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Abstract

An increasing number of studies in patients with generalized tonic–clonic seizures

(GTCS) have reported the alteration of functional connectivity (FC) in many brain net-

works. However, little is known about the underlying temporal variability of FC in

large-scale brain functional networks in patients. Recently, dynamic FC could provide

novel insight into the physiological mechanisms in the brain. Here, we recruited

63 GTCS and 65 age- and sex-matched healthy controls. Dynamic FC approaches

were used to evaluate alterations in the temporal variability of FC in patients at the

region- and network-levels. In addition, two kinds of brain templates (>102 and > 103

regions) and two kinds of temporal variability FC approaches were adopted to verify

the stability of the results. Patients showed increased FC variability in regions of the

default mode network (DMN), ventral attention network (VAN) and motor-related

areas. The DAN, VAN, and DMN illustrated enhanced FC variability at the within-

network level. In addition, increased FC variabilities between networks were found

between the DMN and cognition-related networks, including the VAN, dorsal atten-

tion network and frontal–parietal network in GTCS. Meanwhile, the alterations in FC

variability were relatively consistent across different methods and templates. There-

fore, the consistent alteration of FC variability would reflect a dynamic restructuring

of the large-scale brain networks in patients with GTCS. Overly frequent information

communication among cognition-related networks, especially in the DMN, might play

a role in the epileptic activity and/or cognitive dysfunction in patients.
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1 | INTRODUCTION

Generalized tonic–clonic seizures (GTCS) is the most common type of

seizures in idiopathic generalized epilepsy (IGE) (Nei & Bagla, 2007).
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Typical symptoms of GTCS include muscle rigidity of limbs, violent

muscle contractions of the entire body and the sudden complete loss

of consciousness (Jallon & Latour, 2005; Marini, King, Archer, New-

ton, & Berkovic, 2003). In addition, cognitive impairments such as

attention, memory, and executive dysfunctions were also well docu-

mented in patients with GTCS (Hommet, Sauerwein, De Toffol, &

Lassonde, 2006; Thompson & Duncan, 2005). However, so far, the

underlying mechanism of clinical symptoms in GTCS remains unclear.

Therefore, in accompany with the development of neuroimaging

methods, understanding the pathophysiological mechanisms of GTCS

has become a research priority.

Functional magnetic resonance imaging (fMRI) provides an efficient

tool to explore the functional network properties of the human brain

(Blatow, Nennig, Durst, Sartor, & Stippich, 2007; Bookheimer, 2002). In

recent years, our understanding of how GTCS affects brain networks has

been greatly advanced by attempts to map interregional interactions com-

prising the brain's spontaneous connectivity. Functional interaction

between brain networks or regions can be characterized by functional con-

nectivity (FC) (Biswal, Van Kylen, & Hyde, 1997; Gong et al., 2019; Li et al.,

2019; Lowe, Dzemidzic, Lurito, Mathews, & Phillips, 2000). Our previous

resting state FC study (Jia et al., 2018) and a study by Song et al. (2011)

found significantly decreased FC within the default mode network (DMN)

in GTCS compared with that in healthy controls (HC), suggesting that

abnormal connectivity in DMNmight be associated with the impaired con-

sciousness in GTCS. In addition, disrupted interconnections in the DMN,

dorsal attention network (DAN), sensorimotor network (SMN), visual net-

work (VN) and auditory network (AN) were observed in IGE, suggesting

neural correlates of deficits of self-process and cognitive function in

patients (Li et al., 2015; Li et al., 2017; Wang et al., 2011; Zhong et al.,

2018). Up to now, many fMRI studies have provided evidence to support

the stationary alteration of FC in patients with GTCS during fMRI scanning.

Recently, the temporal variability of FC has attracted increasing

attention and has been thought to play an important role in dynami-

cally integrating and coordinating among neural systems in response

to stimulation from internal and external environments (Hutchison

et al., 2013; Liao et al., 2019; Qin et al., 2019). The previous study

suggested that dynamic fluctuations in the brain's large-scale organi-

zational properties might minimize metabolic requirements while

maintaining the brain in a responsive state (Zalesky, Fornito, Cocchi,

Gollo, & Breakspear, 2014). In dynamic FC analysis in fMRI, over-

lapping and nonoverlapping sliding window methods have been

widely used in several neuropsychiatric disorders such as autism spec-

trum disorder, attention deficit hyperactivity disorder, schizophrenia

and epilepsy (He et al., 2019; Klugah-Brown et al., 2018; Li, Duan,

Cui, Chen, & Liao, 2019; Liao et al., 2018; Zhang et al., 2016). In epi-

lepsy, Liao et al found a complex dynamic interaction among func-

tional networks during absence seizures (Liao et al., 2014). Although

the study of Liu et al offered preliminary evidence for the changes of

the dynamic functional network connectivity metrics in GTCS

(Liu et al., 2017), no study regarding GTCS has been performed to

comprehensively investigate the temporal variability of FC features

from multiple levels such as the region-level and the network-level. A

comprehensive investigation of brain dynamic FC allows us to

understand the different dynamic roles of different units in the brain

system (Sun et al., 2018). Therefore, the identification of temporal

variability of FC features at multiple levels will be crucial to compre-

hensively understand the pathophysiological mechanism of GTCS.

In the current study, both overlapping and nonoverlapping sliding

window dynamic FC approaches were used to reliably and compre-

hensively evaluate alterations about temporal variability of FC in

GTCS based on region-level and network-level. In addition, the previ-

ous studies suggested that different scales of brain template might

also result in, to some extent, alterations of topological architecture

and networks properties (Wang et al., 2009; Xue et al., 2014). To vali-

date the reliability of FC variability on different scales of the brain

template, two kinds of brain templates were used in this study, includ-

ing a hundreds- and a thousand level template. Furthermore, the cor-

relation between altered temporal variability of FC and clinical

variables was measured in GTCS. We hypothesized that dynamic FC

of large-scale brain network would be reconfigured in GTCS, and

DMN might be the highlighted alteration of temporal variability of FC.

2 | MATERIALS AND METHODS

2.1 | Participants

Sixty-three patients with GTCS were recruited in the neurology

department, The Affiliated Hospital of the University of the Electronic

Science and Technology of China. All patients were diagnosed as IGE

with GTCS only by epileptologists (Dr. Yan and Dr. Yu) based on the

clinical and seizure semiology information consistent with the Interna-

tional League Against Epilepsy (ILAE) guidelines (Fisher et al., 2017;

Scheffer et al., 2017). In detail, patients with GTCS met with the fol-

lowing criteria: (a) typically showed generalized spike–wave activity

on scape EEG; (b) showed bilateral and symmetric generalized motor

seizures such as tonic, and tonic–clonic seizures with loss of con-

sciousness. Sixty-five HCs were recruited as the age- and gender-

matched control group. All subjects are right-handed. Written

informed consent was obtained from each individual. The exclusion

criteria were as follows: (a) subjects with a history of neurological dis-

eases besides epilepsy, brain structural abnormality, traumatic brain

injury or substance abuse; and (b) subjects with magnetic resonance

imaging contraindications. This study was approved by the ethical

committee of the University of Electronic Science and Technology of

China according to the standards of the Declaration of Helsinki.

2.2 | Data acquisition

All subjects underwent MRI scanning in a 3.0 T GE scanner with an

eight-channel-phased array head coil (MR750; GE Discovery, Milwau-

kee, WI). The resting state fMRI data of all subjects were collected

using an echo-planar imaging sequence, and the scan parameters were

as follows: repetition time (TR) =2000 ms, echo time (TE)=30 ms,

matrix=64 ×64, flip angle (FA)= 90 �, field of view (FOV)=24× 24 cm2,

slice thickness =4 mm with a 0.4 mm gap, and 200 volumes were

obtained in each run. Axial anatomical T1-weighted data were
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acquired using a 3-dimensional fast spoiled gradient echo sequence

and with the following scan parameters: TR=6.008 ms, TE =1.984 ms,

matrix=256×256, FA =90 �, FOV =25.6 ×25.6 cm2, slice thickness

=1 mm (no gap), 152 axial slices. During scanning, all subjects were

instructed to relax, close their eyes, keep awake and not think of any-

thing in particular.

2.3 | Data preprocessing

Preprocessing steps of fMRI data were performed by the Data

Processing & Analysis for (Resting-State) Brain Imaging (DPABI, http://

rfmri.org/dpabi) software (Yan, Wang, Zuo, & Zang, 2016). The fMRI

data were (a) discarded the first five volumes, (b) slice-timing corrected

(c) realigned (d) co-registered to 3D anatomic volume, (e) spatially nor-

malized to the Montreal Neurological Institute (MNI) template using

estimating nonlinear deformations with determination of 12-parameter

affine transformation between individual images and template, and

resliced with the voxel size into 3 mm × 3 mm × 3 mm, (f) spatially

smoothed by a 6 mm full-width half-maximum Gaussian kernel to

improve the signal-to-noise ratio (Worsley & Friston, 1995) like the pre-

vious study (Dong et al., 2018), (g) regressed the linear trend signal,

24 head motion parameters (Noonan et al., 1996) and white matter and

cerebrospinal fluid signals. Here, the global signal was not considered as

a noninteresting regressor, because global signal removal would increase

the number of negative FC (Saad et al., 2012) and the previous study

suggested the global signal might be beneficial to understand the clinical

populations (Hahamy et al., 2014; Yang et al., 2014), (h) band-pass fil-

tered to remove spurious fluctuations in dynamic FC (1/w-0.1 Hz, w is

the window duration) (Leonardi & Van De Ville, 2015).

Furthermore, a recent study found that FC is sensitive to head

motion signals (Power, Schlaggar, & Petersen, 2015). Therefore, we

calculated the framewise displacements (FD) between two successive

images:

FD=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δdxið Þ2 + Δdyi

� �2
+ Δdzið Þ2 + Δdli

� �2
+ Δdmið Þ2 + Δdnið Þ2

� �r
i = 2,3,…,M

where M is the length of the time courses (M=195 in our study); xi, yi,

and zi are translations; li, mi, and ni are rotations at the ith time point in

the x, y, and z directions; and Δdxi = xi−xi−1, with similar formulas for

Δdyi and Δdzi . Meanwhile, Δdli =50× π × li− li−1ð Þ=180, with similar for-

mulas for Δdmi
and Δdni . Additionally, the mean FD was regarded as a

covariate in following statistical comparisons (Yan et al., 2013).

2.4 | Temporal variability

Two kinds of brain templates (>102 and > 103 regions) were adopted.

The hundreds level template was adopted connectivity-based

parcellation brain atlas (246 regions) created by Fan et al. (2016).

Because this template lacks the cerebellum, we added 26 cerebellar

regions based on the Anatomical Automatic Labeling atlas (Tzourio-

Mazoyer et al., 2002) into hundreds level template. Therefore, the

hundreds level template was composed of 272 regions. Similarly, the

thousand level template was also parcellated based on the human

cerebral cortex from intrinsic FC by Schaefer and colleagues (Schaefer

et al., 2018). In addition, we added subcortical and cerebellar regions

from the Craddock-950 atlas (Craddock, James, Holtzheimer, Hu, &

Mayberg, 2012) into thousand level template. Thus, the thousand

level template consisted of 1,000 cortical regions from the Schaefer-

1,000 atlas and 217 subcortical and cerebellar regions from the

Craddock-950 atlas. Similar to our previous studies (Dong et al., 2018;

Klugah-Brown et al., 2018), the temporal variability of FC was evalu-

ated, and the same calculation pipeline was carried out in the two-

scale brain templates.

2.5 | Temporal variability of region-level FC
architecture

The average BOLD time series were extracted for each region. To

evaluate the temporal variability of the FC architecture associated

with a brain region, the time series of all regions (N) were segmented

into n nonoverlapping sliding windows each with length l (Figure 1a).

Within the ith time window, an N × N Pearson correlation matrix was

obtained to represent the FC of the whole brain (Fi). The whole-brain

FC architecture of region k at the time window i is an N-dimensional

vector, which is described as Fi, k and the variability of region k is

defined as:

Vk = 1−corrcoef Fi,k ,Fj,k
� �

, i, j=1,2,3, � � �,n, i 6¼ j

Vk was calculated in different window lengths (l = 10, 11, 12, …,

20 volumes) to avoid the arbitrary choice of time window length. And

the final variability of the region was obtained by taking the average

value of all different window lengths (Zhang et al., 2016).

In addition, the previous study indicated that the resting state

dynamic FC analysis is most strongly influenced by the offset between

two successive sliding windows (Shakil, Lee, & Keilholz, 2016), the

overlapping sliding window method was also used in this study. In

consideration of the controversy how to define the window length,

we selected a range of window lengths (20, 21, 22, …, 50 TR)

(Hutchison, Womelsdorf, Gati, Everling, & Menon, 2013). And the typ-

ical window step between sliding windows adopted in previous stud-

ies ranges from one TR to 50% of the window length (Chang, Liu,

Chen, Liu, & Duyn, 2013; Klugah-Brown et al., 2018; Liu et al., 2017).

The main calculation about window step in this study was set as 40%

of window length. In addition, to avoid the arbitrary choice of window

step, 30 and 50% of the window length were also explored to validate

the reliability of the results. The calculation of FC variability was also

the same as the nonoverlapping sliding window, the calculation chart

was demonstrated in Figure 1.

2.5.1 | Temporal variability of network-level FC
architecture

The variability of FC architecture between two networks or within a

specific network was calculated based on the N regions of the brain
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template. Since cerebellum and subcortical nuclei are important

regions in epilepsy, cerebellum regions were included in the cerebellar

network (CereN), and subcortical nuclei regions were included in sub-

cortical nuclei (SubN). The remaining regions were divided into seven

brain networks, including VN, SMN, DAN, VAN, limbic network (LN),

frontal–parietal network (FPN) and DMN based on previous studies

that segmented whole brain networks (Yeo et al., 2011). The variabil-

ity of functional architecture between or within the brain network

was calculated by similar procedures used in regional brain variability

above (Sun et al., 2018). For a given brain network m, all FCs within

this network in the time window i was reshaped as a one-dimensional

vector, Fmi (Figure 1b). For all FCs, between-network l and network

p in the window i were denoted as one-dimensional vectors, Fmi, lmip

(Figure 1c). The within-network temporal variability of network m is

defined as follows:

Vwm =1−corrcoef Fmi,Fmj

� �
i, j= 1,2,3, � � �,n, i 6¼ j

and the between-network temporal variability of network l and net-

work p is defined as:

F IGURE 1 Chart of calculation for nonoverlapping sliding window (a,b,c) and overlapping sliding window (d,e,f). (a) Region-level FC variability
for nonoverlapping sliding window. (b) Within-network FC variability for nonoverlapping sliding window. (c) Between-networks FC variability for
nonoverlapping sliding window. (d) Region-level FC variability for overlapping sliding window. (e) Within-network FC variability for overlapping
sliding window. (f) Between-networks FC variability for overlapping sliding window
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Vb1p = 1−corrcoef Fmi, lmi,p,Fmj, lmj,p
� �

i, j=1,2,3, � � �,n, i 6¼ j

The temporal variability within-network characterizes whether the

FCs within a particular network is changing synchronously across dif-

ferent time windows. Similarly, between-network temporal variability

depicts the pattern of FC between two different networks across dif-

ferent time windows.

The overlapping sliding window method was also carried out at

the network-level. The window length and step were the same as the

calculation of region-level FC variability by the overlapping sliding

window method, and the calculation of FC variability at the network-

level was the same as the nonoverlapping sliding window method

mentioned before.

2.5.2 | Validation analysis

To evaluate the discreteness of the correlation value among different

windows, we further calculated the coefficient variation (CV) of the

four styles of FC variability mentioned above. For example, the CV of

region k on the region-level for a given window length was defined as

follows:

CVk =
std corrcoef Fi,k ,Fj,k

� �� �
mean corrcoef Fi,k ,Fj,k

� �� � , i, j =1,2,3, � � �,n, i 6¼ j

The final CV of region k was obtained by taking the average value

of all the different window lengths. A similar calculation was carried

out on the network-level.

2.6 | Statistical analysis

To evaluate the variability differences between patients and HCs, a

two-sample t-test was carried out on the individual variability of

regions, and the within and between brain network variability; more-

over, the mean FD was regressed out as a covariate, with a signifi-

cance set at p < .05 (false discovery rate corrected, FDR).

In addition, we calculated the partial correlations between the

years of disease duration and the significantly altered variability of FC

in the GTCS group, the age of onset was regressed out as a covariate

to control the influence of brain development caused by seizures early

in life (Holmes, 2005), with a significance set at p < .01.

3 | RESULTS

Six patients and five HCs were excluded because of head motion

scans exceeding 2 mm and/or 2�. Twelve patients and two HCs were

discarded with framewise displacements (FD) of successive images

more than 0.5 mm. Therefore, 45 GTCS and 58 HCs were included in

the final analysis. There was no significant difference in the mean FD

between patients and HCs (patients, mean=0.043, SD=0.022; HCs,

mean=0.038, SD=0.018; p=.147, t=1.463). And there was no signifi-

cant difference in the age (patients, mean = 23.02, SD = 11.88; HCs,

mean = 24.09, SD = 11.13; p = 0.64, two-sample t-test) and gender

(p = .47, χ2 test). The detailed clinical information about all patients is

shown in Supplementary Table 1.

The alterations in FC variability were relatively stable across dif-

ferent methods and templates. We highlighted the same alterations

across different methods and templates in supporting materials.

3.1 | Temporal variability based on the
nonoverlapping sliding window method (hundreds
level)

Compared with the variabilities in HCs, significantly increased tempo-

ral variability at the region-level was found in the insula, cerebellum,

precentral gyrus, basal ganglia, precuneus, cingulum gyrus, and in

some regions of the frontal–parietal cortex in GTCS (Figure 2a, Sup-

plementary Table 2). Figure 3 showed the alteration within-network,

however, temporal variability of within-network with hundreds level

templates was not observed.

Compared with the variabilities in HCs, significantly increased

temporal variabilities of FC between-networks were observed

between the DMN and VAN in GTCS (Figure 4a, Table 1).

3.2 | Temporal variability based on the overlapping
sliding window method (hundreds level)

Compared with the variabilities in HCs, patients with GTCS showed

significantly increased temporal variability at the region-level in the

insula, cerebellum, precentral gyrus, precuneus, cingulum gyrus, and

some regions of frontal–parietal cortex (Figure 2b, Supplementary

Table 3), which was similar to the results of the nonoverlapping win-

dow method in the hundreds level template. In addition, temporal var-

iabilities within-networks was also not observed here.

Compared with the variabilities in HCs, significantly increased

temporal variabilities of FC between-networks were observed

between the DMN and DAN, the DMN and VAN, and the DMN and

FPN in the GTCS (Figure 4b, Table 1).

3.3 | Temporal variability based on the
nonoverlapping sliding window method (thousand
level)

Compared with the variabilities in HCs, significantly increased tempo-

ral variability at the region-level was observed in the frontal–parietal

related regions, insula, precuneus, pre- and postcentral gyrus, basal

ganglia, cerebellum and cingulate gyrus to the whole brain in the

GTCS (Figure 2c, Supplementary Table 4).

Compared with the variabilities in HCs, patients with GTCS dem-

onstrated significantly increased temporal variabilities within-

networks in the VAN, DAN and DMN (Figure 3a, Table 1). In addition,

significantly increased temporal variabilities of FC between-networks

were observed between the DMN and VAN, and the DMN and FPN

in the GTCS (Figure 4c, Table 1).
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3.4 | Temporal variability based on the overlapping
sliding window method (thousand level)

The results of temporal variability at the region-level were similar to

the results based on the nonoverlapping window method at the thou-

sand level template, that is, significantly increased temporal variability

was observed in the frontal–parietal association regions, insula, pre-

and postcentral gyrus, precuneus, cerebellum, cingulate gyrus, and

few regions of the basal ganglia to the whole brain in GTCS

(Figure 2d, Supplementary Table 5).

Similar to the results of the nonoverlapping window method at

the thousand level template, significantly increased temporal variabil-

ity of the within-network was still found in the VAN, DAN and DMN

(Figure 3b and Table 1). In addition, significantly increased temporal

variabilities of FC were observed between the DMN and VAN, the

DMN and FPN, the DAN and VAN, and the DMN and DAN in the

GTCS (Figure 4d and Table 1).

In addition, when the step between sliding windows was set as

30% and 50% of window length, the results of temporal variability at

the region-level network-level were similar to that with the step set

as 40% of window length. Correspondingly, those supplementary

results of temporal variability at the region-level, within-network level,

and between-networks level were demonstrated in Supplementary

Figure 1, Supplementary Figure 2, and Supplementary Figure 3.

3.5 | CV of correlation value

Compared with the variabilities in HCs, significantly increased CV in

the region-level with the hundreds level template was mainly

observed in the precentral gyrus, insula, basal ganglia, cerebellum, and

F IGURE 2 Group differences in FC temporal variability of region-level (FDR corrected, p < .05). CereN, cerebellar network; DAN, dorsal
attention network; DMN, default mode network; LN, limbic network; FPN, frontal–parietal network; SCN, subcortical nuclei network; SMN,
sensorimotor network; VAN, ventral attention network

F IGURE 3 Group differences
in FC temporal variability of
within-network level (FDR
corrected, p < .05). DAN, dorsal
attention network; DMN, default

mode network; VAN, ventral
attention network

72 JIA ET AL.



F IGURE 4 Group differences
in FC temporal variability of
between-networks level (FDR
corrected, p < .05). DAN, dorsal
attention network; DMN, default
mode network; FPN, frontal–
parietal network; VAN, ventral
attention network

TABLE 1 Group differences of FC
variability within or between network(s)

Type of temporal variability

Patients HCs

p valueMean SD Mean SD

Nonoverlapping sliding window (hundreds level)

DMN-VAN 0.764 0.062 0.713 0.076 .035

Overlapping sliding window (hundreds level)

DMN-DAN 0.628 0.071 0.578 0.077 .033

DMN-VAN 0.526 0.075 0.470 0.083 .033

DMN-FPN 0.605 0.069 0.562 0.069 .043

Nonoverlapping sliding window (thousand level)

VAN 0.770 0.044 0.729 0.040 .017

DAN 0.777 0.044 0.740 0.035 .020

DMN 0.768 0.042 0.741 0.055 .035

DMN-VAN 0.826 0.048 0.779 0.063 .008

DMN-FPN 0.809 0.040 0.777 0.052 .029

Overlapping sliding window (thousand level)

VAN 0.500 0.055 0.465 0.056 .020

DAN 0.516 0.053 0.482 0.050 .020

DMN 0.501 0.053 0.466 0.066 .034

DMN-VAN 0.557 0.068 0.501 0.080 .024

DMN-FPN 0.552 0.053 0.509 0.067 .032

DAN-VAN 0.593 0.061 0.553 0.060 .023

DMN-DAN 0.597 0.058 0.559 0.057 .032

Note: FDR corrected p<.05.

Abbreviations: DAN, dorsal attention network; DMN, default mode network; FPN, frontal–parietal
network; SD, standard deviation; VAN, ventral attention network.
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F IGURE 5 Group differences in CV of region-level FC architecture (FDR corrected, p < .05). SMN: sensorimotor network. DAN: dorsal
attention network. VAN: ventral attention network. LN: limbic network. FPN: frontal–parietal network. DMN: default mode network. SCN:
subcortical nuclei network. CereN: cerebellar network

F IGURE 6 Correlation between FC variability and years of disease duration. Y* represents the disease duration (years) after controlling for
the effect of the age of onset. One outlier was removed (> mean ± 2*SD) for the correlation calculation
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inferior partial gyrus (Figure 5a,b, Supplementary Table 6). A signifi-

cantly increased CV in the region-level with the thousand level

template was observed in insula, frontal–parietal association regions,

pre- postcentral gyrus, precuneus, cerebellum, and basal ganglia

(Figure 5c,d, Supplementary Table 6).

Compared with HCs, significant changes in GTCS at the network-

level were only found when using an overlapping sliding window at

the thousand level template. Significantly increased CV in the within-

network level was found in the DAN and VAN (Supplementary

Figure 4 A, Supplementary Table 7), and significantly increased CV in

the between-networks level was found between the DMN and VAN,

the DMN and DAN, and the DAN and VAN in the GTCS

(Supplementary Figure 4 B, Supplementary Table 7).

3.6 | Correlation analysis between FC variability and
clinical variables

After controlling for the effect of the age of onset, significant correla-

tions between FC variability and clinical variables were only revealed

between FC variability at the region-level and the years of disease

duration. In detail, temporal variability in the left putamen on the hun-

dreds level template was significantly related with illness duration in

patients (Figure 6a). The significant correlation was observed in the

right inferior frontal gyrus temporal variability with the overlapping

sliding window in the thousand level template (Figure 6b).

4 | DISCUSSION

In the present study, two types of FC temporal variability were used

to comprehensively investigate the reconfiguration of large-scale

brain network dynamic FC analysis in IGE with GTCS only for the first

time. Importantly, the observation is relatively consistent across dif-

ferent brain region templates and different dynamic FC methods.

Increased FC temporal variability at the region-level was observed in

the insula, cerebellum, pre- and postcentral gyrus, precuneus, cingu-

lum gyrus, basal ganglia and some regions of the frontal–parietal

related cortex in GTCS. Increased temporal variabilities of within-

network FC architecture were found in the VAN, DAN, and DMN.

And this alteration was only observed in the thousand level brain tem-

plate analysis. Meanwhile, increased temporal variabilities of

between-network FC architecture were observed between the DMN

and VAN, the DMN and DAN, the DMN and FPN, and DAN and VAN

across the two types of brain templates with overlapping sliding win-

dow dynamic FC methods in the GTCS. Furthermore, increased varia-

tion coefficients of FC variability were also observed in the GTCS. In

addition, there were significant correlations between FC variability at

the region-level and disease duration (years) in GTCS. This study pro-

vides novel insight into the pathophysiological mechanisms of GTCS.

To our knowledge, this is the first study to explore the dynamic

FC in GTCS in a large-scale brain network. Significantly increased FC

temporal variability in the region-level of GTCS was revealed in

regions of the VAN and DMN such as the insula, precuneus, cingulum

and frontal lobe. Interestingly, significantly increased FC temporal var-

iability of the VAN and DMN was also observed in the within-network

level. Previous study suggested that the insula plays a crucial role in

integrating disparate functional systems such as affects, sensory-

motor, and general cognition; Offering an interface between action,

feelings, and cognition (Chang, Yarkoni, Khaw, & Sanfey, 2013). Simi-

lar to the importance of the role of the insula in the human brain,

emerging studies have shown that the functional hubs of the brain are

mostly located in DMN (Tomasi & Volkow, 2011; van den Heuvel &

Sporns, 2013). The DMN is engaged in the consciousness of episodic

memory and/or self-awareness (Raichle et al., 2001; T. Yang et al.,

2013). Thus, we speculated that overly frequent information commu-

nication in regions of the VAN and DMN might be associated with the

impairment of automatic bottom-up salience detection after chronic

epilepsy discharge and attention lapses and memory deficits in GTCS.

In addition, it is worth noting that the increased FC temporal vari-

ability in the DMN was not only found at the region-level but also rev-

ealed at the between-networks level, which further suggested that

the DMN plays a crucial role in GTCS. The temporal variability of FC

between the DMN and VAN, the DMN and FPN, the DMN and DAN,

and the VAN and DAN were significantly increased in the GTCS. Nor-

mally, the DMN is activated in the resting state and reflects spontane-

ous thought processes, such as meditation and introspection (Brewer

et al., 2011; Raichle et al., 2001); the DAN and VAN are activated in

the task state and are mainly involved in externally oriented mental

processes to maintain and reorient attention (Christoff, Irving, Fox,

Spreng, & Andrews-Hanna, 2016). In addition, the FPN is thought to

be responsible for cognitive control functions such as working mem-

ory, attentional selection and error monitoring (Vincent, Kahn, Snyder,

Raichle, & Buckner, 2008). Meanwhile, the DMN is also considered a

key network, especially when considering its ability to integrate infor-

mation from cognition and primary function networks (Raichle et al.,

2001). The interaction between the DMN and task-positive networks

(the DAN, VAN, and FPN) reflects the switch between the intrinsic

and extrinsic focus of attention (Weissman, Roberts, Visscher, &

Woldorff, 2006; Whitfield-Gabrieli & Ford, 2012). Study indicated the

relatively low variability of the DMN in normal physiologic conditions

because of its strong FC within the network during the resting state

(Zhang et al., 2016). In line with the study of Liu et al (Liu et al., 2017),

abnormal FC temporal variability between the DMN and task-positive

networks was found in GTCS. Taken together, the increased variabil-

ity between the DMN and task-positive networks might lead to a

functional confusion of task-negative and task-positive networks and

disadvantages in maintaining cognitive function, which might be

related to the dysfunction of cognition in GTCS.

Besides, significantly increased temporal variability of FC at the

region-level was found in the basal ganglia, cerebellum, pre- and post-

central gyrus in this study. Previous study demonstrated that the basal

ganglia is involved in motor selection, preparation, and execution

(Emmanuel et al., 2004). In addition, the basal ganglia is also widely

considered in the implication of modulating of the spike and wave dis-

charges in epilepsy (Norden & Blumenfeld, 2002). A previous study

demonstrated that controlling the output from the cerebellar cortex
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could effectively interrupt seizures (Kros, Eelkman Rooda, De

Zeeuw, & Hoebeek, 2015). Damage of the cerebellum would lead to a

disorder of movement equilibrium and motor learning (Fine, Ionita, &

Lohr, 2002). The pre- and postcentral gyrus was also found to be

increased in the activation of epilepsy (Jiang et al., 2016; Klugah-

Brown et al., 2019). Therefore, the abnormal FC temporal variability

of the basal ganglia, cerebellum, and pre- post central might be associ-

ated with motor dysfunction during seizures in GTCS. In addition, the

FC variability in putamen was correlated with the illness duration.

Because many patients in this study was treated by antiepileptic drugs

(AEDs), we suspected that the lower FC variability in patients with

longer illness duration might reflect the effect of treatment with

AEDs. Hermans and colleagues found significantly increased FC in

patients with IGE after the withdrawal of AEDs, which suggested that

AEDs inhibit the propagation of seizures through reducing the syn-

chronous firing of neuronal ensembles (Hermans et al., 2015). It is also

possible that the compensatory mechanism in patients with long dura-

tion might contribute to the altered FC variability in these regions.

Besides, the thalamus is considered as a key pathophysiological node

in IGE (Jiang et al., 2018). However, we did not find any significant

results in thalamus on region-level or network-level. We suspect that

the selected templates are more focus on the cerebral cortex and the

number of nodes in the thalamus is limited, which does not allow us

to investigate the thalamus FC variability.

Furthermore, the alterations of FC variability within the network

were only revealed in the thousand level template. The findings

suggested that different scales of brain templates reflected different

insights for alterations of FC variability in GTCS. In addition, to high-

light the benefits of adopting the dynamic FC, we also calculated the

static FC using a similar procedure, as we mentioned in Supplemen-

tary materials. We found significantly increased FC of precuneus, cin-

gulum and superior frontal gyrus, as well as significantly decreased FC

of cerebellum and basal ganglia in patients. But no significant result

was found in network level. This result was similar with the previous

studies (T. Yang et al., 2013; Zhong et al., 2018), and might suggest

that the static FC reflects one side of specific alteration in patients

with GTCS. Meanwhile, the findings strengthened the necessity of FC

temporal variability in company with static FC analysis to explore the

dysfunction in IGE.

While we believe this study offers comprehensive and reliable

findings by using two levels of FC temporal variability with two levels

of brain templates and two kinds of methods of dynamic FC, there are

still several limitations that need to be addressed in future studies.

First, most patients recruited in this study were medicated. Previous

study suggested that taking antiepileptic drugs can affect normal neu-

ronal and cognitive function (Loring & Meador, 2004). Therefore,

future studies should consider the influence of antiepileptic drugs in

FC temporal variability. Second, electroencephalography combined

with fMRI was not used in this study since it is difficult for partici-

pants to continue to not move their head during scanning. Electroen-

cephalography combined with MRI would help evaluate the

relationship between interictal epileptiform discharge during scanning

and FC temporal variability. Third, previous studies indicated that

head movements can affect the estimate of FC (Power et al., 2015;

Satterthwaite et al., 2013). Even if we tried our best to avoid this

problem, including discarding data with high and frequent head

motion, regressing 24 motion parameters, regressing out the mean FD

during statistical analysis, the effect of head motion could not be

entirely ruled out. Besides, well-matched FD subgroups analysis

was carried out, which was showed in Supplementary materials, and

we found the main results still remained (Supplementary

Figure 5–7). Finally, it should be noted that, there is no data on the

cognitive assessments in the present study, and direct relationship

cannot be established between our results and cognition data.

Although we suspected that the changes of FC temporal variability

in the cognition-related network in patients with GTCS were related

to the cognitive dysfunction of GTCS, it will be a very meaningful

topic to establish the relationship between dynamic FC changes and

cognition in future research.

5 | CONCLUSION

In summary, patients with GTCS demonstrated the reliable abnormal-

ity of FC temporal variability in cognition related functional networks,

especially in the DMN, suggesting overly frequent information com-

munication among them, which might implicate epileptic activity and

cognitive deficits in patients. In addition, increased FC temporal vari-

ability in motor-related regions might be associated with motor dys-

function in GTCS. These findings provide novel neuroimaging

evidence for the hypothesis of reconfiguration of the dynamic large-

scale brain network in GTCS. Overall, the dynamic FC analysis sheds

light on understanding the pathophysiology mechanisms of GTCS.
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