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Abstract: Mobile gait analysis systems based on inertial sensing on the shoe are applied in a
wide range of applications. Especially for medical applications, they can give new insights into
motor impairment in, e.g., neurodegenerative disease and help objectify patient assessment. One key
component in these systems is the reconstruction of the foot trajectories from inertial data. In literature,
various methods for this task have been proposed. However, performance is evaluated on a variety
of datasets due to the lack of large, generally accepted benchmark datasets. This hinders a fair
comparison of methods. In this work, we implement three orientation estimation and three double
integration schemes for use in a foot trajectory estimation pipeline. All methods are drawn from
literature and evaluated against a marker-based motion capture reference. We provide a fair
comparison on the same dataset consisting of 735 strides from 16 healthy subjects. As a result,
the implemented methods are ranked and we identify the most suitable processing pipeline for foot
trajectory estimation in the context of mobile gait analysis.

Keywords: wearable sensors; human gait; clinical gait analysis; benchmark dataset; orientation
estimation; double integration

1. Introduction

Mobile gait analysis systems are based on Inertial Measurement Units (IMUs) that are mounted
on the subject and allow an objective assessment of gait [1]. As such, they are used in a variety of
applications ranging from the medical domain to consumer electronics. One prominent example
is the use of these systems in neurodegenerative diseases such as Huntington’s, Alzheimer’s and
Parkinson’s Disease (PD). PD patients, for example, exhibit a variety of symptoms that, amongst
others, affect gait and reduce their quality of life [2]. A few examples of gait disturbances observed
in PD patients range from a reduced stride length over shuffling gait to episodes of complete gait
freezing [3]. This change in gait pattern is observed by physicians in order to stage PD severity
and provide appropriate treatment. The clinical gold standard for disease progression and motor
function is the Movement Disorder Society’s revision of the Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) [4]. However, only one item on this scale directly concerns gait and is assessed by
means of visual observation. This represents a subjective and incomplete snapshot of the patient’s gait
performance since visual gait assessment is long known to be unreliable [5]. Furthermore, patients
as well as physicians might be influenced by the clinical assessment paradigm [6]. Addressing this
problem would require unobtrusive means of measurement and less direct assessment schemes.
Therefore, an objective and mobile measurement system is desirable for clinical gait analysis.
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Unlike lab-based systems such as pressure carpets or motion capture systems, body-worn
IMUs need little subject preparation prior to assessment and are therefore practical in a clinical
environment [1]. Moreover, such mobile systems could be used for gait analysis in the patient’s home
environment due to the mobility/wearability of the sensing technology. This would allow a more
continuous assessment of disease progression as opposed to snapshot visits in specialist centers which
is the current state-of-the-art. Additionally, an automated assessment of gait impairment and delivery
of clinically meaningful summary measures would help to document and evaluate disease progression
and therapeutic interventions [7].

One central component in these sensor-based, mobile gait analysis systems is the reconstruction
of the foot trajectory from IMU data captured during, e.g., standardised clinical walking trials.
This reconstruction is necessary since the parameters of interest, i.e., positional/orientation
information, cannot be measured directly due to the physical constraints in the wearable sensing
scenario. No external base stations, as in a motion capture setting, are available that would allow
positional tracking.

Conceptionally, the processing pipeline for the reconstruction task can be described as shown in
Figure 1a. Given IMU data as input, position and orientation are computed on a stride-by-stride basis in
order to provide a parametrisation of the gait pattern. This parametrisation aims at capturing relevant
information in a low dimensional space compared to the complete trajectory data (position and foot
orientation for every instant). In the clinical use case, these summary descriptions of gait performance
are the main output of sensor-based mobile gait analysis systems that ensure practicality [7]. Other
use-cases of such systems could involve visualisations of the foot trajectory for, e.g., tele-monitoring
concepts or patient feedback mechanisms.

a b

Figure 1. (a) Conceptual workflow for estimating foot trajectory and orientation in the context of mobile
gait analysis with Inertial Measurement Units (IMUs). Incoming data is processed on a stride-by-stride
level in order to provide relevant features as, e.g., stride length or foot orientation at certain key
events during the gait cycle. This methodological benchmarking study is specifically concerned with
the highlighted blocks; (b) An IMU is placed on the lateral side of the shoe below the ankle. The
coordinate system of measurement is aligned as indicated above. Additionally, photoreflective markers
are attached in order to provide reference data regarding foot position and orientation.

While some steps from the processing layer in Figure 1a are rather generic, others like orientation
estimation or double integration might be based on a variety of methods described in literature.
Regarding orientation estimation, suitable methods range from gyroscope integration as proposed by
Sabatini [8] to more advanced methods that incorporate accelerometer data for orientation sensing.
Those advanced methods include complementary filters (CFs) as proposed by Madgwick et al. [9]
or Euston et al. [10]. Double integration methods have to satisfy a variety of boundary conditions.
One important boundary condition is the the zero-velocity assumption that requires the foot to be
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stationary at the start and end of a stride. Based on this, integration is re-initialized by controlling
initial and final values of computed integrals. In literature, the zero velocity assumption is addressed
in quite diverse ways. One solution is direct integration followed by the identification and removal of
integration drift as implemented by Sabatini [8], Mariani et al. [11], Rebula et al. [12], Rampp et al. [13]
or Kitagawa and Ogihara [14]. Other approaches, however, try to incorporate these cyclic boundary
conditions in less direct ways. Zok et al. [15] proposed an integration scheme that fuses a regular with a
time-reversed integral in order to satisfy the boundary condition. This is used by Trojaniello et al. [16]
in the context of mobile gait analysis. Other approaches include the recently proposed analytic
integration scheme described by Sabatini et al. [17] that is based on Fourier decomposition.

In summary, there is large variation in potential processing pipelines for foot trajectory estimation
in mobile gait analysis and no clear objective which configuration to choose for a specific application.
Moreover, a lack of publicly available and generally excepted benchmark datasets in this field results
in performance evaluations reported on a variety of datasets that are not comparable [18]. A unified
evaluation of different processing pipelines for foot trajectory estimation on the same dataset is therefore
needed to complement existing literature. We already expressed this need in prior work [18,19]
and address it with this manuscript. We specifically look at orientation estimation and double
integration methods in the context of mobile gait analysis. We implement and test three different
methods drawn from literature for each of the two processing steps with the aim to identify the most
suitable processing pipeline for foot trajectory estimation.

2. Dataset

The dataset used for this work was acquired previously by Kanzler et al. [20]. It consists of IMU
data captured at the feet and annotated with time-synchronised position measurements obtained
from a VICON motion capture system. In total, 20 healthy subjects between 16 and 80 years of age
were asked to complete 15 walking trials of 10 m each. In order to obtain large variation in stride
length and velocity, subjects were asked to modulate both parameters to reach low, normal and high
ranges. Additionally, low and high range regimes were coupled to get data on long strides at low gait
velocity and vice versa. Each condition was repeated three times. Although IMU data was captured
with two different sensor systems, we only focus on the subset acquired with the Shimmer2R sensor
platform [21] consisting of a 3D-accelerometer (range ± 6 g) and a 3D-gyroscope (range ± 500◦/s).
Here, the total amount of data summed to 735 strides from 16 subjects due to errors during data
acquisition like partial failure of one of the two systems. All subjects gave written, informed consent
prior to data acquisition and the study was conducted in accordance with the Declaration of Helsinki.

Figure 1b shows the inertial measurement setup used during data collection. A Shimmer2R IMU
was attached to the lateral side of the shoe below the ankle and aligned with the functional axes of
the foot. All subjects wore the same shoe model (adidas Duramo 3) since an influence of footwear
on gait patterns is known from literature [22]. IMU data was recorded at a sampling rate of 102.4 Hz
and streamed via bluetooth to a mobile device for storage. The reference VICON motion capture
system consisted of 16 VICON T-Series cameras that were partly mounted on a scaffold at three meters
height or on tripods on the ground such that a volume of 5× 3× 2 m could be captured. With this
system, data was captured at 200 Hz and later resampled to the IMU’s sampling rate. In order to
obtain direct measurements of position, photoreflective markers were positioned on the lateral and
medial calcaneus, the lower part of the calcaneal tendon, the first and the fifth metatarsal head and the
distal phalanx of the first toe. Calibration of the VICON system was done with a calibration wand
and synchronisation between both measurement systems was accomplished with a wireless trigger
system as described by Kugler et al. [23]. The foot position and orientation at mid-stance defined the
coordinate system in which position measurements were obtained from the VICON for the current
stride in order to align measurement frames between both systems.
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3. Methods

The previously recorded IMU data now serves as input for the processing layer in Figure 1a.
The methods concerning Preprocessing, Coordinate Transform and Gravity Removal are fixed within this
work. For Orientation Estimation as well as Double Integration, three different approaches are evaluated.
Orientations are represented in terms of quaternions and the appendix gives an overview on relevant
mathematics. In the following, quaternions will describe sensor-to-world rotations and we drop any
prescript indicating this for reasons of readability.

3.1. Preprocessing

In the context of gait analysis, preprocessing consists of sensor calibration, stride segmentation
and gait event detection. Sensor calibration is done according to Ferraris et al. [24]. In our case, stride
segmentation is already supplied by the dataset. In the final application, however, it could be achieved
using dynamic time warping with a stride template as explained by Barth et al. [25]. For gait event
detection, mid-stance (MS) events are estimated according to Rampp et al. [13]. Briefly, MS is defined
as the point of minimal energy in the gyroscope signal of a stride. Two successive mid-stances at tms

and tms+1 are then used as the underlying stride definition that allows re-initialization of orientation
estimation and double integration after each stride due to the assumption that the foot is stationary at
these timepoints (zero-velocity assumption).

3.2. Orientation Estimation

Estimation of initial sensor orientation during MS does not vary between methods. It is limited to
inclination estimation since heading information is not available from accelerometer or gyroscope data.
The inclination is estimated using the accelerometer signal as(t) in the sensor frame, which is assumed
to contain no movement component at MS. Therefore, rotation angles around the transversal (z) and
anterior-posterior axis (x) can be calculated as:

tan(αz) = −
ax

ay
tan(αx) =

az√
a2

x + a2
z

(1)

Using Equations (A3) and (A4), two rotation quaternions qz and qx are defined and their
quaternion product ⊗ yields the initial quaternion:

q(tms) = qz ⊗ qx (2)

Due to changes of the foot orientation as shown in Figure 2a, the initial quaternion needs to be
updated at each sample within the stride (tms < t ≤ tms+1). This update is performed differently for
each of the following three methods.

3.2.1. Gyroscope Integration

The first approach uses the angular rate ω(t) to update the rotation quaternion from sample to
sample as shown in Figure 2b. The quaternion derivative with respect to time is calculated according
to [26]:

q̇ω(t) =
1
2

q(t− ∆t)⊗
[
0 ωx(t) ωy(t) ωz(t)

]T
(3)

This derivative is multiplied with the sampling interval ∆t and added to the previous quaternion
q(t− ∆t). Additionally, normalization is applied and yields the update equation:

q(t) =
q(t− ∆t) + q̇ω(t) · ∆t
‖q(t− ∆t) + q̇ω(t) · ∆t‖ (4)
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a b

c d

Figure 2. (a) Coordinate systems in the sagittal plane. Subscripts denote the sensor- and
world-coordinate system; (b–d) Block diagrams for the three orientation estimation techniques
implemented within this work.

3.2.2. Madgwick CF

Madgwick et al. [9] proposed a CF for updating the rotation quaternion based on accelerometer,
gyroscope and magnetometer data. Since magnetometer data is not available in our context,
the approach is reduced to fusion of accelerometer and gyroscope data. Furthermore, orientation
information can only be gained from the accelerometer in static conditions with tolerable degrees of
movement. Consequently, we only use the update path from accelerometer data when the magnitude
of the acceleration signal as(t) in the sensor frame is in certain bounds with respect to gravity in the
world frame: ∣∣∣‖as(t)‖ − ‖gw‖

∣∣∣ ≤ γ with gw= −
[
0, 1, 0

]T
(5)

Moreover, all orientation updates from the accelerometer are prevented in the swing phase of the
gait cycle. In these high-movement conditions, the orientation update is identical to the gyroscope
integration scheme presented earlier. The complete workflow for orientation estimation according to
Madgwick is shown in Figure 2c.

The update equation is identical to Equation (4). However, the purely angular rate-dependent
quaternion derivative q̇ω(t) is replaced by a corrected estimate where the correction term encodes
orientation clues gained from the accelerometer:

q̇(t) = q̇ω(t)− β
∇ε(t)
‖∇ε(t)‖ with ∇ε(t) = J

(
ε(t)

)T
ε(t) (6)
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where β is a filter parameter proportional to the maximal gyroscope measurement error [9]. The
error term ε(t) is obtained by transforming gravity in world coordinates gw to sensor coordinates and
subtracting the accelerometer measurement in the sensor frame as(t). Since quaternions represent
sensor-to-world rotations in our case, the transposed rotation matrix yields the inverse transformation:

ε(t) = R
(

q(t− ∆t)
)T

gw − as(t) (7)

The gravity vector gw has only one non-zero element and unit length. Consequently,
the multiplication in Equation (7) is identical to selecting a column of the transposed rotation matrix.
In the case of gravity being aligned with the y-axis, this yields:

gs(t) = R
(

q(t− ∆t)
)T

gw = −

 2(q1q2 + q0q3)

q2
0 − q2

1 + q2
2 − q2

3
2(q2q3 − q0q1)

 (8)

Additionally, the Jacobian J
(

ε(t)
)

with respect to the quaternion elements needs to be calculated:

J
(

ε(t)
)
= J

(
gs(t)

)
=−

 2q3 2q2 2q1 2q0

2q0 −2q1 2q2 −2q3

−2q1 −2q0 2q3 2q2

 (9)

Finally, the corrected quaternion derivative can be calculated as presented in Equation (6).

3.2.3. Euston CF

Euston et al. [10] presented a CF for orientation estimation of unmanned vehicles. Additionally
to gyroscope and accelerometer readings, measurements of airspeed were available. Since such a
variable is not of interest in our context, the corresponding path in the block diagram presented in [10]
is disconnected. Similar to Madgwick’s orientation filter, orientation updates from accelerometer data
are disabled during the swing phase of the gait cycle and only permitted when Equation (5) is valid.
The complete workflow is given as a block diagram in Figure 2d.

For the quaternion update, Equations (3) and (4) are used. However, the measured angular rate
ω(t) is replaced by a corrected angular rate signal

ω∗(t) = ω(t) + δ(t) (10)

The error term δ is obtained similar to the Madgwick CF. The first step is to convert gravity from
world coordinates to sensor coordinates using the previously estimated quaternion. This corresponds
to Equation (8). Calculating the cross-product between gs(t) and the acceleration as(t) in the sensor
frame, a dimensionless error e(t) is obtained and used in the correction term δ(t):

e(t) =
gs(t)
‖gs(t)‖

× as(t)
‖as(t)‖

δ(t) = kP e(t) + kI

∫
e(t)dt (11)

The error term e(t) thus describes the angular mismatch between the predicted and measured
direction of gravity. The predicted direction gs(t)/‖gs(t)‖ is based on the tracked transformations
between global world and local sensor frame, see Equation (8). The measured direction, however, is
directly obtained from the accelerometer reading as(t).

In contrast to gyroscope integration or the Madgwick CF, the Euston filter has two adjustable
parameters. These are the proportional gain factor kP and the integrator gain factor kI . The proportional
gain factor is used to separate low-frequency and high-frequency estimates of orientation. For angular
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rates below kP rad/s, the filter relies on the accelerometer-based estimate. With rising angular rate,
the gyroscope data has a higher impact on the estimated orientation. The integrator part of the filter is
designed to correct for gyroscope bias.

3.3. Coordinate Transform

To represent measured accelerations as(t) in the world coordinate frame, the rotation matrices for
the computed sequence of quaternions are used:

aw(t) = R
(

q(t)
)
· as(t) (12)

3.4. Gravity Removal

Since the acceleration measurement has already been transformed to the world coordinate system,
gravity can be subtracted:

a(t) = aw(t)− gw (13)

The remainder a(t) is thus the movement component of the measured acceleration signal in the
world frame. In order to ensure the cyclic boundary condition a(tms) = a(tms+1) = 0 that is needed
for the re-initialization of the integration step but might have been corrupted during orientation
estimation, a dedrifting with a piecewise linear function as explained by Rampp et al. [13] is applied
before integration.

3.5. Double Integration

The input for this block in the workflow (see Figure 1a) is the gravity-free acceleration signal in
world coordinates a(t). This needs to be integrated twice with respect to time to estimate the foot’s
trajectory. Three approaches to accomplish this task are presented in this section. For each stride,
the foot’s starting position is initialized in the origin.

3.5.1. Direct Integration

For this approach, the workflow is shown in Figure 3a. It is based on direct integration and linear
dedrifting. An estimate for the velocity is obtained via the trapezoidal rule

v̂(t) =
∫ t

tms
a(t) dt ≈

it

∑
i=ims+1

ai + ai−1

2
· ∆t (14)

where ims = [tms/∆t] and it = [t/∆t] are the corresponding samples in the discrete signal. Due
to inaccurate orientation estimation, sensor drift and integration errors, the obtained velocity does
not necessarily satisfy the boundary condition v(tms) = v(tms+1) = 0 (zero-velocity assumption).
In order to fulfill this constraint, a linear drift function dv(t) as described by Rampp et al. [13] or
Kitagawa and Ogihara [14] is estimated and subtracted:

v(t) = v̂(t)− dv(t) (15)

The final velocity estimate v(t) is integrated using the trapezoidal rule and the trajectory s(t)
is obtained. It is further assumed that the subject walks on level ground, leading to the boundary
condition sy(tms) = sy(tms+1) = 0. To enforce this, the vertical position estimate is dedrifted similarly
as already proposed by Kitagawa and Ogihara [14].
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a b

c

Figure 3. (a–c) Block diagrams for the double integration methods implemented in the context of this
benchmark.

3.5.2. Direct and Reverse Integration

Zok et al. [15] proposed to incorporate boundary conditions like the zero-velocity assumption by
fusing a direct and a time-reversed integral. The motivation behind this is to use the known initial
and final values of an integral as anchor points and compute the integral between these anchors as a
weighted sum of both components. The workflow for this method is visualized in Figure 3b.

In order to obtain a velocity estimate, the direct integral v→(t) is computed as shown in
Equation (14). To calculate the time-reversed integral v←(t), the original acceleration signal needs to
be flipped with respect to time and direction:

a←(t) = −a(tms+1 − t) (16)

Equation (14) applied to this signal now yields reverse integral v∗←(t). Before fusion,
the transformation t→ tms+1 − t applied earlier needs to be inverted to ensure common support for
both integrals:

v←(t) = v∗←(tms+1 − t) (17)

For fusion of both integrals, a sigmoid shaped weighting function w(t) ∈ [0, 1] is used

w(t) =
h(t)− h(tms)

h(tms+1)− h(tms)
with h(t) =

(
1 + exp

(
− t− t0

η

))−1

The shape of w(t) can be influenced by adjusting the steepness parameter η and its mid-point
t0. The direct and reverse integral are then fused using this weighting function to arrive at the final
velocity estimate:

v(t) =
(

1− w(t)
)

v→(t) + w(t) v←(t) (18)
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The trajectory s(t) is estimated by direct integration of the velocity estimate v(t) in the ground plane
and direct and reverse integration in the vertical axis since the level-floor assumption gives rise to a
similar boundary condition where the initial and final value of the integral sy are known à priori.

3.5.3. Analytic Integration

Both double integration schemes presented above make use of numerical integration via the
trapezoidal rule. As a third integration scheme, Sabatini et al. [17] proposed decomposition of the
acceleration signal in a Fourier basis followed by analytic integration of the basis functions and
reconstruction of the signal. The theoretical motivation behind this is certainly two-fold: On the
one hand, Fourier decomposition ensures a generic implementation of cyclic boundary conditions
as the zero-velocity assumption. On the other hand, analytically integrable basis functions promise
less integration errors. As an alternative for non-cyclic boundary conditions, we extend the method
proposed by Sabatini et al. [17] in the context of this work by decomposition and analytic integration
in a B-Spline basis. The workflow for this analytic integration scheme is visualized in Figure 3c.

Fourier decomposition of the acceleration signal a(t) is given by:

ã(t) = c0 +
NFourier

∑
k=1

c1(k) cos
(

2πk
T

t
)
+ c2(k) sin

(
2πk

T
t
)

where T is the duration of the corresponding stride, c{0,1,2} are the coefficients in the expansion and
ã(t) represents the reconstructed signal from the expansion up to order NFourier. The DC component c0

is set to zero to comply with the assumption that we have zero acceleration at the beginning and end of
each stride [17]. Time-integration of ã(t) can then be carried out analytically to arrive at estimates for
velocity. Likewise, clearance estimates can be obtained by analytical double-integration of the vertical
acceleration component ãy(t).

For the decomposition and integration in a B-Spline basis, we refer to Dierckx [27]. Relevant
parameters regarding this decomposition involve the spline order k and the sequence of control points.
Both determine the quality with which a signal can be reconstructed once decomposed.

4. Experiments

4.1. Orientation Estimation

Suitable parameter sets for the two tunable orientation estimation techniques (Madgwick CF
and Euston CF) described above are found via grid-search with reference angle courses obtained
from the VICON measurements. For each parameter configuration θ, the error distribution ε(αi, θ)

between the sensor-derived and the reference angle courses is computed for each axis i ∈ {x, y, z} and
over all available strides as shown in Figure 4. The mean error 1

3 ∑i∈{x,y,z} rmse (ε(αi, θ)/ρi) between
the sensor-derived angle courses and the reference angle courses indicates an optimal parameter
configuration θopt. In this process, error distributions for a given variable αi are normalized by the
range ρi attained on the reference dataset. The parameter grids are shown in Table 1 and the values for
γ are chosen such that the fraction of the stance phase that receives an accelerometer update is sampled
equidistantly in [0, 1]. For evaluation, the metrics drawn from the error distributions ε(αi, θopt) are the
mean (i.e., accuracy) and its standard deviation (i.e., precision). These allow assessment of estimation
errors per axis, provide a comparison between methods and establish a ranking. Additionally, average
execution times per stride are monitored.
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Figure 4. Pooling of individual error distributions yields the error distributions ε(αi, θ) for a given axis
i = z, variable and parameter configuration θ.

Table 1. Parameter grids for all methods optimized by grid-search on the current dataset and the
resulting optimal parameter configuration.

Method Parameter Grid Optimal Configuration

Madgwick CF
γ ∈ {0.04, 0.07, 0.09, 0.14, 0.24,

0.45, 0.77, 1.48, 2.50, 4.00}
γopt = 0.24

β = 10−i/3 i ∈ {0, 1, · · · , 9} βopt = 0.046

Euston CF

γ ∈ {0.04, 0.07, 0.09, 0.14, 0.24,
0.45, 0.77, 1.48, 2.50, 4.00}

γopt = 2.5

Kp = 10−i/3 i ∈ {0, 1, · · · , 9} Kopt
p = 0.0046

Ki ∈ {0, 0.01, 0.10} Kopt
i = 0

Direct & Reverse Int.

η = 10κ−i·δ i ∈ {0, 1, · · · , 9} ηopt = 0.08

κ = log10(1/2)

δ =
log10(1/2)+2

9

t0 = 0.05 · i with i ∈ {0, 1, · · · , 20} topt
0 = 0.6

4.2. Double Integration

The three methods for double integration described above mainly differ in the way they address
cyclic boundary conditions like the zero-velocity assumption. The direct integration scheme is
parameter-less, whereas direct and reverse as well as the analytic integration involve two tunable
parameters. For the direct and reverse integration scheme, a grid-search is performed. Only integration
endpoints involving such a cyclic boundary condition are considered in order to determine an
optimal parameter set θ, in our case v(t) and sy(t). The evaluation metrics are identical to the ones
used to tune the orientation estimation schemes with the difference that the reference time-series
for velocity and clearance are used. The resolution of the parameter grid is shown in Table 1.
The analytic integration process, however, involves decomposition of the incoming acceleration
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signal on a functional basis and the parameters involved determine the reconstruction quality from
that decomposition. These parameters are therefore set to ensure average reconstruction errors less
than 5% on the complete dataset. For the current application, this corresponds to NFourier = 60 terms.
B-Spline decomposition is done with splines of order k = 3 while the amount of control points is
automatically selected based on a given smoothness goal. This is determined from default settings in
the python scipy.interpolate.splrep function, for details see [27].

The optimal parameter set for each method is then evaluated on the complete dataset in order to
assess estimation errors for all axes and provide a ranking of methods. Average execution times per
stride are measured here as well.

5. Results

5.1. Orientation Estimation

Optimal parameter configurations for the two tunable orientation estimation techniques are
shown in Table 1. According to the optimal choice for γ, the Euston CF is less sensitive to movement
in the fusion of accelerometer and gyroscope orientation estimates compared to the Madgwick CF.
Figure 5a gives an overview on the average stance-phase fraction that receives an accelerometer
orientation update for a given γ on the current dataset. The optimal operating point for the Madgwick
CF thus corresponds to 55% stance-phase coverage while the Euston CF is able to cover 95 % of the
stance phase with an orientation update from the accelerometer.

0 2 4 6
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Figure 5. (a) Average fraction of the stance phase with an accelerometer orientation update for a given
value of γ on the complete dataset. One standard deviation around the mean is shown in light color;
(b) Optimal weighting function h(t) in the direct and reverse integration scheme for t0 = 0.6 and
η = 0.08.

Table 2 shows mean and standard deviation of the corresponding error distributions per plane for
all three orientation estimation methods with optimal parameter configurations. Additionally, average
execution times per stride for the complete orientation estimation and double integration step are
shown. Fusion of gyroscope with accelerometer data as done in the CFs gives slight to no benefits in
terms of estimation accuracy or precision over gyroscope integration. Based on these results, a ranking
from best to worst performing orientation estimation scheme is given by Madgwick CF→ Gyroscope
Integration→ Euston CF. It is worth noting that the complementary filters need roughly three to five
times longer to evaluate on a single stride. In time-critical application scenarios that involve real-time
computation, gyroscope integration would therefore be the method of choice as the gain in estimation
performance with CFs is only marginal.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.splrep.html#scipy.interpolate.splrep
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5.2. Double Integration

Optimal parameter configuration for the direct and reverse integration scheme are listed in Table 1
and Figure 5b shows the corresponding weighting function h(t). Table 3 shows mean and standard
deviation of the error distributions for all integration endpoints with a cyclic boundary condition.
Results are listed per axis and for all three double integration methods with optimal parameter
configurations. For orientation estimation, the Madgwick CF is used in all three cases as this method
was ranked best in the previous paragraph. Average execution times per stride for the complete
orientation estimation and double integration step are shown as well.

There is large agreement regarding velocity estimation. All methods accomplish this task with
comparable accuracy and precision. However, a difference of over 2 cm in precision is observed
regarding clearance estimation with direct and reverse integration as compared to the two other
methods. A ranking of double integration methods from best to worst performing would therefore
be given by Direct and Reverse Integration→ Direct Integration→ Analytic Integration. Moreover,
there is not much overhead in terms of execution time between direct integration and the top ranked
method as shown in Table 3.

6. Discussion

In order to close a gap in existing literature, three different methods for orientation estimation and
double integration in mobile gait analysis have been implemented and evaluated on a common dataset.
This resulted in a fair comparison of estimation performance between all methods implemented and
the most suitable processing pipeline could be identified.

Regarding orientation estimation, the grid search identified optimal parameter configurations for
both CFs involved. In the Madgwick CF, the adjustable parameter β is closely related to the maximal
gyroscope measurement error ω̃max =

√
4/3 β (see [9] for details). Our optimal configuration of

βopt = 0.046 rad/s corresponds to a maximal measurement error of 3.04◦/s. This order of magnitude
seems reasonable given that the gyroscope was not calibrated on a turntable. In the Euston CF,
the optimal parameter configuration of Kopt

i = 0 rad/s and Kopt
p = 0.0046 rad/s coincides with the

values chosen by Euston et al. [10] who argue that below integration times around 5–10 min, a bias gain
of Ki = 0 is a suitable choice due to the slow dynamics involved. For the direct and reverse integration
used by Trojaniello et al. [16] in the context of mobile gait analysis, no reference values regarding
the weighting function h(t) could be found. However, the optimal shape shown in Figure 5b seems
reasonable. The analytic integration scheme needs a Fourier expansion up to order NFourier = 60 in our
case which also explains the long execution times. Sabatini et al. [17], however, report expansion up to
order 20 with similar reconstruction errors. This is due to a low-pass filter they apply in preprocessing
and that is not part of our pipeline. The cut-off frequency of 25 Hz [17] explains the smaller expansion
order in their Fourier decomposition.

Regarding the actual estimation performance at optimal parameter configurations, the main
difference between orientation tracking methods is observed in the mean error for sagittal plane
angles. Here, the Madgwick CF gives a slightly more balanced error distribution compared to the
other two methods. This slight improvement, however, comes at a cost of roughly four times longer
execution time compared to gyroscope integration. Moreover, gyroscope integration is a parameter-free
estimation technique which ensures much broader applicability. In light of the results presented
above, the straight-forward gyroscope integration method is as valid as more advanced sensor fusion
techniques in the context of single-stride gait analysis.

In the double integration step, differences between methods are more pronounced. Here, a gain
of over 2 cm in precision could be achieved for clearance estimation by using the direct and reverse
integration scheme over the other two methods. In particular, the analytic integration scheme does not
perform better than the direct integration based on numeric integration. Superior performance was
one of the theoretical motivations for the analytic integration scheme, but this could not be verified
in practice.
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Table 2. Mean ± standard deviation of the error distribution for the estimated angles as well as average execution time for all three orientation estimation schemes
with optimal parameter configurations.

Orientation Estimation Scheme Sagittal Plane [deg] Transversal Plane [deg] Frontal Plane [deg] Avg. Exec. Time per Stride [ms]

Gyro Integration 0.62± 2.94 −2.06± 5.29 −1.41± 10.82 6.13
Madgwick CF −0.16± 2.93 −2.04± 5.24 −1.44± 10.83 21.34

Euston CF 0.62± 2.94 −2.06± 5.29 −1.41± 10.82 31.76

735 strides, 16 healthy subjects.

Table 3. Mean ± standard deviation of the error distribution for the estimated velocity/clearance as well as average execution time for all three double integration
schemes with optimal parameter configurations and integration endpoints involving cyclic boundary conditions like the zero-velocity assumption.

Integration Scheme Ant.-Post. Vel. [m/s] Transversal Vel. [m/s] Longitudinal Vel [m/s] Clearance [cm] Avg. Exec. Time per Stride [ms]

Direct Integration −0.11± 0.37 −0.09± 0.69 −0.27± 0.44 0.24± 6.66 20.91
Direct & Reverse Int. −0.09± 0.36 −0.09± 0.70 −0.23± 0.41 −0.84± 3.98 22.33
Analytic Integration −0.10± 0.37 −0.09± 0.69 −0.28± 0.44 0.32± 6.69 101.56

Madgwick CF used for orientation estimation in all three cases. 735 strides, 16 healthy subjects.
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The ranking of orientation estimation and double integration methods given above then identifies
the most suitable processing pipeline for foot trajectory estimation from inertial data: Madgwick CF
for orientation estimation followed by direct and reverse integration for the double integration step.
However, some methods in this work are tuned to achieve best possible performance on the given
dataset. This of course threatens generalization of the results to other datasets and we do not claim that
our dataset is of sufficient size to evade these kind of problems. Nevertheless, orientation estimation
with parameter-free gyroscope integration can be achieved at quite similar accuracy and precision
compared to the other two methods where the parameter configuration is optimised for the current
dataset. Regarding the double integration step, the generalisation of the weighting function h(t) in
the top-ranked direct and reverse integration scheme still needs to be shown. However, first results
on an independent dataset containing 1220 strides from 101 geriatric patients with the parameter
configurations used in this work indicate an identical ranking of double integration methods regarding
stride length estimation performance.

For comparison of estimation performance achieved within this work to other works from
literature, the sensor clearance trajectory represents a useful measure. Kitagawa and Ogihara [14]
report accuracy and precision relative to a motion capture system for three distinct timepoints within
the foot clearance trajectory. Based on 180 strides from 10 healthy subjects, they achieved accuracies
and precisions of −0.8± 5.3 cm, 1.0± 5.1 cm and −1.8± 3.2 cm for the first and second maximum,
as well as the first minimum in the foot clearance trajectory. Mariani et al. [28] provide results of a
similar study, but only report absolute accuracies and precisions. For maximum heel clearance, they
achieve absolute accuracy and precision of 4.1± 2.3 cm based on 378 strides from 12 healthy adults.
The top ranked method described in this work reaches sensor clearance estimation with −0.84± 3.98
cm regardless of the timepoint within the clearance trajectory which corresponds to an absolute
accuracy and precision of 1.97± 3.56 cm. These results are well comparable to the studies presented
above both in terms of estimation performance as well as number of subjects and study population.

Regarding clinical applications of mobile gait analysis systems, the current work is crucial
in determining optimal processing pipelines involved. The clinical use case specifically requires
high precision of the measurement technique and complete understanding of the underlying
mechanisms. This benchmark identifies optimal processing pipelines based on data from healthy
subjects. Acquisition of motion capture referenced patient data and comparison of estimation
techniques in patient populations is therefore part of future work.

In summary, we implemented different methods drawn from literature for orientation estimation
as well as double integration in the context of mobile gait analysis and evaluated their performance
on a common dataset. This closes a gap in existing literature where diverse evaluation datasets make
comparison of results difficult. Fusion of accelerometer data with gyroscope signals for orientation
estimation gives only slight benefits in performance. Addressing cyclic boundary constraints by fusion
of regular and time-reversed integrals, however, increases estimation precision, especially regarding
clearance estimation. Contrary to prior assumptions, analytic integration schemes did not outperform
methods based on numeric integration.
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Appendix A. Representation of Rotations

In this work, rotations in three-dimensional space are represented by quaternions. They can be
seen as a generalization of how complex numbers efficiently describe rotations in the plane. Because
of this ease in notation, quaternions are widely used in applications that depend on efficient treatment
of 3D rotations [8,10,11].

A rotation quaternion consists of a real part and three imaginary parts [29,30]. The imaginary
units are denoted as i, j and k and are omitted when using vector notation:

q = q0 + q1 · i + q2 · j + q3 · k ≡
[
q0, q1, q2, q3

]T
(A1)

The conjugate of a quaternion is obtained by changing the sign of the imaginary parts. In this
work, the conjugate is denoted by a prime:

q′ =
[
q0, −q1, −q2, −q3

]T
(A2)

For quaternions of unit length, the conjugate is identical to the quaternion’s inverse q′ = q−1 [29].
Another way of quaternion notation is to split it into the real part q0 and an imaginary vector part eq

containing the values from q1 to q3. Using this notation, the non-commutative product of two
quaternions is defined as

p⊗ q =
[

p0q0 − ep · eq, (p0eq + q0ep + ep × eq)T
]T

(A3)

An axis-angle rotation around an axis n of unit-length and an angle θ, as shown in Figure A1a,
can be encoded as a quaternion by:

s
wq =

[
cos(θ/2), sin(θ/2) n

]T
(A4)

where the prescript s
w denotes that the rotation aligns coordinate system s with the coordinate system

w as shown in Figure A1b. Quaternion multiplication can be used to transform a vector from the
coordinate system s to w in the following two ways:[

0, vw

]T
= s

wq⊗
[
0, vs

]T
⊗ s

wq′ or vw = R
(

s
wq
)
· vs (A5)

with R
(

s
wq
)
=

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3


Together with (A2), the inverse rotation is obtained by transposing the rotation matrix:

R
( s

wq′
)
= R

( s
wq
)T . Successive rotations from coordinate system a → b → c can be described

efficiently by concatenation of the corresponding transformations

a
cq = b

cq⊗ a
bq (A6)

The order of concatenation needs special attention here due to the non-commutative nature of the
product. Furthermore, the rotation quaternion encodes angles between the corresponding axes in the
two 3D coordinate systems. For our application, the axes x, y and z correspond to anterior-posterior,
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longitudinal and transversal direction. The turning angles around these axes in the frontal, transversal
and sagittal plane are given by αx, αy and αz. They can be calculated as follows:

tan(αx) = 2(q1q2 + q0q3)/ (2(q2
0 + q2

1)− 1)) (A7a)

sin(αy) = 2(q0q2 − q1q3)) (A7b)

tan(αz) = 2(q2q3 + q0q1)/ (2(q2
0 + q2

3)− 1)) (A7c)

a b

Figure A1. (a) 3D-rotation around axis n by angle θ; (b) Alignment of two coordinate systems.

References

1. Chen, S.; Lach, J.; Lo, B.; Yang, G.Z. Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic
Review. IEEE J. Biomed. Health Informat. 2016, 20, 1521–1537.

2. Ellis, T.; Cavanaugh, J.T.; Earhart, G.M.; Ford, M.P.; Foreman, K.B.; Dibble, L.E. Which measures of physical
function and motor impairment best predict quality of life in Parkinson’s disease? Parkinsonism Relat. Disord.
2011, 17, 693–697.

3. Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 2008,
79, 368–376.

4. Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.;
Stern, M.B.; Dodel, R.; et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008,
23, 2129–2170.

5. Saleh, M.; Murdoch, G. In defence of gait analysis. Observation and measurement in gait assessment.
J. Bone Jt. Surg. 1985, 67, 237–241.

6. Robles-Garcia, V.; Corral-Bergantinos, Y.; Espinosa, N.; Jacome, M.A.; Garcia-Sancho, C.; Cudeiro, J.; Arias, P.
Spatiotemporal Gait Patterns During Overt and Covert Evaluation in Patients With Parkinson s Disease and
Healthy Subjects: Is There a Hawthorne Effect? J. Appl. Biomech. 2015, 31, 189–194.

7. Cimolin, V.; Galli, M. Summary measures for clinical gait analysis: A literature review. Gait Posture 2014,
39, 1005–1010.

8. Sabatini, A.M. Quaternion-based strap-down integration method for applications of inertial sensing to gait
analysis. Med. Biol. Eng. Comput. 2005, 43, 94–101.

9. Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a
gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation
Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7.

10. Euston, M.; Coote, P.; Mahony, R.; Kim, J.; Hamel, T. A complementary filter for attitude estimation of a
fixed-wing UAV. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS, Nice, France, 22–26 September 2008; pp. 340–345.

11. Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. 3D gait assessment in young and
elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006.

12. Rebula, J.R.; Ojeda, L.V.; Adamczyk, P.G.; Kuo, A.D. Measurement of foot placement and its variability with
inertial sensors. Gait Posture 2013, 38, 974–980.



Sensors 2017, 17, 1940 17 of 17

13. Rampp, A.; Barth, J.; Schülein, S.; Gaß mann, K.G.; Klucken, J.; Eskofier, B.M. Inertial Sensor-Based
Stride Parameter Calculation From Gait Sequences in Geriatric Patients. IEEE Trans. Biomed. Eng. 2015,
62, 1089–1097.

14. Kitagawa, N.; Ogihara, N. Estimation of foot trajectory during human walking by a wearable inertial
measurement unit mounted to the foot. Gait Posture 2016, 45, 110–114.

15. Zok, M.; Mazzà, C.; Della Croce, U. Total body centre of mass displacement estimated using ground reactions
during transitory motor tasks: Application to step ascent. Med. Eng. Phys. 2004, 26, 791–798.

16. Trojaniello, D.; Cereatti, A.; Pelosin, E.; Avanzino, L.; Mirelman, A.; Hausdorff, J.M.; Della Croce, U.
Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted
magneto-inertial sensors: Application to elderly, hemiparetic, parkinsonian and choreic gait. J. Neuroeng.
Rehabil. 2014, 11.

17. Sabatini, A.M.; Ligorio, G.; Mannini, A. Fourier-based integration of quasi-periodic gait accelerations for
drift-free displacement estimation using inertial sensors. BioMed. Eng. OnLine 2015, 14, 106.

18. Hannink, J.; Kautz, T.; Pasluosta, C.; Barth, J.; Schulein, S.; Gassmann, K.G.; Klucken, J.; Eskofier, B. Mobile
Stride Length Estimation with Deep Convolutional Neural Networks. IEEE J. Biomed. Health Inf. 2017, PP.

19. Hannink, J.; Kautz, T.; Pasluosta, C.F.; Gassmann, K.G.; Klucken, J.; Eskofier, B.M. Sensor-Based Gait
Parameter Extraction With Deep Convolutional Neural Networks. IEEE J. Biomed. Health Inf. 2017, 21, 85–93.

20. Kanzler, C.M.; Barth, J.; Rampp, A.; Schlarb, H.; Rott, F.; Klucken, J.; Eskofier, B.M. Inertial sensor based
and shoe size independent gait analysis including heel and toe clearance estimation. In Proceedings of the
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Milan,
Italy, 25–29 August 2015.

21. Burns, A.; Greene, B.R.; McGrath, M.J.; O’Shea, T.J.; Kuris, B.; Ayer, S.M.; Stroiescu, F.; Cionca, V.
SHIMMERTM—A wireless sensor platform for noninvasive biomedical research. Sensors 2010, 10, 1527–1534.

22. Menant, J.C.; Steele, J.R.; Menz, H.B.; Munro, B.J.; Lord, S.R. Effects of walking surfaces and footwear on
temporo-spatial gait parameters in young and older people. Gait Posture 2009, 29, 392–397.

23. Kugler, P.; Schlarb, H.; Blinn, J.; Picard, A.; Eskofier, B. A wireless trigger for synchronization of
wearable sensors to external systems during recording of human gait. In Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, San Diego, CA,
USA, 28 August–1 September 2012; pp. 4537–4540.

24. Ferraris, F.; Grimaldi, U.; Parvis, M. Procedure for Effortless In-Field Calibration of Three-Axis Rate Gyros
and Accelerometers. Sens. Mater. 1995, 7, 311.

25. Barth, J.; Oberndorfer, C.; Pasluosta, C.; Schülein, S.; Gassner, H.; Reinfelder, S.; Kugler, P.; Schuldhaus, D.;
Winkler, J.; Klucken, J.; Eskofier, B.M. Stride segmentation during free walk movements using
multi-dimensional subsequence dynamic time warping on inertial sensor data. Sensors 2015, 15, 6419–6440.

26. Diebel, J. Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix 2006, 58, 1–35.
27. Dierckx, P. An algorithm for smoothing, differentiation and integration of experimental data using spline

functions. J. Comput. Appl. Math. 1975, 1, 165–184.
28. Mariani, B.; Rochat, S.; Büla, C.J.; Aminian, K. Heel and toe clearance estimation for gait analysis using

wireless inertial sensors. IEEE Trans. Biomed. Eng. 2012, 59, 3162–3168.
29. Hanson, A.J. Visualizing Quaternions; Elsevier Science: Amsterdam, The Netherlands, 2006.
30. Kuipers, J.B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual

Reality; Princeton University Press: Princeton, NJ, USA, 1999.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Dataset
	Methods
	Preprocessing
	Orientation Estimation
	Gyroscope Integration
	Madgwick CF
	Euston CF

	Coordinate Transform
	Gravity Removal
	Double Integration
	Direct Integration
	Direct and Reverse Integration
	Analytic Integration


	Experiments
	Orientation Estimation
	Double Integration

	Results
	Orientation Estimation
	Double Integration

	Discussion
	Representation of Rotations

