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Abstract
Background: Osteogenesis imperfecta (OI), a genetically determined connective 
tissue disorder, is characterized by increased bone fragility and reduced bone mass. 
Clinical presentation severity ranges from very mild types with nearly no fractures to 
intrauterine fractures and perinatal lethality. It can be accompanied by blue sclerae, 
dentinogenesis imperfecta (DI), hearing loss, muscle weakness, ligament laxity, and 
skin fragility. This study sought to identify pathogenic gene variants in a four‐gen-
eration Han Chinese family with OI type I.
Methods: In order to unveil the molecular genetic factors underlying the disease 
phenotype, whole exome sequencing in a member, with OI type I, of a Han Chinese 
family from Hunan, China was performed. The variant identified by whole exome 
sequencing was further tested by Sanger sequencing in the family members.
Results: A heterozygous missense variant (NM_000089.3: c.3197G>T; 
NP_000080.2: p.Gly1066Val) in the collagen type I alpha 2 chain gene (COL1A2) 
was identified in four patients. It co‐segregated with the disease in the family.
Conclusion: The sequence variant may be a disease‐causing factor resulting in ab-
normal type I procollagen synthesis and leading to OI type I. This finding has signifi-
cant implications for genetic counseling and clinical monitoring of high‐risk families 
and may be helpful for understanding pathogenic mechanism of OI and developing 
therapies.

K E Y W O R D S
COL1A2, heterozygous variant, osteogenesis imperfecta, procollagen

1  |   INTRODUCTION

Osteogenesis imperfecta (OI), a genetically determined con-
nective tissue disorder, is characterized by increased bone 

fragility and reduced bone mass (Marini et al., 2017; van Dijk 
et al., 2011). OI prevalence, at birth, is estimated at 3‐7 per 
100,000 (Marini et al., 2017). Extra‐skeletal features include 
blue sclerae, dentinogenesis imperfecta (DI), hearing loss, 
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muscle weakness, ligament laxity, skin fragility, pulmonary 
complications, and cardiovascular involvement (Becker et 
al., 2011; Marini et al., 2017). Phenotypical severity ranges 
from very mild types with nearly no fractures through vari-
able skeletal deformities to intrauterine fractures and perina-
tal death (Becker et al., 2011; Marini et al., 2017; van Dijk 
et al., 2011).

In 1979, an OI “Sillence classification” was proposed 
and remains in use. It is based on clinical and genetic find-
ings: Type I is classic, nondeforming OI characterized by 
blue sclerae; Type II is a perinatally lethal form; Type III 
is a progressively deforming form; Type IV is the com-
mon variable form with white sclerae (Sillence, Senn, & 
Danks, 1979). With the significant progress unmasking 
OI's genetic basis, the original “Sillence classification” has 
evolved using emerging genetic etiology along with dis-
tinctive clinical manifestations (Rauch & Glorieux, 2004). 
Presently, at least 18 OI types have been described with 17 
pathogenic genes identified (Alanay et al., 2010; Becker et 
al., 2011; Cabral et al., 2007; Cho et al., 2012; Duran et al., 

2015; Keller et al., 2018; Keupp et al., 2013; Lapunzina et 
al., 2010; Leal et al., 2018; Lindert et al., 2016; Martínez‐
Glez et al., 2012; Mendoza‐Londono et al., 2015; Morello 
et al., 2006; Shaheen et al., 2012; Steiner, Adsit, & Basel, 
2013; Takagi, Matsushita, Nishimura, & Hasegawa, 2014; 
van Dijk et al., 2009). Five types (I‐V) are inherited as an 
autosomal dominant trait with variable disease phenotypes. 
The rest may appear as autosomal recessive or X‐linked 
hereditary inheritance patterns. Approximately 77%‐90% 
patients had heterozygous alterations in the collagen type I 
alpha 1 chain gene (COL1A1, OMIM 120150) and the col-
lagen type I alpha 2 chain gene (COL1A2, OMIM 120160), 
that encode pro‐α1 and pro‐α2 chains of type I procollagen 
respectively and are responsible for OI type I‐IV (Marini et 
al., 2017; Steiner et al., 2013). There are about three times 
as many OI patients with COL1A1 variants than those with 
COL1A2 variants (Zhytnik et al., 2017). More than a thou-
sand COL1A2 gene variants have been described in the 
OI variant database (https://oi.gene.le.ac.uk/) (Dalgleish, 
1997; van Dijk et al., 2011). Yet its pathogenesis remains 

F I G U R E  1   (a) Pedigree of the family with osteogenesis imperfecta showing affected cases (fully shaded). N: normal; V: the COL1A2 
c.3197G>T (p.Gly1066Val) variant. (b) The sequence with heterozygous COL1A2 c.3197G>T variant of an affected individual (II:1). (c) The 
COL1A2 gene sequence of a normal control (II:5). (d) Conservation analysis of the collagen type I pro‐α2 chain p.Gly1066 amino acid residue. 
COL1A2, the collagen type I alpha 2 chain gene

https://oi.gene.le.ac.uk/
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poorly understood. In this context, a missense vari-
ant (NM_000089.3: c.3197G>T; NP_000080.2: p.Gly-
1066Val) in the COL1A2 gene was identified by using 
whole exome sequencing (WES) and Sanger sequencing in 
a Han Chinese family. It may be the genetic etiology for 
this OI family and have important implications for genetic 
monitoring.

2  |   MATERIALS AND METHODS

2.1  |  Participators and clinical evaluations
The subjects of this study belong to a four‐generation Han 
Chinese family with OI which comes from south central 
China (Figure 1a). Detailed clinical data and peripheral ve-
nous blood samples were obtained from 10 family mem-
bers, including four individuals affected with OI (II:1, II:2, 
III:1, and IV:1) and six unaffected members (II:3, II:4, II:5, 
III:2, III:3, and IV:2). Clinical assessment and radiographic 
examinations were performed on the subjects of the fam-
ily. Secondary osteoporosis and nonaccidental injuries were 
eliminated. The diagnostic process summarized by van Dijk 
et al. was employed (van Dijk et al., 2011). The research 
protocol was approved by the Institutional Review Board 
of the Third Xiangya Hospital, Central South University 
(Changsha, China), and adhered to Declaration of Helsinki 
tenets. All participants, or their guardians, executed written 
informed consent forms.

2.2  |  Exome capture
Genomic DNA (gDNA) was extracted from peripheral blood 
samples using standard procedures (Yuan et al., 2015). WES 
was performed on the proband (IV:1) by BGI‐Shenzhen, as 
previously described (Fan et al., 2019). Sequencing library 
construction was accomplished via a qualified gDNA sample 
randomly broken by sonication using Covaris E220 (Covaris, 
Brighton, UK), which yielded 150 to 250 bp of fragments. 
End‐repairing, phosphorylation, and A‐tailing reactions of 
the fragments were then conducted, and a ligation‐mediated, 
polymerase chain reaction amplification was followed. They 
were further modified, amplified, purified, and hybridized 
to the exome array for enrichment. Using the circular single 
stranded libraries, DNA nanoballs were formed via rolling 
circle amplification, and then loaded onto sequencing flow 
cells. The enriched DNA library underwent high‐throughput 
sequencing according to the BGISEQ‐500 protocol (Huang 
et al., 2017).

2.3  |  Variant analysis
Raw data from the BGISEQ machine was filtered to generate 
clean data. This was aligned to the human reference genome 

sequence (GRCh37/hg19) from the UCSC Genome Browser 
by using the Burrows–Wheeler Aligner (BWA) software 
program (Xia et al., 2015). Local realignment around inser-
tions‐deletions (InDels) and base quality score recalibrations 
were performed using the Genome Analysis Toolkit (GATK, 
https://www.broadinstitute.org/gatk/guide/best-practices). 
Picard tools (http://broadinstitute.github.io/picard/) removed 
duplicate reads. The SnpEff tool (http://snpeff.sourceforge.
net/SnpEff_manual.html) annotated variants including single 
nucleotide polymorphisms (SNPs) and InDels, as previously 
described (Xiao et al., 2018).

All candidate variants were filtered against several public 
databases including: the 1000 Genomes Project (http://www.
internationalgenome.org/), the SNP database (dbSNP, https://
www.ncbi.nlm.nih.gov/snp), and the NHLBI exome sequenc-
ing project (ESP) 6500 database, as well as the in‐house 
BGI exome database. Online tools, including Polymorphism 
Phenotyping version 2 (PolyPhen‐2, http://genetics.bwh.har-
vard.edu/pph2/index.shtml), Sorting Intolerant from Tolerant 
(SIFT, http://sift.jcvi.org/), MutationAssessor (MA, http://
mutationassessor.org/), Condel and Functional Analysis 
through Hidden Markov Models (FATHMM, http://fathmm.
biocompute.org.uk/), were used to predict the possible im-
pacts of amino acid substitutions. Sanger sequencing was 
employed to verify the identified potential disease‐causing 
variant with an ABI3500 sequencer (Applied Biosystems 
Inc., Foster City, CA) (Xiao et al., 2018; Zheng et al., 2016). 
Primer sequences designed by Primer3 (http://primer3.ut.ee/) 
were as follows: 5′‐AGGCTAAAGCGAGCAGTGAG‐3′ 
and 5′‐AAAACATTCCTTAGGTCCGTGA‐3′. GenBank 
NG_007405.1 was adopted as the reference sequence. 
MutationTaster (http://www.mutationtaster.org/) evaluated 
the possible impact of amino acid substitution, as previously 
described (Hu et al., 2017). Basic Local Alignment Search 
Tool (BLAST, https://blast.st-va.ncbi.nlm.nih.gov/Blast.cgi) 
was used for multiple protein sequence alignments.

3  |   RESULTS

3.1  |  Clinical characteristics of the pedigree
The affected subjects (II:1, II:2, III:1, and IV:1) had simi-
lar clinical abnormalities and had been diagnosed based 
on symptoms (Figure 2) by osteologists from the Third 
Xiangya Hospital, Central South University. Family mem-
bers denied consanguineous marriages. Patient IV:1 was 
an 11‐year‐old girl with blue sclerae (Figure 2a), who had 
suffered a right femoral fracture at age 1. She gradually 
developed multiple fractures. Imaging data showed mul-
tiple fractures and abnormal callus formation on the right 
femur and a slight deformation of the left femur (Figure 
2c). All patients (II:1, II:2, III:1 and IV:1) presented with 
blue sclerae, DI, and multiple bone fractures resulting from 
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minimal trauma. The clinical features of the pedigree are 
summarized in Table 1.

3.2  |  Whole exome sequencing
There were 235.53 million clean reads and 210.56 million 
total effective reads generated, with 99.93% aligned to the 
human reference genome. The mean sequencing depth was 

253.04. The fraction of bases covered by the target sequence 
at more than 10× was 99.65%. A total of 103,343 SNPs and 
18,066 InDels were detected.

3.3  |  COL1A2 mutation screening
A prioritization scheme was carried out to identify the patho-
genic variant (Wu et al., 2016). Variants in the 1,000 Genomes 

F I G U R E  2   (a) The proband (IV:1) 
presents with blue sclera. (b) Clinical picture 
shows dentinogenesis imperfecta in patient 
(II:2). (c) Radiograph shows fractures and 
abnormal callus formation of the proband 
(IV:1) resulting in slight deformations of 
long bones 

Subject II:1 II:2 III:1 IV:1

Sex Male Male Male Female

Zygosity Heterozygous Heterozygous Heterozygous Heterozygous

Ethnic background Han Chinese Han Chinese Han Chinese Han Chinese

Age (years) 66 62 35 11

Height (centimeter) 160 155 169 146

Weight (kilogram) 55.6 58.5 82.4 50.0

Fractures Multiple Multiple Multiple Multiple

Sclerae Pale blue Pale blue Pale blue Blue

Hearing loss No No No No

Dentinogenesis 
imperfecta

Yes Yes Yes Yes

Bone deformity Unknown Unknown Unknown Moderate

Stature Normal Normal Normal Normal

Clinical presentation 
severity

Moderate Moderate Moderate Severe

Note. COL1A2, the collagen type I alpha 2 chain gene.

T A B L E  1   Clinical and genetic 
characteristics of family members with 
COL1A2 c.3197G>T variant
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Project, dbSNP and NHLBI ESP6500 with a minor allele 
frequency of ≥1% were removed. Variants were defined as 
deleterious via bioinformatics tools. A heterozygous mis-
sense variant (NM_000089.3: c.3197G>T; NP_000080.2: 
p.Gly1066Val) in COL1A2 exon 48 was found to be the 
cause for OI in the proband (IV:1). It was absent from 2,375 
Chinese controls in the in‐house BGI exome database. Using 
Sanger sequencing, the heterozygous variant, c.3197G>T, 
in the COL1A2 gene, was confirmed. It was found in three 
other affected subjects (II:1, II:2, and III:1, Figure 1b), but 
absent from six unaffected family members (II:3, II:4, II:5, 
III:2, III:3, and IV:2, Figure 1c). MutationTaster software 
analysis revealed that the COL1A2 c.3197G>T variant could 
be a disease‐causing variant with a probability value close 
to 1, indicating it is highly secure. The glycine at position 
1066 (p.G1066) is highly conserved across vertebrates, from 
human to zebrafish (Figure 1d).

4  |   DISCUSSION

OI is a rare bone disorder characterized chiefly by bone brit-
tleness and a tendency to fracture. Mutations in COL1A1/2 
genes, which encode the pro‐α1 and pro‐α2 chains of type I 
procollagen, were reportedly responsible for most OI (Martin 
& Shapiro, 2007). Given that OI is highly heterogeneous and 
the causative COL1A1/2 genes are large (Alanay et al., 2010; 
Steiner et al., 2013), large‐scale OI‐related variant analyses 
using ordinary Sanger sequencing are time‐consuming and 
cost‐expensive. WES is a currently available effective ap-
proach for screening pathogenic variants of OI (Keller et 
al., 2018; Mackenroth et al., 2016). A heterozygous variant 
(NM_000089.3: c.3197G>T; NP_000080.2: p.Gly1066Val) 
in the COL1A2 gene affecting the helical region was iden-
tified in this Han Chinese family with OI. Four affected 
subjects (II:1, II:2, III:1, and IV:1) carried the heterozygous 
COL1A2 c.3197G>T variant. Six unaffected family mem-
bers were free of c.3197G>T variant. These facts suggest 
that the COL1A2 c.3197G>T variant co‐segregates strongly 
with the OI phenotype. Clinical manifestations including 
fracture frequency, sclerae color, DI, bone deformity, and se-
verity varied among the four affected subjects. The proband 
manifested the strongest symptoms (Table 1). Background 
genes interference and factors such as epigenetics and the 
environment might contribute to this family's variety of OI 
type I phenotypes. This variant was previously reported in 
a 5‐year‐old Chinese male with OI type I, suffering multi-
ple fractures and extra‐skeletal manifestations of blue sclerae 
and brittle teeth (Wang et al., 2015). This variant in two inde-
pendent families suggests that it may have a founder effect in 
Chinese, or it is a recurrent variant.

OI type I, unlike other OI types, rarely presents with neo-
natal fractures. This tendency is constant during childhood 

and puberty, and decreases thereafter. It often increases fol-
lowing menopause and in men over 50. With adequate or-
thopedic care, fractures may heal rapidly without deformity 
(Steiner et al., 2013). Additional clinical features may be blue 
sclerae, late‐onset hearing loss and joint laxity, with no ap-
parent short stature, common DI, or bone deformity (Marini 
et al., 2017; Steiner et al., 2013; van Dijk et al., 2011). The 
OI type I diagnosis of this family was based on clinical and 
genetic testing.

The COL1A2 gene, mapped to chromosome 7q21.3, 
spans approximately 37 kb and comprises 52 exons. It en-
codes the pro‐α2 chain of type I collagen, which is a protein 
observed in most connective tissues and widely distributed 
in the extracellular matrix of bone, skin, ligament, and ten-
don (Dalgleish, 1997; Marini et al., 2017; Wang et al., 2015). 
There are 1,051 variants, including 988 substitutions, 40 de-
letions, 17 duplications, and six InDels in the COL1A2 gene, 
which have been recorded in the OI variant database (https://
oi.gene.le.ac.uk/, updated on 28 November 2018). The com-
mon COL1A2 variants lead to glycine substitutions within 
the pro‐α2 chain triple helical domain. The pro‐α2 chain 
major structure is a triple helical segment formed by multiple 
Gly‐X‐Y triplet repeat units. Glycine is the only residue tiny 
enough to allow proper chain folding. A study of 291 inde-
pendent COL1A2 variants that resulted in glycine substitution 
found that 81.1% of COL1A2 variants are nonlethal, and that 
about 13.9% of the alterations are valine (Marini et al., 2007). 
In this study, hydrophobic glycine was substituted by hydro-
phobic valine (p.Gly1066Val), which is an α‐amino acid with 
a branched nonpolar side chain. Two α1 chains and one α2 
chain form the type I collagen triple helix, whose propaga-
tion may be delayed when glycine is substituted, and all three 
chains are liable to have post‐translational overmodification. 
Some assembled trimers resulted from substitutions are never 
secreted (Marini et al., 2007; Steiner et al., 2013). Variants 
can result in a reduced amount of procollagen secretion and 
abnormal structure of protein in the matrix (Alanay et al., 
2010; Steiner et al., 2013). The variant present in the subjects 
of this study appears to be nonlethal, which is consistent with 
the finding that COL1A2 variants are predominantly nonle-
thal, and the substitutions of glycine by hydrophobic amino 
acids are more likely to be nonlethal variations compared 
with those by hydrophilic amino acids (Marini et al., 2007).

Treatments of primary and secondary OI complications 
include pharmacological management, orthopedics, phys-
iotherapy, and dental or hearing therapies (van Dijk et al., 
2011). In Col1a2+/p.G610C mice, the secretion and bone matrix 
incorporation of defective α2(I) chain in ~50% of type I col-
lagen heterotrimers result in bone mass and strength reduc-
tions (Masci et al., 2016). Combining anti‐sclerostin antibody 
and zoledronic acid has been reported as increases in tissue 
mineral density and cortical thickness, and sheds light on OI 
therapies (Little et al., 2017). Using adeno‐associated virus 

https://oi.gene.le.ac.uk/
https://oi.gene.le.ac.uk/


6 of 7  |      WANG et al.

vectors which disrupt mutated COL1A2 genes in OI mesen-
chymal stem cells has resulted in normal type I procollagen 
and bone generation, which may be another promising thera-
peutic technology for OI (Chamberlain et al., 2008).

The discovery of this COL1A2 c.3197G>T variant may 
assist in genetic counseling, embryonic screening of in vitro 
fertilized embryos and prenatal genetic diagnosis. This could 
reduce familial transmission in this Han Chinese family and 
contribute to potential gene‐targeted therapies.

In conclusion, a c.3197G>T (p.Gly1066Val) transversion 
was identified in a Han Chinese family with OI type I suffer-
ers. Further studies may contribute to improved clinical care, 
genetic screening and counseling, while facilitating effective 
OI treatment.
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