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Background/Purpose: In recent years, the aging population has gradually increased,
and the aging process is accompanied by health-associated problems, such as loss of
muscle mass and weakness. Therefore, it is important to explore alternative strategies for
improving the health status and physical fitness of the aged population. In this study, we
investigated the effect of soy protein supplementation combined with resistance training
on changes in the muscle mass, muscle strength, and functional activity performance of
aging mice.

Methods: Female Institute of Cancer Research (ICR) mice were divided into four groups
(n = 8 per group): sedentary control (SC), isolated soy protein (ISP) supplementation,
resistance training (RT), and a combination of ISP and RT (ISP + RT). The mice in
designated groups received oral ISP supplementation (0.123 g/kg/day), RT (5 days/
week for a period of 4 weeks), or a combination of both ISP plus RT for 4 weeks.
Afterward, we assessed muscle strength, endurance, and anaerobic endurance
performance and analyzed blood biochemical and pathological tissue sections to
investigate whether there were adverse effects or not in mice.

Results: ISP supplementation effectively improved the muscle mass, muscle endurance,
and endurance performance of aging female mice. The RT group not only showed similar
results with ISP but also increased muscle strength and glycogen content. Nevertheless,
the combination of ISP supplementation and RT had greater beneficial effects on muscle
strength, physical performance, and glycogen levels (p < 0.05). In addition, the
combination of ISP supplementation and RT had significantly increased type II muscle
percentage and cross-sectional area (p < 0.05).

Conclusion: Although ISP or RT alone improved muscle mass and performance, the
combination of ISP with RT showed greater beneficial effects in aging mice. Our findings
suggest that regular exercise along with protein supplementation could be an effective
strategy to improve overall health and physical fitness among the elderly.
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INTRODUCTION

The significant increase in life expectancy in the past 60 years is
due to the decline in mortality among people in their 60s and 70s
(Davis and Bailey, 1997). According to United Nations estimates,
by 2050, one in six people in the world will be 65 years of age or
older (He et al., 2016). The increase in life expectancy is itself a
positive human development. However, aging is related to a
variety of adverse reactions, leading to a decline in the ability
to live independently, and many people are living with poor
health and impaired physical fitness. Such changes in the elderly
make them susceptible to age-related diseases, such as weakness,
sarcopenia, cardiovascular disease, cancer, neurodegenerative
diseases, and metabolic disorders (United Nations, 2020).
Skeletal muscle is not only the largest organ of the human
body but also directly affects a person’s bodily functions, is the
largest amino acid library, providing essential amino acids for
other key tissues/organs to synthesize new proteins for various
purposes, and has the most glycogen storage (Franceschi et al.,
2018). With age, skeletal muscles will undergo structural and
functional changes. The reduction in muscle mass, function, fiber
number, and fiber cross-sectional area may be affected by the loss
of protein homeostasis, mitochondrial dysfunction, and changes
in cell-to-cell communication (Jang et al., 2021), especially the
pathways related to inflammation, protein turnover, and
mitochondrial function (Larsson et al., 2019). In addition,
muscle mass is controlled by a complex balance of muscle
protein synthesis and muscle protein degradation. The ability
of aging skeletal muscle to stimulate muscle protein synthesis in
response to anabolic stimulation is weakened, mainly due to the
impaired activation of the PI3K/Akt/mTOR/p70S6K signal axis
or PI3K-Akt pathway, which is called anabolic resistance (Phillips
et al., 2009; Lenk et al., 2010). The gradual decrease in muscle
mass will lead to muscle atrophy. In addition to causing
dysfunction, falls, and fractures, it will also increase the risk of
cancer and metabolic-related diseases, such as insulin resistance,
diabetes, and obesity (Fry et al., 2011). Although there is no clear
treatment mechanism to improve the muscle loss caused by
aging, finding alternative strategies to slow or prevent the
aging-induced sarcopenia is important for the elderly.

Exercise is an effective therapy for accelerating the production
of various cytokines and growth factors or regulating homeostasis
and can maintain the functions of the elderly (Dalle and Koppo,
2021). Many studies demonstrated exercise as one of the
strategies to improve muscle strength, muscle quality, and
skeletal muscle dysfunction (Demontis et al., 2013). In
addition, regular exercise helps maintain muscle mass and
reduces susceptibility to age-related chronic diseases and
cancer (Consitt et al., 2019). Among them, resistance training
(a gradually overloaded strength training exercise in which the
muscles are loaded from the outside) (Cartee et al., 2016) has been
shown to have a positive effect on functional improvement and
disease prevention, including muscle growth, body composition,
body function, the elderly, and chronic metabolism (American

College of SportsMedicine et al., 2009). Theoretically, the amount
of training performed in the RT round (determined here by the
formula: number of repetitions/×/group) plays an important role
in chronic muscle adaptation (such as muscle size and strength)
(Westcott, 2012). Compared with single-group training, acute
studies have shown that multi-group training can enhance the
phosphorylation of p70S6 kinase and muscle protein synthesis
(Dankel et al., 2017). However, resistance exercise stimulates the
rate of muscle protein breakdown to a lesser degree but stimulates
the rate of muscle protein synthesis to a greater degree. When
performing resistance exercise before ingesting protein, the two
stimuli will synergistically combine to make the stimulation rate
of muscle protein synthesis exceed the rate of muscle protein
breakdown. Therefore, when combined with protein intake,
repeated resistance exercises can lead to an increase in skeletal
muscle protein (Terzis et al., 2010).

In addition to resistance exercise training, diet, a modifiable
lifestyle factor, plays an important role in the prevention and
treatment of sarcopenia (Stokes et al., 2018). Nutritional
supplements, including protein omega-3, and vitamin D are
considered to alleviate age-associated physical impairments
and health issues (Fry et al., 2011). At present, more protein
intake is considered to help in improving muscle mass and
strength (Cruz-Jentoft et al., 2020). Protein supplements are
rich in branched-chain amino acids (BCAAs), which can
change the net balance of protein metabolism from
catabolism. In addition, BCAAs composed of leucine,
isoleucine, and valine have been shown to increase the level of
protein synthesis and metabolism, and the synthesis of skeletal
muscle protein (Jackman et al., 2017). Therefore, compared with
resistance exercise alone, the combination of BCAA intake with
resistance exercise can induce a higher protein synthesis rate of
muscle myofibrils (Phillips and Martinson, 2019). Previous
studies have shown that essential amino acids, in middle-aged
mice, mainly increase mitochondrial biosynthesis and muscle
function through their BCAAs and help to improve the stability
of the neuromuscular junction to change nerve passage which
influence muscle strength (Negro et al., 2008; D’Antona et al.,
2010). In addition, it was confirmed in a long-term study that the
combined treatment of RT and essential amino acids improved
human muscle mass and muscle strength (Manini and Clark,
2012). Because of the potential health benefits of vegetarian and
vegan diets, clinical and consumer markets are increasingly
interested in them (Willoughby et al., 2007) However, plant
protein is of lower quality than animal protein, so vegetarians
need to consumemore protein than non-vegetarians tomeet their
biological requirements for essential amino acids (IAAs),
especially vegetarian elderly who need some high-quality
protein sources (Domić et al., 2022). Soy protein has always
been the preferred plant protein because it has almost complete
essential amino acids. In addition, the BCAA content in the
isolated soy protein (ISP) accounts for about 35% of the amino
acids required for skeletal muscle formation (Melina et al., 2016)
and contains isoflavones, a type of phytoestrogen that past
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research has shown to benefit muscle and bone in older women
(Brandi et al., 1993). In addition, a higher intake of total dietary
protein may overcome the different characteristics of animal
protein and plant protein and their effect on muscle results
(Shimomura et al., 2006).

In our previous research, we have shown that ISP combined with
high-intensity interval training (HIIT) had no significant effect on
the grip strength, endurance performance, and muscle mass of
ovariectomized mice that simulate menopausal women, but could
effectively increase bone strength and attenuate exercise-induced
fatigue (Lin et al., 2018). Another study conducted on postpartum
mice showed that ISP combined with HITT increased lean muscle
mass, prevented weight/fat gain, improved grip and endurance
performance, and promoted fatty acid oxidation in brown
adipose tissue (Wei et al., 2019). However, the combined effect of
ISP and resistance training on fitness variables has not yet been
investigated. In this study, we aimed to explore the effect of ISP
supplementation and resistance exercise training on muscle mass,
strength, exercise performance, and physical fitness of 19-month-old
aging female mice. We further performed histological and
immunohistochemistry analyses to identify the tissue architectural
changes and muscle fiber types of aging mice after the intervention.

MATERIALS AND METHODS

Animal Care and Study Design
Female ICRmice were purchased from BioLASCO (Charles River
Licensee Corp., Yi-Lan, Taiwan) and bred until 19 months of age.
All mice were housed in the animal facility of the Graduate
Institute of Sport Science at National Taiwan Sport University,
and maintained under a stable photoperiod, temperature, and
humidity conditions (12-h light/12-h dark cycle, 22 ± 2°C, and
60%–70%, respectively). During the experiment, we were
provided with a standard laboratory diet (No. 5001; PMI
Nutrition International, Brentwood, MO, United States) and
water ad libitum. The Institutional Animal Care and Use
Committee (IACUC) of National Taiwan Sport University and
IACUC ethics committee (IACUC no. 10720) approved the
animal experimentation and procedures. Thirty-two aging
female mice were randomly divided into four groups (8 mice/
group) for ISP supplementation and/or resistance training (RT)
as follows: 1) sedentary control with vehicle (SC), 2) sedentary
control with ISP supplementation (SC + ISP, 0.123 g/kg/mice/
day), 3) resistance training with vehicle (RT), and 4) resistance
training with ISP supplementation (RT + ISP, 0.123 g/kg/mice/
day). All groups were administered with the same volume of
distilled water or ISP by oral gavage. Water consumption, food
intake, and animal weights were recorded twice a week.

Isolated Soy Protein
The isolated soy protein (ISP) was purchased from Bestjet
Biotechnology Co. Ltd. (New Taipei City, Taiwan). The nutrients
and amino acids present in the ISP were analyzed by SGS Taiwan,
Ltd. (New Taipei City, Taiwan). The nutritional information of the
ISP, including hydrolyzed amino acid profiles and total branched-
chain amino acids (BCAAs), is shown in Table 1.

Resistance Training and Anaerobic
Exercise Capacity Test
The resistance training protocol was performed 5 days/week for a
period of 4 weeks. The equipment was set in water (5 cm depth)
to provide negative stimulation to motivate climbing (Figure 1A)
and the indicated intensity load was adjusted by individual
animal weight using the protocol, as shown in Figure 1B. In
resistance training, the climbing procedures were performed with
four repetitions/set and three sets/day, with 1 min of rest
provided between the sets (Kan et al., 2018). Performance was
evaluated as the climbing time, and the number of climbs until
exhaustion was used to evaluate the anaerobic performance. The
criterion for exhaustion is that the mouse stagnates three times in
a single crawl, and each stagnation does not climb up after five
nudges or taps.

Forelimb Grip Strength
A low-force testing system (Model-RX-5, Aikoh Engineering,
Nagoya, Japan) was used to measure the grip strength of the
forelimb as described previously (Lee et al., 2021).

Endurance Exercise Performance Test
We used a motor-driven treadmill for rodents (model MK-680,
Muromachi Kikai, Tokyo, Japan) to evaluate the aerobic
endurance performance, and an electric shock grid was used
to increase test motivation through veterinary monitoring. Before
the exhaustive exercise test, all mice were initially adapted to run

TABLE 1 | Nutrients, hydrolyzed amino acid profiles, and total branched-chain
amino acids (BCAAs).

Nutrition facts /100 g ISP /100 g chow 5001

Total calories 373.6 kcal 336 kcal
Protein 83.4 23.9
Fat 3.6 5
Saturated fat 0.91 1.56
Trans fat 0 0
Carbohydrate 1.9 48.7
Sugar 0 0
Sodium 746 mg 400 mg

Hydrolyzed amino acid profiles g/100 g ISP /100 g chow 5001

Leucine 6.61 1.83
Valine 4.29 1.17
Isoleucine 4.26 1.14
Cystine 0.72 0.31
Tryptophan 1.07 0.29
Methionine 1.21 0.67
Threonine 3.03 0.91
Histidine 2.35 0.57
Tyrosine 2.91 0.71
Alanine 3.42 1.43
Glycine 3.44 1.21
Serine 4.15 1.19
Proline 4.46 1.49
Phenylalanine 4.62 1.04
Lysine 5.21 1.41
Arginine 6.24 1.41
Aspartic Acid 9.94 2.81
Glutamic Acid 16.99 4.37
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on a motorized treadmill at 10 m/min, 5% grade, for 5 min/day
for a week. On the test, we set a fixed slope of grade 15° and an
initial speed of 15 m/min for mice running on the treadmill, then,
every subsequent 2 min, the speed was increased by 3 m/min until
the mice maintained continuous contact with the shock grid for
5 s, that we defined it to exhaustion (Kan et al., 2018).

Clinical Biochemical Profiles
A series of blood biochemical assessments were performed to
evaluate the functional ability of essential body organs. At the end
of the experiments, all mice were sacrificed by 95% CO2

asphyxiation, and the blood sample was collected immediately
at rest. Serum was collected by centrifugation, and the levels of
alanine aminotransferase (ALT), aspartate aminotransferase
(AST), albumin (ALB), total cholesterol (TC), triacylglycerol
(TG), blood urea nitrogen (BUN), creatinine (CREA), uric
acid (UA), total protein (TP), creatine kinase (CK), and lactate
dehydrogenase (LDH) were assessed by an auto-analyzer (Hitachi
717, Hitachi, Tokyo, Japan).

Body Composition and Glycogen Content
Analysis
After the mice were euthanized, the important body organs,
including the liver, kidney, heart, lung, muscle
(gastrocnemius), MT (thigh muscle), ovary fat pad (OFP), and
brown adipocyte tissue (BAT), were accurately excised and
weighed. Among them, the muscle and liver tissues were kept
at −80°C for a subsequent glycogen content analysis. For the
assay, 100 μg of liver and muscle tissue were homogenized in
500 μl cold perchloric acid and then centrifuged at 15,000 × g for
15 min at 4°C. The resultant supernatant was collected before
determining the glycogen concentration. We used a commercial
assay kit (Sigma-Aldrich, St. Louis, MO, United States) according

to the manufacturer’s instructions to determine the levels of
glycogen in the liver and muscle (mg/g).

Histopathological and
Immunohistochemical Staining
The liver, kidney, muscle, MT, heart, lung, OFP, and BAT tissues
were fixed in 10% formalin, embedded in paraffin, and cut into
4 μm-thick sections for morphological and pathological
evaluation. Tissue sections were stained with hematoxylin and
eosin (H & E) and examined by light microscopy with a CCD
camera (BX-51, Olympus, Tokyo, Japan) by a clinical pathologist.

The muscle tissues (gastrocnemius) were further analyzed to
see the effects of training and ISP supplementation on type I and
type II fiber types. Primary antibodies of myosin-heavy chain fast
(WB-MHCf) and myosin-heavy chain slow (WB-MHCs) were
purchased from Novocastra (Leica Biosystem, Wetzlar,
Germany) and applied to distinguish the fiber types. ER2
repair solution (AR9640, Leica Biosystem, Wetzlar, Germany)
was used to repair the epitopes of MHCf and MHC, and then
performed the initial incubation. The detection kits (Bond
Polymer Refine Detection & Bond Polymer Refine Red
Detection) used an automated BondMax double staining
system, as previously described (Kan et al., 2018). The cross-
sectional area (CSA, μm2) of a muscle, and type I muscle observed
per high-power-field (HPF), were measured and analyzed using
ImageJ software (NIH, MD, United States).

Statistical Analysis
Data were expressed as mean ± SD. Statistical analyses were
performed using SAS v9.0 (SAS, Cary, NC, United States). Two-
way ANOVA was performed to assess the effect of exercise
training and ISP supplementation on all the experimental data.
p < 0.05 was considered statistically significant.

FIGURE 1 | (A) Climbing device for resistance training. (B) Incremental loading intensity applied to current training protocol.
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RESULTS

General Characteristics of Aging Mice With
ISP Supplementation and RT
As shown in Table 2, the body weights of mice were not
significantly changed after 4 weeks of ISP supplementation or
in combination with RT. However, water (p < 0.0001) and diet
(p < 0.0001) intake were significantly lower in ISP and ISP plus
RT groups compared with SC and RT groups (Table 2).

On the body composition, no significant differences were
observed in absolute or relative weights of the liver, kidney,
heart, lung, MT, OFP and BAT tissues among the groups.
However, muscle weights in ISP, RT, and ISP plus RT groups
were significantly greater than in SC by 1.13-fold (p = 0.0112),
1.12-fold (p = 0.0176), and 1.14-fold (p = 0.0089), respectively,
and only supplementation had a significant effect (p = 0.0424).
Similarly, relative muscle weights in ISP, RT, and ISP plus RT
groups were significantly greater than in SC by 1.15-fold (p =
0.0126), 1.15-fold (p = 0.0191), and 1.15-fold (p = 0.0062),
respectively, but had no significant main effect of exercise or
ISP (Table 2).

ISP Supplementation and RT Improves Grip
Strength of Aging Mice
The forelimb grip strength of mice in SC, ISP, RT, and ISP + RT
groups were, 124 ± 8, 127 ± 4, 138 ± 5, and 143 ± 7 (g),
respectively. The grip strength of mice in RT and ISP + RT
groups were significantly higher than in SC by 1.11-fold (p =

0.0002) and 1.15-fold (p < 0.0001), respectively, with only
exercise as the main effects (p < 0.0001) (Figure 2A). The
relative grip strength (%), normalized to body weight was
found to be significantly higher in RT and ISP + RT groups
than in SC by 1.21-fold (p = 0.0021) and 1.28-fold (p = 0.0001),
respectively, with only exercise as the main effects (p = 0.0001)
(Figure 2B).

Effect of ISP Supplementation andRT on the
Anaerobic Exercise Performance of Aging
Mice
We used speed and the maximum number of repetitions to
measure the anaerobic exercise performance. In terms of
climbing speed, except SC mice (13.49 ± 2.13 s), all other
groups (ISP, RT, and ISP + RT) spent less time (9.87 ± 3.08,
10.43 ± 1.13, and 8.47 ± 2.03 s, respectively) to complete the
climbing (Figure 3A). The decreased climbing time of aging mice
in ISP + RT was prominent (37.21%; p < 0.0001) than in ISP
(26.79%; p = 0.0027) and RT (22.69%; p = 0.0098) groups. The
main effect of ISP (p = 0.0081) and RT (p = 0.0012) was the
significantly increased climbing speed, but there was no
interaction effect (Figure 4A). The repetition maximum (RM),
an index of muscular endurance performance of mice in SC, ISP,
RT, and ISP + RT groups was 4.00 ± 1.41, 11.25 ± 1.49, 9.50 ±
1.60, and 12.50 ± 1.51 (times), respectively (Figure 3A).
Compared with SC, the exhaustive time in ISP, RT, and ISP +
RT groups was significantly longer by 2.81-fold (p = 0.0027), 2.38-
fold (p = 0.0098), and 3.13-fold (p < 0.0001), respectively. In

TABLE 2 | General characteristics of the experimental groups.

Characteristics SC ISP RT RT +
ISP

Main factor p value

ISP RT RT +
ISP

Initial BW (g) 42.4 ± 2.80a 42.2 ± 3.50a 42.2 ± 4.50a 42.6 ± 4.10a 0.8406 0.9483 0.8140
Final BW (g) 43.4 ± 2.70a 42.7 ± 3.70a 42.7 ± 4.60a 43.1 ± 4.10a 0.3338 0.0879 0.7832

Food intake (g/day) 6.24 ± 0.80 b 5.19 ± 1.51a 6.10 ± 0.86 b 5.21 ± 1.14a <0.0001 0.3003 0.6840
Water intake (ml/day) 11.18 ± 1.42c 10.15 ± 1.54b 11.78 ± 1.75c 9.05 ± 1.42a <0.0001 0.6840 0.6628

Liver (g) 2.14 ± 0.31a 2.12 ± 0.29a 2.18 ± 0.18a 2.12 ± 0.34a 0.6880 0.8479 0.8479
Kidney (g) 0.67 ± 0.12a 0.69 ± 0.13a 0.64 ± 0.09a 0.65 ± 0.13a 0.3993 0.7324 0.9881
OFP (g) 0.35 ± 0.12a 0.34 ± 0.12a 0.34 ± 0.10a 0.34 ± 0.08a 0.8687 0.7164 0.9473
Heart (g) 0.23 ± 0.02a 0.24 ± 0.03a 0.23 ± 0.01a 0.24 ± 0.02a 0.1865 0.8129 0.8129
Lung (g) 0.32 ± 0.04a 0.32 ± 0.05a 0.33 ± 0.06a 0.33 ± 0.04a 0.7234 0.5252 1.0000
Muscle (g) 0.26 ± 0.02a 0.30 ± 0.03 b 0.30 ± 0.02 b 0.30 ± 0.03 b 0.0745 0.0424 0.0973
MT (g) 0.41 ± 0.05a 0.41 ± 0.06a 0.41 ± 0.03a 0.41 ± 0.03a 0.9691 0.9691 0.9691
BAT (g) 0.10 ± 0.02a 0.09 ± 0.03a 0.09 ± 0.02a 0.11 ± 0.02a 0.9421 0.6122 0.1353

Relative liver weight (%) 5.11 ± 0.70a 5.26 ± 1.24a 5.48 ± 0.54a 5.53 ± 1.33a 0.7808 0.3782 0.8941
Relative kidney weight (%) 1.61 ± 0.29a 1.70 ± 0.43a 1.59 ± 0.14a 1.68 ± 0.31a 0.4244 0.8529 0.9955
Relative OFP weight (%) 0.83 ± 0.26a 0.84 ± 0.32a 0.85 ± 0.26a 0.87 ± 0.24a 0.8820 0.8516 0.9434
Relative heart weight (%) 0.55 ± 0.06a 0.58 ± 0.09a 0.57 ± 0.04a 0.62 ± 0.10a 0.1365 0.3518 0.7887
Relative lung weight (%) 0.76 ± 0.10a 0.80 ± 0.21a 0.82 ± 0.13a 0.87 ± 0.14a 0.3811 0.2515 0.9815
Relative muscle weight (%) 0.61 ± 0.06a 0.70 ± 0.09 b 0.70 ± 0.05 b 0.70 ± 0.07 b 0.1037 0.0629 0.0772
Relative MT weight (%) 0.98 ± 0.14a 1.02 ± 0.26a 1.03 ± 0.11a 1.06 ± 0.17a 0.5466 0.4724 0.9378
Relative BAT weight (%) 0.24 ± 0.06a 0.22 ± 0.10a 0.23 ± 0.05a 0.28 ± 0.08a 0.6338 0.3933 0.2574

Data are expressed as mean ± SD for n = 10 mice in each group. (1) Sedentary control with vehicle (SC), (2) sedentary control with ISP supplementation (SC + ISP, 0.123 g/kg/mice/day),
(3) resistance training with vehicle (RT), and (4) resistance training with ISP supplementation (RT + ISP, 0.123 g/kg/mice/day). Data in the same row with different letters (a, b) differ
significantly at p < 0.05 by two-way ANOVA; OFP: ovary fat pad; BAT: brown adipose tissue.
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addition, the exhaustive time in ISP and ISP + RT groups was
significantly longer than in RT group by 1.18-fold (p = 0.0276)
and 1.32-fold (p = 0.0004), respectively. The main effect of ISP
(p < 0.0001) and RT (p < 0.0001) was significantly increased
muscular endurance performance, and had a significantly
interactive effect (p = 0.0004) (Figure 3B).

ISP Supplementation With RT Promotes
Exercise Performance in Aging Mice
As seen in Figure 4, the time to exhaustion in SC, ISP, RT, and
ISP + RT groups was 5.21 ± 1.80, 9.46 ± 2.83, 10.02 ± 2.38, and
12.90 ± 1.92 (min), respectively. The climbing time of mice in ISP,
RT, and ISP + RT groups was significantly longer than the SC
group by 1.81-fold (p = 0.0008), 1.92-fold (p = 0.0002), and 2.74-
fold (p < 0.0001), respectively. Among them, the ISP + RT group
represented with the most effective improvement. Themain effect
of ISP (p < 0.0001) and RT (p = 0.0001) was the significantly
increased endurance exercise performance, but there was no
significant interactive effect.

Combination of ISP and RT Preserves Liver
and Muscle Glycogen Levels in Aging Mice
Glycogen is mainly present in the liver and skeletal muscle and is
used for energy demand and homeostasis. Aging mice liver
glycogen levels were found to be higher in RT (22.38 ±
3.67mg/g) and ISP + RT groups (25.20 ± 3.86mg/g).
Compared with SC, liver glycogen levels in RT and ISP + RT
groups were significantly higher by 1.57-fold (p = 0.0002) and 1.76-
fold (p < 0.0001), respectively (Figure 5A). The muscle glycogen
content in SC, ISP, RT, and ISP + RT groups were 1.06 ± 0.18,
1.21 ± 0.26, 1.23 ± 0.20, and 1.29 ± 0.15 (mg/g), respectively. In
contrast to the liver, highermuscle glycogen levels weremaintained
only in the ISP + RT group (1.22-fold; p = 0.0277) (Figure 5B).

Effect of ISP Supplementation and RT on
Blood Biochemical Parameters in Aging
Mice
At the end of the experiment, we further performed a blood
biochemical analysis to explore the effect of ISP and RT on

FIGURE 2 | Effect of ISP supplementation and RT of aging mice on (A) absolute forelimb grip strength and (B) forelimb grip strength (%) relative to body weight.
Data are expressed as mean ± SD for n = 8 mice per group. Different superscript letters (a, b, and c) indicate significant difference at p < 0.05.

FIGURE 3 | Effect of ISP supplementation and RT of aging mice on (A) time for each climbing and (B) exhaustion times for climbing. Data are expressed as mean ±
SD for n = 8 mice per group. Different superscript letters (a, b, and c) indicate significant difference at p < 0.05.
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various key clinical outcomes. In the results, we found that there
were no significant differences in the levels of AST, ALT, ALB, TC,
TG, CREA, UA, TP, CK, LDH, and glucose among the groups
(Table 3). However, serum BUN levels were significantly increased
with ISP supplementation and also with a combination of RT. The
elevated BUN levels in ISP and ISP + RT groups were 1.10-fold (p =
0.0235) and 1.12-fold (p = 0.0087), respectively (Table 3).

Effect of ISP Supplementation andRT on the
Histological Observations of Aging Mice
At the end of the study, histological examinations of the liver, MT,
muscle, heart, kidney, lung, OFP, and BAT of aging mice were
performed. As shown in the images, no abnormalities were
observed in aging tissues of all experimental groups (Figure 6).

After the prescribed treatment, the arrangement of hepatic
sinusoids and hepatic cords in the liver showed no change.
Only large senile liver nucleoli appeared in each group, which is
a normal senescence phenomenon. In addition, Zenker
degeneration and hyperplasia were not observed in the skeletal
muscle or cardiomyocytes. The structures of renal tubules and
glomeruli were also not different among the treatment groups.

Effect of ISP Supplementation andRT on the
Muscle Fiber Types and Morphology of
Aging Mice
We further analyzed the ratio of type I and type II fibers and the
cross-sectional area (CSA) of the thigh muscles to verify the effect of
resistance exercise and ISP supplementation on aging mice. Type I
and type IIa fibers were reddish in color, while type II was brownish
in color (Figure 7A). Figure 7B showed the percentage of type II
muscle in total muscle. The type II fiber percentage in SC, ISP, RT,
and ISP + RT groups were 48.13 ± 2.75, 51.12 ± 2.65, 52.05 ± 2.13,
and 53.97 ± 1.98 (%), respectively. Here, we noticed that ISP, RT, and
ISP + RT interventions significantly increased type II fiber
percentage by 1.06-fold (p = 0.0188), 1.08-fold (p = 0.0027), and
1.12-fold (p < 0.0001), respectively compared with SC. The main
effects were ISP (p = 0.0004) and RT (p = 0.0073), but there was no
significant interactive effect. In addition, the CSA of the SC muscle
was 543 ± 24 μm2, while the CSA of ISP, RT, and ISP + RT groups
was 635 ± 24, 703 ± 41, and 705 ± 30 (μm2), respectively. The CSA
scores in ISP, RT, and ISP + RT groups were 1.17-fold (p < 0.0001),
1.30-fold (p < 0.0001), and 1.30-fold (p < 0.0001), respectively,
greater than in SC. The main effects of ISP (p < 0.0001) and RT (p =
0.0002) were the significantly increased percentage of type I muscle,
and had a significant interactive effect (p = 0.0003) (Figure 7B).

DISCUSSION

In this study, we demonstrated the influential role of ISP
supplementation alone and also in combination with

FIGURE 4 | Effect of ISP supplementation and RT of aging mice on
endurance exercise performance. Data are expressed as mean ± SD for n = 8
mice per group. Different superscript letters (a, b, and c) indicate significant
difference at p < 0.05.

FIGURE 5 | Effect of ISP supplementation and RT of agingmice on (A) liver glycogen and (B)muscle glycogen. Data are expressed asmean ± SD for n = 8mice per
group. Different superscript letters (a and b) indicate significant difference at p < 0.05.
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resistance training on aging mice’s muscle strength, endurance
performance, muscle mass, and muscle histological changes. Our
findings revealed that ISP supplementation alone significantly
improved the muscle mass, muscle endurance, and endurance
performance of aging mice. The RT not only had similar effects as
ISP, but also increased the muscle strength and liver glycogen
content. Nevertheless, the combination of ISP supplementation
plus RT had greater beneficial effects, and this was evidenced by
improved muscle strength, glycogen storage, and physical
performance in aging mice.

First, we found decreased food and water intake after ISP
supplementation; however, this did not result in decreased
bodyweights of the mice. We assume that ISP intake might
increase the feeling of satiety in mice, and thereby decreased
food intake. In this study, aging female mice were used (19-
month), so the body weight might be maintained at a high but
stable state. Previous studies have shown that weight gain is not
directly related to muscle mass and strength. However, muscle
mass is the main determinant of muscle strength (Reid et al.,
2008). The muscles after exercise are more sensitive to nutrition
and can synthesize more available amino acids into skeletal
muscle protein (Schoufour et al., 2019). RT and essential
amino acids have independent effects. Both of these
interventions can stimulate muscle proteins to replace old,
non-functional proteins with new functional proteins, and
increase muscle protein synthesis faster than muscle protein
breakdown. Therefore, under the two synergistic effects, it has
the benefit of increasing net muscle protein synthesis (Tipton
et al., 1999; Franceschi et al., 2018). In addition, acute exercise
combined with the ingestion of protein or amino acids can
enhance the muscle protein anabolic response by activating
the mTORC1 pathway, which is beneficial for promoting
recovery following exercise and may improve muscle mass and
quality over the long term (Burd et al., 2009). However, resistance
training and protein supplementation are not as effective for the
elderly as for the young, which is called the chronic slow response

of the elderly (Kumar et al., 2009). In most sedentary elderly
subjects, the sensitivity of skeletal muscle tissue to anabolic
stimulation by physical activity or protein intake may be
reduced. A previous study had shown that after 14 days of
reduced physical activity in the elderly, the postprandial
muscle protein synthesis rate is significantly reduced by 26%
(Breen et al., 2013). Nevertheless, the combination of exercise and
increasing protein intake is still one of the best strategies. A
previous study showed that dietary protein supplementation after
resistance exercise training increased muscle protein synthesis in
the elderly by 28% (Pennings et al., 2011). In another long-term
trial, 24 weeks of protein supplements combined with resistance
training increased the muscle mass, strength, and physical
function of frail elderly participants (Tieland et al., 2012).
Therefore, in this study, we used 19-month-old aging female
mice and supplemented them with ISP in combination with RT
for 4 weeks. Our findings showed improvedmuscle mass with ISP
and RT alone, and also with a combination of both ISP plus RT.
Although RT and ISP + RT effectively improved the maximum
muscle performance, ISP, RT, and ISP + RT intervention
effectively increased the muscle endurance and anaerobic
exercise performance of aging mice. Furthermore, time to
exhaustion (climbing) and relative grip strength was
significantly higher with the combination of ISP plus RT.
These findings emphasize the benefits of ISP plus RT
synergistic effect on improving the muscle mass, strength, and
physiology of aging mice.

As age leads to a decrease in muscle mass, the type II muscle
fiber atrophy may appear in muscle fibers (Nilwik et al., 2013;
McCormick and Vasilaki, 2018), accompanied by a type-specific
decrease in the number and function of skeletal muscle stem cells
or satellite cells (Dreyer et al., 2006). However, resistance exercise
training more than three times a week has been shown as an
effective strategy to increase the quality and strength of skeletal
muscles in the elderly (Peterson et al., 2011). In addition, a
previous study has pointed out that long-term resistance

TABLE 3 | Effect of ISP supplementation and RT on biochemical assessments of serum at the end of the experiment.

Parameter SC ISP RT RT + ISP Main factor p value

ISP RT RT +
ISP

AST (U/L) 88 ± 10a 85 ± 9a 86 ± 7a 88 ± 7a 0.8972 0.9656 0.3921
ALT (U/L) 52 ± 5a 51 ± 9a 50 ± 4a 52 ± 9a 0.7884 0.7512 0.6090
TC (mg/dl) 131 ± 13a 124 ± 11a 128 ± 20a 129 ± 16a 0.5679 0.9195 0.4675
TG (mg/dl) 87 ± 17a 84 ± 11a 86 ± 13a 86 ± 14a 0.8404 0.9799 0.7626
LDH (mg/dl) 447 ± 92a 434 ± 119a 491 ± 83a 472 ± 65a 0.6289 0.2120 0.9301
ALB (g/dl) 3.09 ± 0.2a 3.12 ± 0.61a 3.18 ± 0.35a 3.05 ± 0.21a 0.7464 0.9631 0.5490
CPK (U/L) 259 ± 70a 273 ± 83a 259 ± 67a 268 ± 81a 0.6764 0.9172 0.9319
TP (g/dl) 5.18 ± 0.36a 5.24 ± 0.32a 0.38 ± 0.12a 5.21 ± 0.46a 0.6797 0.4714 0.3559
BUN (mg/dl) 21.5 ± 1.7a 23.7 ± 1.8 b 22.4 ± 1.7a 24.1 ± 2.1b 0.0048 0.3631 0.4758
CREA (mg/dl) 0.38 ± 0.03a 0.38 ± 0.03a 0.39 ± 0.02a 0.39 ± 0.03a 0.6282 0.3710 0.9447
UA (mg/dl) 2.25 ± 1.07a 2.30 ± 0.68a 2.23 ± 0.38a 2.36 ± 1.05a 0.7720 0.9537 0.8924
Glucose (mg/dl) 189 ± 24a 195 ± 20a 186 ± 19a 193 ± 18a 0.3863 0.6853 0.9656

Data are expressed as mean ± SD for n = 10 mice in each group. (1) Sedentary control with vehicle (SC), (2) sedentary control with ISP supplementation (SC + ISP, 0.123 g/kg/mice/day),
(3) resistance training with vehicle (RT), and (4) resistance training with ISP supplementation (RT + ISP, 0.123 g/kg/mice/day). Data in the same row with different letters (a, b) differ
significantly at p < 0.05 by two-way ANOVA. AST, aspartate aminotransferase; ALT, alanine aminotransferase; TC, total cholesterol; TG, triglycerides; LDH, lactate dehydrogenase; ALB,
albumin; CK, creatine kinase; TP, total protein; BUN, blood urea nitrogen; CREA, creatinine; UA, urea acid.
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exercise training in the elderly can restore the content of type II
muscle fiber satellite cells to the level of untrained healthy young
people, and improve the response of acute type II muscle fiber

satellite cells. In this study, we found that ISP supplementation
and RT alone, and a combination of both (ISP + RT) significantly
increased the percentage of type II muscle fiber types in aging

FIGURE 6 | Effect of ISP supplementation and RT of aging mice on (A) liver, (B) thigh muscle, (C) muscles, (D) heart, (E) kidney, (F) lung, (G) OFP, and (H) BAT
tissue in mice (H&E stain, magnification: ×200; bar, 40 μm; BAT magnification: ×100; bar, 80 μm).
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mice. This was further witnessed by the increased size of the
muscle fiber types CSA. A previous study demonstrated that
when RT is performed, animals show significant muscle
remodeling, which is characterized by a decrease in the bulk
density of slow and medium-speed fibers, with a significant
increase in the bulk density of fast fibers (Leenders et al.,
2013). In particular, RT related to a plant protein diet can be
an auxiliary factor in inhibiting or reversing the sarcopenia by
promoting the slight recovery of rapid glycolytic fiber atrophy,
and accompanied by an increase in collagen (Figueiredo Braggion
et al., 2016).

Muscular glycogen content affects the quantity and quality of
muscle fibers. In addition to stable glycogen reserves, our study
further confirmed that ISP, RT, and ISP + RT effectively increased
skeletal muscle mass, muscle strength, and muscle fiber CSA. It
has been claimed that the skeletal muscle glucose transporter type
4 (GLUT4) protein would increase with RT, but this may depend
on the body composition and metabolic status (diabetes) before
training. Six weeks of single-leg strength training (three times a
week) increased skeletal muscle GLUT4 (~40%) of the exercised
leg in the elderly and non-obese type 2 diabetic patients, which
helps to improve the insulin sensitivity. Higher levels of glycogen
in the skeletal muscle may be due to the increased insulin
sensitivity (Holten et al., 2004). Another study conducted on
men aged 50–63 found that resistance training for 16 weeks
increased insulin-stimulated non-oxidized glucose processing
(40%). This phenomenon may help in improving systemic
insulin sensitivity (22%), which revealed that RT can improve

skeletal muscle glycogen metabolism (Miller et al., 1994). In
addition, after 6 weeks of RT, both healthy and diabetic elderly
had increased skeletal muscle glycogen content (~16%) and
significantly increased basal glycogen synthase activity (~9%
and 20%, respectively) (Holten et al., 2004). Glycogen is the
storage form of glucose (energy) in mammals. Most glycogen is
produced and stored by liver (~100 g) and muscle (~350–700 g)
cells, and glycogen content depends on the training status, diet,
muscle fiber type composition, gender. and weight of an
individual. Glucose output in the liver is the main source of
glucose available to increase muscle exercise. Increased liver
glycogen storage helps in maintaining the constant blood
sugar and it is a key factor in improving endurance (Knuiman
et al., 2015). Knuiman et al. (2015) conducted experiments on
mice with high concentrations of liver glycogen to explore the
correlation between energy reserves and performance. Under a
low-intensity running program, these mice can run farther,
indicating that liver glycogen is closely related to the
endurance ability (López-Soldado et al., 2021). It is well
known that glycogen is mainly derived from carbohydrate
intake and converted into glucose storage. However,
supplementation of BCAAs also increases glycogen storage. In
a previous study, young rats were supplemented with 45 mg
BCAA/body weight per day to perform 5-weight swimming
training. The results showed that supplementation significantly
increased the glycogen content in the liver (de Campos-Ferraz
et al., 2011). Similarly, we reported that supplementation of ISP
combined with RT effectively improved glycogen reserves in

FIGURE 7 | Effect of ISP supplementation and RT of aging mice on (A)muscle of thigh with IHC staining, (B)muscular type proportions, and (C) cross section area
(CSA). Specimens were photographed under a light microscope (Hematoxylin and eosin stain, magnification: ×200; scale bar, 40 μm). Data are expressed asmean ± SD
for n = 8 mice per group. Different superscript letters (a and b) indicate significant difference at p < 0.05.
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aging mice, and this was accompanied by improved muscle
strength, muscle mass, and performance. Increased muscle
fiber CSA and fiber type transformation after the combination
treatment further supports the beneficial effects of ISP in aging
mice. Taken together, the combination treatment promotes
glycogen reserves and exercise performance in aging mice
without adverse effects.

In addition to physical performance and functional testing of
aging female mice supplemented with ISP and RT, we also
performed blood analysis and histopathological interpretation
to confirm that the health status of aging mice and interventional
substances did not cause the risk of injury. In terms of
histopathology, except for the appearance of aging under
normal conditions, no other damages were observed. In the
blood analyses, the liver function biomarkers and lipid profile
did not significantly differ with any of the treatments in aging
mice. For the kidney function assessments, only BUN was found
to be significantly increased in the ISP supplement group, but this
increase was still in the normal range. This is a normal
phenomenon, because BUN is a serum by-product of protein
metabolism, formed by the liver and carried by the blood to the
kidneys for excretion (Wang et al., 2021). Therefore, higher
protein intake will result in higher BUN concentration under
normal metabolism.

In recent years, the demand for the use of plant protein has
increased, and a growing number of studies have compared the
effects of various plant and animal protein sources in stimulating
muscle protein synthesis, improving exercise training fitness, and
enhancing physique (Kerksick et al., 2021). Past studies have
compared net protein utilization values using the protein
digestibility corrected amino acid score (PDCAAS), a similar
dichotomy. For example, on a scale of 100, plant sources range
from 53–67, while animal sources range from 73–94 (Schaafsma,
2000). Nonetheless, one study noted that 48 untrained men and
women were randomized over 12 weeks to either 19 g of whey
protein isolate or 26 g of soy protein isolate, both containing a
protein dose of 2 g of leucine. Results showed significant increases
in body weight, lean body mass, maximal extension, and flexion
torque in both groups before and after supplementation, while
muscle thickness tended to increase after 12 weeks of resistance.
However, no significant differences were observed between the
groups (Lynch et al., 2020). Another study also showed that
habitual (over 12 months) vegetarians were given soy protein and
omnivorous groups were given whey protein, with continuous
supplementation at a protein intake of 1.6 g/kg/day combined
with resistance training twice a week. After 12 weeks, strength,
muscle mass, and cross-sectional area improved in both groups,
but there were no differences in protein between the two groups
(Hevia-Larraín et al., 2021). Although animal-based protein
sources have long been considered to have higher absorption
and utilization than plant-based protein sources, there appears to
be little difference in muscle mass and functional performance.
Therefore, vegetarians need more plant-based protein nutritional
supplements to supplement their daily protein needs, especially
elderly vegetarians. This study confirms that ISP supplementation
in combination with resistance exercise training promotes and
improves muscle mass and functional performance in the elderly

and can serve as the basis for future applications and research in
humans to help prevent and improve sarcopenia in elderly
vegetarians.

CONCLUSION

For the first time, we demonstrated that ISP supplementation in
combination with RT effectively improved skeletal muscle mass,
muscle endurance, and endurance performance of aging female
mice. The RT group not only showed similar effects as ISP, but
also increased muscle strength and glycogen content. Most
importantly, the combination of ISP plus RT intervention in
aging rats had greater beneficial effects than ISP and RT alone on
various muscle strength and physical performance parameters.
Therefore, age-induced muscle loss could be maintained and/or
delayed through ISP supplementation and resistance exercise
training strategies.
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