtering or over-

smoothing issues, which hamper their ability to incorporate

many layers. The over-smoothing problem was firstly mentioned

by extending the propagation layers in GCN.21Moreover, theoret-

ical papers using Dirichlet energy showed diminished discrimina-

tive power by increasing the propagation layers. And multiple at-

tempts were made to compare the expressive power of the

GCNs,22 and it is shown that Weisfeiler-Lehman (WL) subtree

kernel23 is insufficient for capturing the graph structure. Hence,

to improve theexpressionpowerful ofGNN, theK-hop information

of local substructure was considered in various recent

research.24–28However, noneof these studieswas specifically de-

signed to well integrate the biological regulatory network and pro-

vide the interpretation with important edges and nodes.

In this study, we present a novel graph AI model, M3NetFlow

(multi-scale, multi-hop, multi-omic network flow) to address the

challengesmentioned earlier. The major and unique contributions

are as follows. Compared with existing models, we first mapped

multi-omic data and drug-target information onto KEGG signaling

pathways,9 which can support both anchor-target (drug targets)

guided analysis and generic multi-omic analysis. To improve the

model expression power, then we conducted the message prop-

agation or signaling flowingwith attention,multi-hop, onboth local

signaling modules and then updated the node embedding on the

global signaling graph. This model design and model architecture

are novel for multi-omic analysis tasks. Then the important

signaling targets and interactions can be identified using the atten-

tion-based scores, learned in themodel on the training dataset. To

assess and demonstrate the effectiveness of the proposedmodel,

M3NetFlow, it was applied in two independent multi-omic case

studies: (1) uncovering mechanisms of synergy of effective drug

combinations (hypothesis/anchor-target guided multi-omic anal-

ysis) and (2) identifying biomarkers of AD (genericmulti-omic anal-

ysis). The evaluation and comparison results showed that M3Net-

Flow achieved the best prediction accuracy and identified a set of

essential drug combination synergy- and disease-associated tar-

gets. To facilitate investigating the analysis results, a visualization

tool, NetFlowVis, was developed to visualize the top-ranked

signaling targets and interactions based on the attention-based

target and interaction scores. The details of the studies are intro-

duced in the following sections.

RESULTS

Figure 1 shows the schematic architecture of the proposed

M3NetFlow model. The model input parameters are X = fðXð1Þ;
T ð1ÞÞ; ðXð2Þ; T ð2ÞÞ; .; ðXðmÞ; T ðmÞÞ; .; ðXðMÞ; T ðMÞÞg ðXðmÞ ˛Rn3d;

T ˛Rn32Þ; A˛Rn3n; S = fS1; S2; .; Sp; .; SPgðSp ˛Rnp3np Þ;
Din ˛Rn3n;Dout ˛Rn3n, where M represents the number of data
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points, X denotes all of the data points in the dataset, and

ðXðmÞ; T ðmÞÞ ism-th data points in the dataset, where XðmÞ denotes
the node features matrix with n nodes of d features and T ðmÞ de-
notes the one-hot encoding of two drugs (drug combinations) tar-

geted on those n nodes (in the general multi-omic data analysis,

the variable T will not be used). The matrixA is the adjacency ma-

trix that demonstrates the node-node interactions. The element in

adjacency matrix A such as aij indicates an edge from i to j. S is a

set of subgraphs that partition the whole graph adjacent matrix A

into multiple subgraphs with Sp ˛Rnp3np of node interactions be-

tween its internal np nodes, and each subgraph has its own corre-

sponding subgraph node feature matrix Xp ˛Rnp3d. Din is an in-

degree diagonal matrix for nodes in directed graph, and Dout is

an out-degree diagonal matrix for nodes in directed graph. The

model is to build up a model fð $Þ to predict the labels of samples:

fðX;A;S;Din;DoutÞ = Y, where Y is the sample labels, Y ˛ RM31

(e.g., the drug combination synergy scores or AD vs. control).
Experimental setup
For drug combination synergy score prediction task, the 5-fold

cross-validation (F = 5) was employed. For each sample, it

has four elements: <DA, DB, CC, SABC> representing that drugs

DA and DB are used on cell line CC and SABC is the drug synergy

score. The drug targets of DA and DB and the multi-omic data of

cell line CC were used as the model input to predict SABC (see

STAR Methods). Specifically, there are 2,788 samples for the

NCI ALMANAC29 (A Large Matrix of Anti-Neoplastic Agent Com-

binations) drug combination dataset and 1,008 samples for the

O’Neil dataset.30 For this task, 1,489 proteins on KEGG signaling

graph were selected (overlapping with the omic data), and each

protein (graph node) is characterized by 6 omic features: gene

expression (RNA sequencing), copy-number variation (CNV),

gene amplification, gene deletion, and gene methylation

maximum and minimum values, as well as it is a target of DA or

DB from Cell Model Passports,31 CCLE, and DrugBank32 data-

bases. For AD sample classification task, multi-omic data of

138 (74 AD, 64 control [non-AD]) samples were derived from

the ROSMAP5 database. We randomly selected 64 AD and 64

control samples as a balanced dataset and used the 5-fold

cross-validation (F = 5) to evaluate the model performance.

For this task, 2,099 proteins on KEGG signaling graph were

selected (overlapping with the omic data), and each protein

(graph node) is characterized by 10 omic features: methylation

values on upstream, distal promoters, proximal promoters,

core promoters and downstream, genetic duplication, deletions,

CNV, and gene expression and protein expression from

ROSMAP and GEO33 platform.
Hyperparameters
The models were implemented using pytorch and torch geomet-

ric. For both tasks, the learning rate started at 0.002 and was
Figure 1. Model architecture of M3NetFlow

(A) Mapping multi-omic data and drug targets onto KEGG signaling pathways.

(B) Multi-hop attention-based signaling propagation on subgraphs.

(C) Global signaling propagation.

(D) Downstream tasks: (D.1) hypothesis/anchor-target guided decoder/predictio
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reduced equally within each batch for a certain epoch stage. Af-

ter 60 epochs, the learning rate was set at 0.0001. Adam opti-

mizer was used for optimization with eps = 1e�7 and weight_de-

cay = 1e�20. We empirically set the K-hop subgraph message

propagation with K = 3 (3 hops) and the global bi-directional

message propagation with L = 3 ð3 layersÞ. Afterward, the

feature dimensions will vary at the different layers and will be de-

noted by ðdð1Þ;dð2Þ;.;dðlÞ;.;dðLÞÞ. At the global message prop-

agation step, the layer will concatenate new node embedding

features and output node features of the previous layer for

both upstream and downstream, generating concatenated di-

mensions for the output dims being 33dðlÞ in l-th layer. Output

dims of the previous layer served as the input dims for the current

layer, as follows: (1) first layer’s (input dims, output dims), ðdð0Þ;
3dð1ÞÞ; (2) second layer’s (input dims, output dims), ð3dð1Þ;
3dð2ÞÞ; and (3) third layer’s (input dims, output dims), ð3dð2Þ;
3dð3ÞÞ. The final embedded node dims were 3dð3Þ ðL = 3Þ. For
drug combination synergy score prediction task, the decoder

trainable transformation matrix dims D˛R3dðLÞ3E and U˛RE3E

were used as trainable decoder matrices; E = 150 was used.

In AD sample classification task, the max pooling was employed

to predict the sample outcome as described in Equation 6. As for

the LeakyReLU function, the parameter was set as 0.1 for both

tasks.
M3NetFlow improves prediction accuracy
To evaluate themodel performance in terms of synergy score pre-

diction for drug combinations and predictions on ROSMAP AD

samples, we conducted 5-fold cross-validation. As shown in Ta-

ble 1, the average prediction (using the Pearson correlation coef-

ficient) was about 61% Pearson correlation using the test data in

the NCI ALMANAC dataset and was about 64% Pearson correla-

tion using the test data in the O’Neil dataset. Regarding the

ROSMAP dataset, the average prediction accuracy was about

66%using the test data in the ROSMAPdataset. These prediction

results are comparable with existing deep learning models.34,35

Moreover, we also compared our proposed model M3NetFlow

with other deep learning models, which included the GCN,17

graph attention network16 (GAT), UniMP,36 MixHop,25 principal

neighborhood aggregation37 (PNA), and graph isomorphism

network (GIN). By checking the p values over 5-fold cross-valida-

tion, the performances of the M3NetFlow have significant

improvement over most of the GNN-based methods (see Table 1

and Figure 2A).
M3NetFlow ranks important targets and interactions via
attention scores
Targets with higher importance scores predicting drug

combination synergy

Based on the node importance score calculated from edge

attention scores (see target/node importance score calculation
n; (D.2) generic pooling/sorting based decoder/prediction.



Table 1. Model comparisons using average Pearson correlation

and prediction accuracy (mean ± standard deviation) of 5-fold

cross-validation using NCI ALMANAC, O’Neil, and ROSMAP

datasets

Dataset NCI ALMANAC O’Neil ROSMAP

GCN 51.93% ± 3.55% 44.47% ±

6.60%

59.43% ± 4.53%

GAT 49.16% ± 2.26% 57.06% ±

3.72%

62.80% ± 7.11%

UniMP 49.02% ± 4.62% 55.84% ±

10.93%

61.83% ± 3.78%

MixHop 57.78% ± 3.66% 27.15% ±

10.01%

57.20% ± 3.92%

PNA 55.63% ± 2.47% 62.20% ±

2.27%

57.83% ± 1.82%

GIN 53.76% ± 2.47% 33.12% ±

9.89%

49.83% ± 5.71%

M3NetFlow 60.72% ± 0.77% 64.36% ±

2.53%

67.34% ± 5.12%
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in STAR Methods section for details), the important targets for

each cell line can be selected. For example, to investigate the

MoS, we compared the importance scores of drug targets of

the top 5 drug combinations (with highest synergy scores) and

bottom 5 drug combinations (lowest drug synergy scores) (Fig-

ure 3A). In another word, it is expected that the targets of syner-

gistic drug combinations have higher importance scores than the

targets of the non-synergistic drug combinations. Our results

confirmed this pattern in 37 out of 41 (�90%) cell lines, which

have higher mean target importance scores (light green in

Table S1). Specifically, in 27 out of 41 (�65%) cell lines, the tar-

gets of synergistic drug combinations have higher importance

scores with p value % 0.1 (deep orange color in Table S1),

and, in 32 out of 41 (�78%) cell lines, the targets of synergistic

drug combinations have higher importance scores with p value

% 0.3 (light orange color in Table S1). Figure 4 shows the pattern

of target/node importance scores of drug combinations. Specif-

ically, the left boxplots compared the node/target importance

score distribution of individual top 5 and bottom (low) 5 drug

combinations, respectively (each drug combination has multiple

targets). The right boxplots show the node/target importance

score distribution of all top 5 and bottom 5 drug combinations,

respectively. The scores of individual drug targets and proteins

in each cell line were provided in Table S2, and the top 20 protein

lists for each cell line were provided in Table S3. Moreover, we

identified the commonly important proteins across cell lines of

the same cancer type (Figure S2).

Top-ranked targets are associated with AD

By setting the filters (edge threshold as 0.106 and a small compo-

nent threshold as 15), we identified 100 potential important genes

for AD. Among those genes, 28 genes are filtered out by setting

the threshold of attention-based node weight as 2.0 and 15 of

them with p values smaller than 0.1 in at least one of the 10

multi-omic features (see Figures 5A and 5B). To evaluate the

top targets ranked by attention-based node weight, the top-

ranked 28 AD-associated biomarkers were further analyzed via

pathway enrichment analysis. Interestingly, a set of AD-associ-
ated signaling pathways are identified. As shown in Figure 5C,

the top-ranked targets are involved in a set of signaling transduc-

tion pathways, which indicates the importance of these targets.

Among them, several signaling pathways play critical roles in

AD particularly through mechanisms involving inflammation, im-

mune responses, and cellular growth and death. For instances,

theBcell receptor (BCR) andT cell receptor (TCR) signaling path-

ways are vital for B cell and T cell activation, which plays a crucial

role in immune surveillance and inflammation. Shared molecular

components between the BCR and TCR pathways, including

Mitogen-Activated Protein Kinase Kinase 1 (MAP2K1), Jun

Proto-Oncogene, AP-1 Transcription Factor Subunit (JUN),

Component Of Inhibitor Of Nuclear Factor Kappa BKinase Com-

plex (CHUK), RELAProto-Oncogene,NF-KBSubunit (RELA),Nu-

clear Factor Kappa B Subunit 1 (NFKB1), Inhibitor Of Nuclear

Factor Kappa B Kinase Subunit Beta (IKBKB), and protein kinase

B (AKT) genes, suggest significant crosstalk that contributes to

neuroinflammatory processes in AD. Prolonged activation of

these immune pathways may exacerbate chronic inflammation

and contribute to AD pathology by sustaining harmful neuroin-

flammatory responses.38 The nuclear factor kBNF-kB signaling

axis, a critical component in both BCR and TCR pathways, is

particularly relevant in AD due to its role in regulating inflamma-

tory cytokine production. Chronic activation of NF-kB has been

linked to increased amyloid-beta (Ab) deposition and neurofibril-

lary tangle formation, both of which are hallmark features of AD

pathology.39,40 Additionally, activation of NF-kB, mitogen-acti-

vated protein kinase (MAPK), and AKT signaling cascades can

induce neuronal apoptosis, leading to cognitive decline associ-

ated with AD. The MAPK, rat sarcoma (RAS), Phosphatidylinosi-

tol 3-Kinase / Protein Kinase B (PI3K/Akt), and forkhead box O

(FoxO) signaling pathways also play critical roles in modulating

immune responses and neuronal survival. The p38 MAPK

pathway, for example, drives neuroinflammation by activating

microglia and promoting the release of pro-inflammatory cyto-

kines, which can result in neuronal death.41 Overactivation of

RAS signaling increases oxidative stress, contributing to Ab

accumulation and taupathology, bothofwhicharecentral to neu-

rodegeneration in AD.42 While Ab accumulation is an early event

in AD, tau pathology is more closely associated with cognitive

decline, and, together, these processes are considered the pri-

mary drivers of neuronal death in AD.43,44 The Akt signaling

pathway, which promotes cell survival by inhibiting apoptosis

through downstream effectors such as B-cell CLL/lymphoma 2

(BCL2), is also impaired in AD. Reduced Akt activity has been

linked to increased neuronal apoptosis and the accumulation of

Ab and hyperphosphorylated tau. Notably, the PI3K-Akt pathway

is intimately connected to insulin signaling, which is disrupted in

AD and is characterized by reduced Akt signaling, impaired

glucose metabolism, and an increased vulnerability to neurode-

generation.45 Furthermore, neurotrophin signaling, which regu-

lates axonal growth and regeneration via MAPK and PI3K-Akt

pathways, is another pathway that becomes disrupted in AD.

This disruption impairs axonal repair mechanisms and contrib-

utes to synaptic loss and neuronal degeneration.46 Additionally,

endocrine-related pathways, including insulin and relaxin

signaling, play crucial roles in maintaining cellular homeostasis

and survival. Dysregulation of these pathways in AD contributes
iScience 28, 111920, March 21, 2025 5



Figure 2. Model performance and overview of input datasets NCI ALMANAC, O’Neil (drug combination multi-omic data), and ROSMAP (AD

multi-omic data)

(A) Averaged Pearson correlation across 5-fold validation comparisons for GCN, GAT, UniMP, MixHop, PNA, GIN, and M3NetFlow models for NCI ALMANAC,

O’Neil, and ROSMAP dataset (data are represented as mean).

(B) Scatterplot of the model with data points in the whole NCI ALMANAC dataset.

(C) Distributions of all cell lines in the whole NCI ALMANAC dataset.

(D) Boxplots across all cell lines in the whole NCI ALMANAC dataset.
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to neuronal apoptosis, neuroinflammation, and impaired protein

clearance, further exacerbating disease pathology.45,47,48

DISCUSSION

Multi-omic data-driven studies are the forefront of biomedical

research. Large-scale multi-omic datasets have been generated

to characterize the dysfunctional targets and signaling pathways

of complex diseases, like cancer and AD, which are valuable

and essential for the development of personalized medicine or

precision medicine. However, it remains an open problem to inte-
6 iScience 28, 111920, March 21, 2025
grate and interpret the multi-omic datasets to identify key molec-

ular targets and core signaling pathways. In this study, we clearly

formulated and defined the two types of need of multi-omic data

analysis, i.e., hypothesis/anchor-target guided multi-omic data

analysis and generic multi-omic data analysis. To tackle the

multi-omic data analysis tasks, we proposed a graph AI model,

M3NetFlow, which is specifically designed for integrating and

analyzing multi-omic datasets and can deal with both of analysis

tasks. Compared with existing models, the proposed model

design and model architecture, mapping multi-omic data into

signaling networks, combing local and global signaling, and



Figure 3. Target importance score patterns of synergistic and non-synergistic drug combinations

(A) Illustration of analyzing the important targets of top 5 synergistic and bottom 5 non-synergistic drug combinations.

(B) Visualization tool NetFlowVis for core signaling network interactions of cell line DU-145.

(C–F) Target importance score distribution and boxplots of the top 5 synergistic and bottom 5 non-synergistic drug combinations in DU-145 and SK-MEL-28 cell

lines, and t-test p-values were used to statistically compare the two distributions in (C) and (E).
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multi-hop flowing/propagation on the signaling network, are

unique. The model prediction and interpretation (attention-based

target and interaction scores) capabilities are demonstrated and

evaluated using two case studies: drug combination synergy

score prediction task (hypothesis/anchor-target guided multi-

omic data analysis) and AD sample classification (generic multi-

omic data analysis). The source code of M3NetFlow is publicly

accessible, which enables users tomodify and improve themodel

for their own studies. Thismethodcanbe analternative option and

can be combined with other analysis methods, like the MAGINE

for pathway and network module enrichment analysis.

Limitations of the study
This study is an exploratory effort in multi-omic data analysis, with

several areas requiring further investigation. For example, more

signaling pathways and larger protein-protein interactions should

be evaluated. Moreover, dividing large signaling graphs into sub-

networks or network modules can be achieved by using biologi-

cally meaningful annotations, such as gene ontology (GO) terms.

In the current analysis, the generic pre-analyzed multi-omic fea-

tures were used. It is worth investigating and selecting additional

and biological meaningful features that can be derived from the
multi-omic datasets in the future work. Additionally, more and

more multi-omic datasets are being generated. Combining multi-

omic data from different diseases can provide a larger sample

size than individual disease datasets, which could improve the

training or pre-training of graph AI models and help identify pan-

disease or disease-specific targets. It is also interesting to expand

graphmodels fromtissue-levelmulti-omicdata tosingle-cellmulti-

omicdata,which canbemorechallengingdue to the large number

of single-cell samples. Aside from this, incorporating large lan-

guage models (LLMs) into graph-based frameworks offers further

possibilities, such as interpreting textual annotations/descriptions

and associated GO terms or pathways to enrich the informative

features, which can improve prediction accuracy and identify the

accurate and interpretable biomarkers and core signaling path-

ways. Developing a hybrid graph-language framework that inte-

grates structureddatawith unstructured text could enable contex-

tual learning, while pre-trained LLMs like Generative Pre-training

Transformer (GPT) or Bidirectional Encoder Representations

from Transformer (BERT) may assist in mapping textual annota-

tions to graph components, improving pathway discovery. There-

fore, sophisticated and improved graph AI models are needed to

integrate and interpret multi-omic datasets, identify and infer key
iScience 28, 111920, March 21, 2025 7



Figure 4. Boxplots of target importance scores of cell lines A498, A549/ATCC, ACHN, BT-549, CAKI-1, DU-145, EKVX, HCT-116, HCT-15,

HOP-62, HOP-92, HS 578T, IGROV1, K-562, KM12, LOX IMVI, MCF7, MDA-MB-231/ATCC, MDA-MB-468, NCI-H23, HCI-H460, NCI-H522,

OVCAR-3, OVCAR-4, OVCAR-8, PC-3, RPMI-8226, SF-268, SF-295, SF-539, SK-MEL-28, SK-MEL-5, SK-OV-3, SNB-75, SR, SW-620, T-47D,

U251, UACC-257, UACC-62, and UO-31
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molecular targets and signaling pathways of complex diseases,

and guide the development of precision medicine.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

NCI Drug Combination Synergy Score NCI ALMANAC https://wiki.nci.nih.gov/display/NCIDTPdata/

NCI-ALMANAC

O’Neil Drug Combination Synergy Score DrugComb https://drugcomb.fimm.fi/

Cell Model Passports RNA-Seq Cell Model Passports https://cog.sanger.ac.uk/cmp/download/

rnaseq_20191101.zip

Cell Model Passports CNV Cell Model Passports https://cog.sanger.ac.uk/cmp/download/

cnv_20191101.zip

CCLE Methylation CCLE https://data.broadinstitute.org/ccle/

CCLE_RRBS_TSS1kb_20181022.txt.gz

CCLE Gene Amplification CCLE https://data.broadinstitute.org/ccle_legacy_

data/binary_calls_for_copy_number_and_

mutation_data/CCLE_MUT_CNA_AMP_DEL_

binary_Revealer.gct

CCLE Gene Deletion CCLE https://data.broadinstitute.org/ccle_legacy_

data/binary_calls_for_copy_number_and_

mutation_data/CCLE_MUT_CNA_AMP_

DEL_binary_Revealer.gct

ROSMAP_clinical ROSMAP https://www.synapse.org/

#!Synapse:syn3191087

ROSMAP_arrayMethylation_imputed ROSMAP https://www.synapse.org/

#!Synapse:syn3168763

ROSMAP.CNV.Matrix(Mutation) ROSMAP https://www.synapse.org/

#!Synapse:syn26263118

ROSMAP_RNAseq_FPKM_gene ROSMAP https://www.synapse.org/

#!Synapse:syn3505720

C2.median_polish_corrected_log2(Proteomic) ROSMAP https://www.synapse.org/

#!Synapse:syn21266454

GEO GPL16304 Platform Gene Expression Omnibus https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GPL16304

KEGG Signaling Pathways KEGG https://www.genome.jp/kegg/

Drug-Target Interaction Data DrugBank https://go.drugbank.com/

Software and algorithms

Python version 3.10 Python Foundation Software https://www.python.org/

PyTorch PyTorch Official Website https://pytorch.org/

Torch Geometric PyG Official Website https://pytorch-geometric.readthedocs.io/en/latest/

R Software version 4.2.2 R Foundation for Statistical

Computing

https://www.r-project.org/

M3NetFlow GitHub repository https://github.com/FuhaiLiAiLab/M3NetFlow

NetFlowVis shinyapps https://m3netflow.shinyapps.io/NetFlowVis/

NetFlowVis-AD shinyapps https://m3netflow.shinyapps.io/NetFlowVis-AD/
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This paper analyzes existing, publicly available data. The study does not use experimental models typical in life sciences.
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METHOD DETAILS

Datasets introduction for two case studies
As aforementioned, we will apply the proposed model on two case studies: 1) hypothesis guided multi-omic data analysis: mecha-

nism of synergy study using pairwise-drug combination synergy score (as the label data to train themodel), multi-omic data of cancer

cell lines (input features), drug targets (input anchor-targets), and KEGG signaling pathways (input graph); and 2) general multi-omic

data analysis: AD biomarker discovery using sample diagnosis (AD or control as the label data), multi-omic data of samples (input

features) and KEGG signaling pathways (input graph). The models will be trained using the label data to identify the key biomarkers

and signaling flows based on the attention scores of signaling interactions (edges of the input graph). These datasets are publicly

accessible. In key resources table, it shows the links to download the drug combination synergy scores, the pre-analyzed multi-

omic data of cancer cell lines, KEGG signaling pathways and drug target information. It also shows the accessible information of

the pre-analyzed multi-omic data and label information of AD.

Subgraph and multi-hop message propagation
In the graph message passing stages of our architecture (Figures 1B and 1C), the multi-scale design, i.e., the local network module/

subgraph module message passing stage for each signaling pathway, and the global message passing stage was designed.

The multi-scale design will ensure the message fully interacts in the internal subgraph. We further made use of the K-hop

attention-based design because it allows for the consideration of longer distance information flow from indirect neighboring nodes.

Specifically, with those initial embedding features XðmÞ ˛Rn3d; ðm = 1; 2;.;MÞ, the new embedding/features of the nodes are

calculated as follows

�
a
ðmÞ
ij

�
p

ðkÞ
= ATThop

h
XðmÞ
p

i
=

exp
�
LeakyReLU

�
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i�� ; (Equation 1)

where ðaðmÞ
ij Þp

ðkÞ
is the attention score between node i and node j in the k-th kop of the subgraph Sp for sample m using the K-hop

attention function (ATThopÞ. The linear transformation vector a˛R2d0
was also defined. At the same time, the linear transformation for

features of each node will be defined as W ˛Rd3d0
. And ðXðmÞ

p Þi represent the feature feature of node i (i = 1;2;.;nÞ. Then the up-

dated node embedding ðHðmÞ
p Þi for node i will be generated via K-hop message (MSG) propagation function by

�
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�
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= MSGhop
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; (Equation 2)

whereQi represents the number of signaling pathway the node i ði = 1;2;.; nÞ belongs to andN
ðkÞ
i is the neighbor nodes calculated

by the adjacency matrix in k-th hop AðkÞ for the node i (See Figure S1 for the algorithm of k-th hop adjacency matrix). Above formula

shows the calculation for the 1-head attention and the linear transformation for features of each node will be defined asW 0 ˛ Rd03d0
.

The number of head hwill bemodified in themodel, and the node embeddings for each subgraphwill take the average of embeddings

in every head attention.

Global Bi-directional message propagation
Following the message propagation on the subgraphs, the global weighted bi-directional message propagation will be performed on

the global integrated graph, where nodes-flow contains both ‘upstream-to-downstream’ (from up-stream signaling to drug targets)

and ‘downstream-to-upstream’ (from drug targets to down-stream signaling) (Figure 1D). Before the global level message propaga-

tion, the node feature for data pointm in each subgraphH
ðmÞ
p ðp = 1;2;.;PÞwill be combined into a new unified node featuresmatrix

HðmÞ as the initial node features with

H
ðmÞ
i =

1PP
p = 1 I½V i ˛Sp�

XP
p = 1

�
HðmÞ

p

�
i
$ I½V i ˛ Sp�; (Equation 3)

where Vi represents the node/vertex i in the graph and I½V i ˛Sp� is the indicator function, whose value will be one if V i ˛ Sp. Then, the

initial node features for global level propagation will be ðHðmÞÞð0Þ ˛Rn3dð0Þ ð dð0Þ = d0 +dÞ, where ðHðmÞÞð0Þ is the concatenated feature

matrix from XðmÞ and HðmÞ. Then ðHðmÞÞðLÞ will be generated by weighted bi-directional message propagation via�
HðmÞ

�ðLÞ
= MPN

� �
HðmÞ

�ð0Þ�
; (Equation 4)

where ðHðmÞÞðLÞ ˛Rn33dðLÞ
is the final embeddings after L-th layer message propagation and message passing network (MPN) is the

layers of global weighted bi-directional graph neural network (WeB-GNN).49
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Downstream tasks
Anchor-target guided multi-omic analysis

The drug combination synergy score prediction is used to demonstrate the hypothesis/anchor-target guided multi-omic data anal-

ysis. After obtaining the embedded node features ðHðmÞÞðLÞ ˛Rn33dðLÞ
from the global message passing network, the features for drug

A are represented as ðHðmÞ
drugAÞ

ðLÞ
˛R133dðLÞ

and the features for drug B are represented as ðHðmÞ
drugBÞ

ðLÞ
˛R133dðLÞ

. Utilizing the decagon

decoder, the prediction of synergy score will be calculated as follows.

g
��

H
ðmÞ
drugA

�ðLÞ
;
�
H

ðmÞ
drugB

�ðLÞ�
=

�
H

ðmÞ
drugA

�ðLÞ
DUDT

��
H

ðmÞ
drugB

�ðLÞ�T

; (Equation 5)

where D˛R3dðLÞ3E and U˛RE3E are trainable decoder matrices (Figure 1D).

Generic multi-omic analysis

With the embedding of nodes, the global max pooling strategy was applied to predict the patient outcome with

by ðmÞ = argmax
�
MLP

�
MAX

h�
HðmÞ

�ðLÞi��
; (Equation 6)

where by ðmÞ ˛RC and C is the number of sample types (e.g., AD vs control); multi-layer perceptron (MLP) is the linear function in arti-

ficial neural network; MAX is the maximum pooling function by extract the maximum value from embedded features (Figure 1D).

Signaling flow and target scores generation
Signaling interaction importance score

By extracting the edge weight from K-hop attention function ATThop, averaged edge importance score between node i and node j in

k-th hop for specific sample type Cr (r = 1;2;.;R and R is total number of sample types) will be generated by aggregating multiple

signaling pathways and data points belong to sample type Cr�
a
ðCr Þ
ij

�ðkÞ
=

1

jCr j
X
m˛Cr

XP
p = 1

�
a
ðmÞ
ij

�
p

ðkÞ
; (Equation 7)

where ðaðmÞ
ij Þp

ðkÞ
will be aggregated from all signaling pathways under the specific sample typeCr and ðaðCr Þ

ij ÞðkÞ represents the element

of i-th row and j-th column in the k-th hop edge importance score matrix ðAðCr ÞÞðkÞ (ðAðCr ÞÞðkÞ ˛Rn3n;k = 1;2;.;K). In this study, 1st

hop edge importance score matrix of fold f, ðAðCr ÞÞf
ð1Þ
, will be utilized to generate final edge importance score matrix by

AðCr Þ =
1

jFj
XF
f = 1

�
AðCr Þ

�
f

ð1Þ
; (Equation 8)

where F is the number of fold used in cross validation.

Target/node importance score calculation

The weighted importance score of each node (gene) for specific sample type (e.g., cell line in cancer dataset or patient type in AD

dataset) will be calculated based on the attention with

DðCr Þ
g =

Xn

i

Aig
ðCr Þ

+
Xn

j

Agj
ðCr Þ

; (Equation 9)

whereA
ðCr Þ
ig is the element of averaged fold attentionmatrixAðCr Þ from a sample typeCr in the i-th row and g-th column andD

ðCr Þ
g is the

importance score for node g for specific sample type Cr . Therefore,D
ðCr Þ
g will be used to construct the node importance score vector

DðCr Þ ðDðCr Þ ˛RnÞ. The overall node importance score matrix,D (D˛Rn3R), will be generated by concatenating the node importance

score vector with D = ½DðC1Þ;DðC2Þ;.;DðCr Þ;.;DðCRÞ�. Specifically, for calculating the node importance score for cancer dataset,

some of genes may show the importance of relatively higher scores in each sample, which weakens the analysis of the cell-line-spe-

cific analysis. In this way, the idea of reweighting the gene importance score was created based on the Term Frequency – Inverse

Document Frequency (TF-IDF) is employed to redistribute the importance scores of genes across different cell lines to reweight

the node importance in each sample with

Wg = Log

�
R+1

Sg+0:01

�
(Equation 10)

D0
g
ðCr Þ = WgD

ðCr Þ
g ; (Equation 11)

where Sg is the number of cell lines with a higher node importance score than the threshold S in all cell lines and Wg is the weight

coefficient to adjust the importance score in each sample type. In this study, the 95 percentile of node importance scores in the whole

matrix D was used for setting S. Finally, the reweighted node importance score matrix D0 will be generated by concatenating the

reweighted node importance score vector with D0 = ½D0ðC1Þ;D0ðC2Þ;.;D0ðCr Þ;.;D0ðCRÞ� for cancer targets identification.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluation metrics
The evaluation metrics of predictions were Pearson correlation for drug synergy scores and accuracy for AD status classification.

Statistical analysis
We performed a t-test to assess the differences in importance scores of drug targets between the top drug combinations (with the

highest synergy scores) and the bottom drug combinations (with the lowest synergy scores).

ADDITIONAL RESOURCES

We developed NetFlowVis application is provided for visualizing the results. The cancer results can be accessed through the

following link: https://m3netflow.shinyapps.io/NetFlowVis/, while the visualization tool of ROSMAP AD results is available at

https://m3netflow.shinyapps.io/NetFlowVis-AD/.
iScience 28, 111920, March 21, 2025 e4
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