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Abstract

Background: Mitochondrial succinate dehydrogenase (SDH) is a component of both the tricarboxylic acid cycle and the
electron transport chain. Mutations of SDHD, the first protein of intermediary metabolism shown to be involved in
tumorigenesis, lead to the human tumors paraganglioma (PGL) and pheochromocytoma (PC). SDHD is remarkable in
showing an ‘imprinted’ tumor suppressor phenotype. Mutations of SDHD show a very high penetrance in man and we
postulated that knockout of Sdhd would lead to the development of PGL/PC, probably in aged mice.

Methodology/Principal Findings: We generated a conventional knockout of Sdhd in the mouse, removing the entire third
exon. We also crossed this mouse with a knockout of H19, a postulated imprinted modifier gene of Sdhd tumorigenesis, to
evaluate if loss of these genes together would lead to the initiation or enhancement of tumor development. Homozygous
knockout of Sdhd results in embryonic lethality. No paraganglioma or other tumor development was seen in Sdhd KO mice
followed for their entire lifespan, in sharp contrast to the highly penetrant phenotype in humans. Heterozygous Sdhd KO
mice did not show hyperplasia of paraganglioma-related tissues such as the carotid body or of the adrenal medulla, or any
genotype-related pathology, with similar body and organ weights to wildtype mice. A cohort of Sdhd/H19 KO mice
developed several cases of profound cardiac hypertrophy, but showed no evidence of PGL/PC.

Conclusions: Knockout of Sdhd in the mouse does not result in a disease phenotype. H19 may not be an initiator of PGL/PC
tumorigenesis.
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Introduction

Succinate dehydrogenase, subunit D (SDHD) is one of four
proteins that together make up the mitochondrial tricarboxylic acid
cycle enzyme, succinate dehydrogenase (SDH). In addition SDH
plays an important role as the complex II component of the electron
transport chain, ultimately leading to the generation of ATP by
oxidative phosphorylation. Combining these roles places SDH at
the center of two essential energy producing processes of the cell.

The identification of SDHD (chromosome 11g23) as a tumor
suppressor gene revealed, for the first time, the involvement of
both a mitochondrial protein and a protein of intermediary
metabolism in tumorigenesis [1]. Mutations of SDHD lead to head
and neck paragangliomas (HN-PGL), mainly benign tumors of the
carotid body and other parasympathetically innervated paragan-
glia, but may also lead to tumors of the adrenal medulla
(pheochromocytoma) and the sympathetically innervated para-
ganglia (extra-adrenal paraganglioma), some developing into
aggressive metastatic cancers. Subsequently, two other subunits
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of SDH, SDHC (chromosome 1q21) [2], and SDHB (chromosome
1p36) [3] were implicated in paragangliomas.

A striking aspect of the natural history of SDHD-linked
paraganglioma is the parent-of-origin inheritance of tumor
susceptibility [4]. In contrast to paraganglioma in SDHB and
SDH(C-linked families, both located on chromosome 1, in SDHD-
linked families and in the recently described SDH5 (SDHAF2)
family [5], only a mutation inherited via the paternal line results in
tumorigenesis. This strongly suggests the involvement of an
imprinted locus in paragangliomas. No evidence exists to support
the idea that these genes, both on chromosome 11, show
monoallelic expression [1,6]. The presence of the main cluster of
imprinted human genes on the same chromosome, at 11p15.5,
suggests a maternally expressed, imprinted gene as a compelling
candidate for a modifier of tumor development. Loss of this gene,
in addition to the maternal SDHD allele, may lead to the initiation
of tumorigenesis. Loss of (maternal) chromosome 11 has been
repeatedly demonstrated [6-8], counterintuitive if the maternal
SDHD allele is imprinted and thus non-functional. This mecha-
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nism will result in a tumor that retains only the mutated paternal
SDHD allele and entirely lacks active copies of all maternally
expressed imprinted genes. Several genes on chromosome 11 are
known to be exclusively maternally expressed including CDENIC,
KCNQI, KCNQIDN, SLC22418, PHLDA2, OSBPL), and HI19. A
well-described gene in the chromosome 11p15.5 region is /19,
which has both a genetic and functional interaction with the

Sdhd and Sdhd/H19 Knockout

lacking the H19 gene and 10kb of the 5’ flanking region [9], with
Sdhd knockout mice to assess effects on tumorigenesis. These mice
were followed in an independent cohort for up to 29 months and
monitored for signs of tumorigenesis.

Results

Generation of Sdhd Knockout Mice

paternally expressed insulin-like growth factor 2 (IGF2) gene. H19
knockout mice are viable and display an overgrowth phenotype
[9] and H19 has recently been shown to be a tumor modifier [10].

Here we report an Sdhd knockout mouse, lacking the entire third
exon of Sdhd, which codes for the bulk of the active protein. This
knockout mouse has been studied as a putative model for
paraganglioma or pheochromocytoma. Tumor cohorts on two
distinct inbred backgrounds were followed for their full life span, and
analyzed in relation to Sdhd-related tumorigenesis, general pathol-
ogy, and subtle hyperplasia of paraganglioma associated tissue.

To test the hypothesis that /779 is the imprinted modifier gene,
we crossed an existing H19 knockout mouse line, A13, entirely

An Sdhd targeting construct was designed in which the major
coding exon of Sdkd, exon 3, was deleted and replaced with the
betaGeo selection-reporter cassette (Figure 1A). The DY380
recombination competent E. coli strain was used in construct
preparation, allowing direct recombination of sub-cloned frag-
ments to generate the final targeting construct. Chimeric founder
mice were crossed to wildtype female 129P2/0Ola and C57BL/6]
mice and germline transmission confirmed by long-range PCR and
RT-PCR (Figure 1, B and C). The origin of wildtype Sdhd
transcripts can be assessed by exon 3 to exon 4 RT-PCR and
Pvull restriction analysis. Digestion with Pvull discriminates
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Figure 1. Generation and analysis of Sdhd-deficient mice. A. Schematic diagram of the strategy used to target the mouse Sdhd locus. The
structure of the endogenous murine Sdhd gene (wildtype allele -wt) is shown in the middle with the targeting vector above and the disrupted allele
below. Genomic DNA is represented by narrow horizontal lines with exons (shaded boxes), orientation of transcription (arrows), translation initiation
and stop codons indicated; Genomic sequences flanking the betaGeo selection-reporter cassette (open box) in the targeting vector are represented
by broad lines. Primers for genotyping (small arrows) and RT-PCR (arrowheads) are indicated below and above their target sequences, respectively.
The dumbbells indicate the location of Southern blot probes used. B. Long-range PCR analysis of Sdhd gene targeting. The 7.1 kb normal allele
amplified by primers LR-F and LR-R1 is present in the wildtype (lane 1) and heterozygous Sdhd knockout mouse (lane 3), whereas the 8.1 kb betaGeo
targeted Sdhd allele amplified by primers LR-F and LR-R2 is present in the heterozygous Sdhd knockout mouse (lane 4) and not in the wildtype (lane
2) M=10kb ladder marker. C. RT-PCR analysis of targeted gene expression. The C57BL/6J wt Sdhd allele is represented by 603bp and 391bp bands,
and a 129P2/Ola wt allele, the 994bp band. Lanes 1 & 2; F1 pups from a C57BL/6J wt x129P2/Ola Sdhd+/— cross show only a single C57BL/6J wildtype
Sdhd allele. Lanes 3, 4 & 5=controls. Lane 3: C57BL/6J wt mouse. Lane 4: 129P2/Ola wt mouse. Lane 5: 129P2/Ola wtxC57BL/6J wt F1 mouse. The
absence of a 129P2/Ola wildtype allele in the F1 offspring of the 129P2/Ola Sdhd+/— xC57BL/6Jwt cross demonstrates that they carry the Sdhd/
betaGeo targeted allele, indicating correct targeting of the 129P2/Ola Sdhd locus. M=100bp marker. D. Routine Sdhd genotyping of pups.
M=marker, lanes 1 & 3; wt mice, primers WT-F & WT-R. Lanes 2 & 4; heterozygote mice, primers WT-F & bG-R.
doi:10.1371/journal.pone.0007987.g001
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129P2/0la and C57BL/6] alleles. The absence of a 129P2/0la
wildtype allele in the F1 offspring of the 129P2/0Ola Sdhd+/— x
C57BL/6Jwt cross confirms correct targeting of the 129P2/Ola
Sdhd locus at the RNA level (Figure 1, C). Routine genotyping was
carried out using PCR analysis (Figure 1, D). Quantitative RT-PCR
analysis of Sdhd expression in several tissues of Sdhd+/— mice
showed that expression is reduced by approximately 50%
(Figure 2).

Heterozygous and Homozygous Gene Knockout of Sdhd

The loss of one allele and thus transcriptional potential of a gene
with such a central role in intermediary metabolism as Sdhd may
be significantly deleterious. Approximately equal numbers of
wildtype and heterozygous Sdkd mice were obtained, indicating
that these mice are fully viable (Table 1). Evaluation of the gross
body weights of Sdhd+/— relative to wildtype littermates revealed
no significant differences, either in males, females or in mice at a
range of ages. Specific tissues, especially those normally showing
high levels of SDH expression, such as heart or kidney, may show
structural abnormalities or exhibit specific limitations in growth.
Examination of these tissues (4 wt vs 4 healthy Sdhd+/— mice)
revealed no differences. Complete lack of SDH/Complex II
activity is unlikely to be compatible with life; therefore viability of
homozygotes was examined. The expected Mendelian genotype
ratios of 1:2:1 were not seen (Table 1). The absence of Sdhd—/—
homozygotes among live offspring indicates that complete loss of
Sdhd results in embryonic lethality.

Embryos isolated at 10.5 days onwards (n =27) were develop-
mentally normal and the genotype was found to be heterozygous.
We conclude that lethality occurs at an earlier stage, in
concordance with the findings of Piruat et ol [11].

Deletion of Sdhd Does Not Result in Tumorigenesis
SDHD is a potent human tumor suppressor gene, heterozygous
missense and nonsense mutations together with loss of heterozy-
gosity (LOH), resulting in tumorigenesis [1]. A cohort was
established to follow tumor development; including 93 mice with
a homogenous 129P2/0la background (62 Sdhd+/— mice and 31
wildtype), and a group of mice from a cross to C57BL/6] (n=25).
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Figure 2. Sdhd expression in heart and kidney of one Sdhd""
and two Sdhd”~ mice. Quantitative RT-PCR results were normalized
to wildtype levels and expressed in arbitrary units. Error bars indicate
95% C.l.

doi:10.1371/journal.pone.0007987.9002
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Table 1. Sex and genotype ratios of Sdhd KO mice.

129P2/Ola F1*

Male Female ++ +/—

n= 106 82 85 93
Ratio 1.3:1.0 0.9:1.0

C57BL/6J F1

Male Female ++ +/—

n= 139 121 138 122

Ratio 1.1:1.0 1.1:1.0

129P2/Ola +/— x+/—

+/+ +— =
n= 52 101 0
Ratio 1.0:2.0:0.0

“not all mice could not genotyped.

Sex and genotype ratios of the offspring of +/— mice backcrossed with
wildtype mice of the 129P2/Ola and C57BL/6J genetic backgrounds are normal.
Absence of live homozygous offspring from the crossing of heterozygous mice
(129P2/0la +/— x+/—) indicates that homozygous loss of Sdhd is not
compatible with life.

doi:10.1371/journal.pone.0007987.t001

Because paraganglioma has a relatively late onset of >40 yrs in
humans, these cohorts were followed for the entire lifespan of the
mice for signs of tumorigenesis and general pathology. No gross
indications of paraganglioma or pheochromocytoma were noted
in any mice, at any age. A single case of approximately five-fold
unilateral carotid body hyperplasia was noted in one Sdhd+/—
mouse at 26 months. The mean age at death of all mice was 19
months (range 4-26 months). Survival curves revealed no
difference in survival between Sdhd+/— and wt mice (Figure 3).
Differentiated survival curves for males and females also showed
no differences based on genotype. Examination of gross tissues and
histological sections from moribund mice revealed a range of
pathologies, but none of the pathology noted occurred significantly
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Figure 3. Kaplan-Meier survival data for the Sdhd+/— and
Sdhd+/+ littermate cohort. Survival is shown as time to sacrifice
(n=93), determined by moribund state. The difference in survival is not
significant (P =ns).

doi:10.1371/journal.pone.0007987.g003
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more frequently in the Sdhd+/— mice. We conclude that no
genotype-specific pathology occurred in this cohort.

No Significant Quantitative Change in the Carotid Body
or Adrenal Medulla

Although no gross changes in the organs associated with
paraganglioma (carotid body) or pheochromocytoma (adrenal
medulla) were noted, the small size of these organs indicates a
quantitative appraisal. Quantitative histological analysis of 39
carotid bodies (1682 serial HE sections) showed a 12% increase in
size of the carotid body in Sdhd+/— mice relative to Sdhd+/+,
though due to wide variation in the size of the carotid body, this
difference was not significant (P=0.19) (Figure 4). The mouse
displaying unilateral hyperplasia described above was excluded
from the analysis. Representative sections of the adrenal medulla
were also quantified in a similar manner and showed a similar but
non-significant increase in total surface area.

Although the total surface area of carotid bodies of Sdhd+/—
mice showed no significant increase in size, a change in the relative
frequency of the cell types that constitute the carotid body would
be significant in the context of neoplasia. To examine this
possibility we quantified total surface area staining for chief cells
using the specific marker, tyrosine hydroxylase (Figure 5). This
analysis gave the same results as those for the HE staining
described above, wt/het ratio 1:1.12 (P= 0.45), showing a trend to
an increase in carotid body size in the heterozygotes but providing
no statistical evidence for chief cell hyperplasia.

H19 as a Modifier of Sdhd
SDHD-linked paragangliomas in man show a striking ‘imprinted’
or parent-of-origin inheritance [4] and we have proposed a model

1,20 -

1,00 -

arbitrary units

0,40 -

0,20 -

0,00 -

+/+ +/-
Genotypes

Figure 4. Relative size of Sdhd+/+ vs. Sdhd+/— mouse carotid
bodies. The Sdhd+/+ to Sdhd+/— ratio was 1.0:1.12 (P =ns). Error bars
indicate 95% C.I.

doi:10.1371/journal.pone.0007987.9g004
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Figure 5. Tyrosine hydroxylase immunohistochemistry of the
carotid body. Pictures are representative for completely serially
sectioned carotid bodies from Sdhd+/+ and Sdhd+/— mice (n=6 carotid
bodies for Sdhd+/+ and 8 for Sdhd+/—). The ratio of Sdhd+/+ vs. Sdhd+/—
TH staining is 1.0:1.12 (P=0.45).
doi:10.1371/journal.pone.0007987.9005

including a maternally-expressed imprinted gene on chromosome 11
in SDHD tumorigenesis [6]. Because the orthologous imprinted locus
in the mouse is located on chromosome 7 and Sdhd on chromosome
9, this mechanism is unlikely in the mouse. Therefore we crossed a
knockout of a candidate imprinted modifier gene, the H79 KO Al3,
to CG57BL/6] Sdhd+/— mice. The resulting cohort consisted of 31
Sdhd+/ —, H19+/— mice with the deletion inherited via the maternal
line, and a similar numbers of controls, including Sdhd+/—; with
HI19+/— wvia the paternal line, and Sdhd wt; HI9+/— via the
maternal line. These mice were followed for their full lifespan of up to
29 months, but showed no pathology specific to the Sdhd+/— defect.
Several cases of striking cardiac hypertrophy were noted but this was
probably related to the genetic background or the defect in H19, also
being seen in the H79%+/— maternal line on an Sdhd wt background.
No changes were noted in the carotid body or the adrenal medulla.

Discussion

In man germline mutation of SDHD shows autosomal dominant
inheritance with a penetrance of approximately 90% at age 70
[12]. In the Sdhd KO mice described here we saw no development
of paraganglioma/pheochromocytoma at any age in two inde-
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pendent cohorts of mice followed for their entire lifespan. This
divergence of genotype-phenotype correlation between man and
mouse is far from unprecedented, and could be the result of any
number of unknown physiological, biochemical or genetic
mechanisms. What we do know is that there are clear differences
in the chromosomal organization of genetic elements between the
two species. While in man chromosome 11 harbours both SDHD
(11g23) and the main locus for imprinted genes (11p15.5), these
genes are on two separate chromosomes in the mouse (imprinted
locus, chromosome 7 and Sdhd, chromosome 9).

The striking parent-of-origin inheritance pattern of SDHD-
linked tumors in man strongly suggests the involvement of an
imprinted locus in paragangliomas. All evidence indicates that
SDHD itself is not imprinted [1], and we have postulated a role for
an imprinted modifier gene on chromosome 11 in SDHD-related
paraganglioma [6]. While SDHD and this modifier can be affected
by whole chromosome loss in man, in the mouse loss of these
genetic elements would require loss of two separate chromosomes,
mtrinsically less likely and perhaps incompatible with cell viability.
The H19-SDHD double knockout included H19 as the postulated
SDHD-modifier, but did not lead to the development of
paragangliomas even after 29 months. The modifier may not be
HI19 but another maternally expressed gene on chromosome 11.
Equally, because there was no tumor development in these mice,
the true role of H19 could not be properly evaluated [10]. While
knockouts of other candidate genes exist, they generally result in
pre- or perinatal lethality, precluding their use in the model
postulated here. Inducible tissue-specific knockouts are not yet
available. It is also worth noting that no case of spontaneous
development of paraganglioma or pheochromocytoma has ever
been reported in mice, perhaps suggesting an intrinsic resistance to
the development of tumors of the paraganglia.

Knockout of orthologous human tumor suppressor genes in
mice often results in the development of tumors of different tissue
origin to that seen in man. Although a number of mice in our
cohorts developed tumors of diverse types, there was no evidence
that knockout of Sdhd was related to their genesis.

Sdhd+/— mice showed no notable differences in fertility, body
mass, organ mass, or gross or histological morphology compared
to wildtype littermates. The loss of one allele of a gene that is so
essential to cellular metabolism might be expected to show some
phenotypic expression, but can evidently be sufficiently compen-
sated by transcription from the remaining allele. Any morpholog-
ical changes of Sdhd+/— mice may be confined to a trend to a
subtle increase in the size of the carotid body and adrenal medulla.
This finding is concordant with a similar finding by Piruat e al
[11], and suggests a subtle deficiency in Sdkd levels.

In conclusion, while the Sdhd+/— mouse described here is not a
model for paraganglioma or pheochromocytoma, the aim to
produce such a model remains valid, and should be further
explored.

Materials and Methods

Ethics Statement

All mouse experiments were approved by the ethics committee
for Animal Experiments of the University of Leiden and by the
Commission Biotechnology in Animals of the Dutch Ministry of
Agriculture. Following granting of ethical approval, all procedures
were carried out in accordance with institutional policies.

Mice

Wildtype mice were obtained from the Harlan UK, Bicester,
England (129P2/0laHsd) and Charles River Laboratories, Irance
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(C57BL/6JIco). H19 A13 KO mice [9] on a C57BL/6]
background were a generous gift of Shirley Tilghman and John
Levorse.

Construction of the Sdhd betaGeo Targeting Vector and
Generation of Knockout Mice

A 129/Sv mouse BAC genomic library was screened for Sdhd
with primers for exon 4 (F 5'-TTGGACAAGTGGTTACCGAC-
TAC-3" and R 5'-ATGGCAACCGCTCTGCAGAT-3") and
primers for exon 1 (F 5'-GCAGGGCTCATCTTTCTC-3" and
R 5-AGCTTTAAGAGAACCGCCAT-3"). Southern blotting,
subcloning, and sequence analysis demonstrated that clone RPCI-
21 560-8A contained the full Sdhd sequence. A targeting vector for
the Sdhd locus was constructed on the basis of pU-Hachi,
containing a SA — IRES - betaGeo cassette [13], (a generous gift
of Dr. Kimi Araki). The betaGeo cassette includes a neomycin
resistance gene and the E. coli betagalactosidase (lacZ) gene. The
main coding exon of Sdkd, exon 3, was replaced by the betaGeo-
IRES-cassette. As the 3’ homologous region, a 6.0-kb fragment
EcoRI/BstZ171 fragment was subcloned, and the 5" homologous
region was a 3.1 kb BgllI/BamHI fragment containing exon 4 of
Sdhd subcloned 3’ of the betaGeo-IRES-cassette. The DY380
recombination competent E. coli strain (a generous gift of Dr.
Shyam Sharan) was used in all following construction steps. After
mntroduction of a zeomycin resistance cassette (from pZero) into
the 3’ homologous region vector, the subcloned fragments were
recombined in DY380 as described by Lee et al [14] and positive
clones screened with PCR and Southern blotting.

129/0la-derived embryonic stem (ES) cells [15] were trans-
fected with the Sdhd-betaGeo targeting vector and screened by
Southern blotting. In addition, X-gal staining for betagalactosidase
activity gave an indication of correct targeting of the promoterless
betaGeo-IRES-cassette to the Sdhd locus in ES cells. Two
separately derived ES cell lines were used to generate the chimeric
founders.

Chimeric mice were produced by injection of targeted ES cells
into 3.5-day-old blastocysts using standard techniques. Germline
transmission of KO alleles was analyzed by Southern blotting, long-
range PCR and RT-PCR, and mice carrying the Sdhd-betaGeo
allele were mated with C57BL/6] or 129P2/OlaHsd mice.
Chimeras generated by ES cell targeting were crossed with
129P2/0la females to transfer the 129P2/Ola-derived Sdhd-
betaGeo construct on a homogenous 129P2/0la background.
Two separate chimeric lines were established. The data presented
here are representative of one chimeric line, although both showed
a similar phenotype. Mating of Sdhd+/— mice to the C57BL/6]
mouse strain and selection for the Sdhd exon 3 deletion generated
C57BL/6]J-129P2/0Ola Sdhd+/ — mice. In contrast to all 129 strains,
the C57BL/6] mouse strain carries a Pvull RFLP in exon 4 of Sdid,
which was used for genotyping. Except where indicated, all
experiments were performed with Sdhd-betaGeo heterozygous mice
and wildtype littermates obtained from matings of male heterozy-
gous animals to wildtype female C57BL/6] or 129P2/OlaHsd
mice. The 129P2/0Ola cohort included 93 mice, and the 129P2/0la
Sdhd+/ — xC57BL/6] F1 cohort 25 mice. Mice were housed ina 12-
h light-dark cycle facility with free access to food and water.

Southern Blotting, Long-Range PCR and Genotyping of
Mice

Southern blotting was carried out using standard methods with
32P-labeled 5" and 3" probes (PCR product of mSdhdex2 primers,
5'-TCCGAAGCCGGGTGGTCAGA-3" and 5'-GGTGGCT-
TGGTGACAGGTGA-3') and (PCR product of mSdhdex4
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primers 5'-TTGGACAAGTGGTTACCGACTAC-3" and 5'-

ATGGCAACCGCTCTGCAGAT-3"). DNA was digested with

EcoRI or HindIII; EcoRI digestion yields a 7.1 kb fragment from

the WT allele and a 6.2 kb allele from the Sdid-betaGeo cassette

with the mSdhdex4 probe, and mSdhdex2 a 3.6kb fragment from

the WT allele and a 3.1 kb allele from the Sdkd-betaGeo cassette.
analysis of Sdhd gene targeting.

A 7.1 kb wildtype allele was amplified by primers LR-F and
LR-R1 whereas an 8.1 kb betaGeo targeted Sdhd allele was
amplified by primers LR-F and LR-R2. Inheritance of Sdhd
wildtype and mutant alleles was monitored by duplex PCR
analyses on genomic DNA obtained from tail biopsies with a trio
of primers specific for wild-type forward WT-F and reverse wild-
type WT-R or reverse mutant alleles bG-R. The three primers
were used with the following amplification conditions: 95°C for
3 min, and 35 cycles of 95°C for 20 sec, 58°C for 20 sec, and
72°C for 20 sec, followed by 5 min at 72°C. Amplification
products were resolved on a 1.8% agarose gel.

RT-PCR Analysis and Real-Time PCR

Total cellular RNA was isolated from indicated adult mouse
tissues using either RNA-Bee reagent (Tel-Test Inc, Texas, USA), or
Trizol (Invitrogen BV, Leek, The Netherlands). lug of RNA was
transcribed into cDNA with MMLV-RT (Invitrogen BV, Leek, The
Netherlands) before being PCR amplified with primers specific for
exon 3, or exon 4, of the Sdhd wildtype allele. Pvull digestion of the
994bp PCR product results in 603bp and 391bp fragments derived
from the C57BL/6 allele and an undigested 1290la fragment. The
following amplification protocol was used: 95°C for 2 min, and 30
cycles of 95°C for 30 s, 58°C for 1 min, and 72°C for 1 min.
Products were loaded onto a 1.2% agarose gel.

For quantitative real-time PCR (qPCR), total RNA was isolated
from mouse heart and kidneys and cDNA generated as above.
Experiments were performed using qPCR Corekits for SybrGreen
or TAQman probes (Eurogentec, Seraing, Belgium). Cycle
threshold (Ct) and starting quantities (SQ) were determined using
the Biorad iCycler software (Biorad, Hercules, CA, USA). Ct and
SQ values were normalised to the expression levels of four
housekeeping genes, ActB, ActG, B2M, and Hprt using the
geNorm program [16]. Statistical analysis (ANOVA) was carried
out using SPSS 10.0 (SPSS Inc., Chicago, IL, USA). Mean Sdhd
expression levels of two Sdhd+/— mice were compared to the
mean levels in two wt littermates. The following primers were
used: ActB (F- 5'-TTCTTTGCAGCTCCTTCGTTGC-3', R-
5'-ACGACCAGC GCAGCGATATC-3") and ActG (F- 5'-
GCACTCTTCCAGCCTTCCTTCC-3', R- 5'-GTAC CACCA-
GACAGCACTG TATTG-3'), B2m, (F- 5-TTCAGTCGC-
GGTCGCTTCAG-3', R- 5'-ATTTGAGGGGTTTTCTG GA-
TAGCA-3', and Hprt (F- 5-AGTCCCAGCGTCG TGAT-
TAGC-3', R- 5'-GAGCAAGTCTT TCAGTCCTGTCC-3").
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Sdhd primers were (F- 5'-CGAAAGCGACATGGCGGTTC-3/,
R- 5'-GGTCCTGGAGAAATGCTGACAC-3").

Pathology and Histochemistry

On sacrifice of mice, a necropsy was performed and the weight
and general condition of the animal noted. The condition and
weight of organs was noted, and diseased tissue removed, fixed in
10% phosphate-buffered formalin, dehydrated, and embedded in
paraffin. 10-um sections were stained with haematoxylin-eosin
according to standard protocols. An investigator and a qualified
pathologist examined the sections and a histopathological
diagnosis was noted in case of abnormal findings.

For carotid body histochemistry and quantification, carotid
bifurcations were removed bilaterally from wildtype and Sdhd-
betaGeo heterozygous mice, fixed in 10% phosphate-buffered
formalin, dehydrated, and embedded in paraffin. A series of
carotid bodies (n=39) were completely sectioned in 7-um serial
sections (n =40-60 per CB) and stained with haematoxylin-eosin
according to standard protocols. Sections were photographed
under a 10X objective and the total surface area of the carotid
body quantified using Image J software (NIH, USA).

For quantitative immunohistochemistry, bilateral carotid bifur-
cations were removed from 6 wildtype and 6 Sdhd+/— mice, fixed
in 10% phosphate-buffered formalin, dehydrated, and embedded
in paraffin. The entire carotid body in 7-um serial sections was
stained with an antibody specific for tyrosine hydroxylase (TH)
(P40101-0. PelFreez, Arkansas, USA). Slides were incubated with
the primary antibody (1:500 dilution, o/n), followed by an anti-
rabbit HPO secondary antibody for 30 min. Serial sections were
photographed under a 10 x objective and series quantified for total
surface staining of TH in the carotid body using Image ] software.
Beta-galactosidase staining was on fresh tissue or frozen sections,
fixed for 10 min in a 0.2% phosphate buffered glutaraldehyde
solution (pH 7.4) containing 5 mM EGTA and 2 mM MgCI2.
Beta-galactosidase activity was detected with 5-bromo-4-chloro-3-
indolyl beta-D-galactopyranoside (X-gal) under standard condi-
tions, followed optionally by counterstaining with Nuclear Fast

Red.
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