
BMP3 expression by osteoblast lineage cells is regulated
by canonical Wnt signaling
Shoichiro Kokabu1,2,3 and Vicki Rosen1

1 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA

2 Division of Molecular Signaling and Biochemistry, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Japan

3 Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Saitama Medical University, Moroyama-machi, Iruma-gun, Japan

Keywords

osteoblast; osteoblastogenesis; osteocyte;

osteopenia; osteoporosis; regenerative

medicine

Correspondence

S. Kokabu, Division of Molecular Signaling

and Biochemistry, Department of Health

Promotion, Kyushu Dental University, 2-6-1

Kokurakita-ku, Kitakyushu, Fukuoka

803-8580, Japan

Fax: +81 93 285 6000

Tel: +81 93 285 3048

E-mail: r14kokabu@fa.kyu-dent.ac.jp

(Received 27 September 2017, revised 28

October 2017, accepted 2 November 2017)

doi:10.1002/2211-5463.12347

Bone morphogenetic protein (BMP) and canonical Wnt (cWnt) signaling

factors are both known to regulate bone mass, fracture risk, fracture

repair, and osteoblastogenesis. BMP3 is the most abundant BMP and neg-

atively regulates osteoblastogenesis and bone mass. Thus, identifying the

mechanism by which BMP3 acts to depress bone formation may allow for

the development of new therapeutics useful in the treatment for osteopenia

and osteoporosis. Here, we report that cWnt signaling stimulates BMP3

expression in osteoblast (OB) lineage cells. The expression of BMP3

increases with OB differentiation. Treatment of cells with various cWnt

proteins stimulated BMP3 expression. Mice with enhanced cWnt signaling

had high expression levels of BMP3. Our data suggest that reduction in

BMP3 levels may contribute beneficially to the positive effect of cWnt ago-

nists on bone mass.

Osteoporosis is a skeletal disease characterized by low

bone mass and microarchitectural deterioration of bone

tissue with a consequent increase in bone fragility and

susceptibility to fracture [1]. In 2010, more than 10 mil-

lion Americans over the age of 50 had osteoporosis with

another 43 million Americans at risk for the disease [2].

It is estimated that greater than 1.5 million fragility

fractures occur each year, with an annual healthcare

cost of at least 14 billion US dollars [3]. By 2025, the

healthcare expenditures for osteoporotic fractures will

approach 25.3 billion US dollars [4], highlighting the

need for new therapies aimed at preventing the bone loss

that normally occurs with aging [5].

Bone morphogenetic protein (BMP) and canonical

Wnt (cWnt) signaling-related molecules are known to

regulate bone mass, fracture risk, fracture repair, and

osteoblastogenesis. Generalized loss of endogenous

BMP activity in postnatal mice through overexpression

of BMP antagonists by osteoblast (OB) lineage cells

leads to osteopenia, bone fragility, and spontaneous

fracture [6–8]. Mice lacking BMP2 are unable to main-

tain adequate bone formation after birth [9], while

short-term systemic administration of BMP2 has been

reported to reverse bone loss in osteopenic mice [10].

Canonical Wnts are secreted proteins that signal

through Lrp and Frizzled coreceptor complexes to stabi-

lize intracellular pools of b-catenin and activate Tcf/Lef-

dependent gene transcription [11]. A large number of stud-

ies have examined the utility of enhancing cWnt signaling

as means of promoting bone regeneration. LiCl treatment,
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through activation of cWnt signaling, improves fracture

repair in mice, as does targeted inhibition of the Wnt path-

way antagonists sFRP1, DKK1, or sclerostin [12–14].
BMP3 is the most abundant BMP within bone

matrix and accounts for approximately 65% of the

total BMP content in demineralized bone [15,16]. It is

mainly secreted by OBs and osteocytes [17]. Adult

mice lacking BMP3 have increased bone mass, while

mice with increased BMP3 levels in bone show delayed

endochondral ossification with spontaneous rib frac-

tures [18,19]. These phenotypes fit to BMP3 function;

BMP3 suppresses OB differentiation by repressing

BMP-Smad signaling via interaction with activin

receptor 2b (Acvr2b) in vitro [17].

Thus, identifying the mechanism by which BMP3

acts to depress bone formation may allow for the

development of new therapeutics useful in the treat-

ment for osteopenia and osteoporosis. However, as

BMP3 is not a signaling molecule but acts as a recep-

tor antagonist, we cannot identify downstream targets

of BMP3 signaling. Instead, we need to focus on regu-

lators that are upstream of BMP3 [20]. Here, we

report that cWnt signaling is upstream of BMP3 and

stimulates BMP3 expression in OB lineage cells.

Materials and methods

Collection of osteoblast lineage cells

Primary bone marrow stromal cells (BMSCs) were collected

from femurs and tibias of 6-week-old wild-type C57BL/6J

mice or heterozygous BMP3 LacZ-knock-in reporter mice

[17]. Primary calvarial OBs were harvested by sequential

collagenase digestion from natal wild-type C57BL/6J mice,

heterozygous BMP3 LacZ-knock-in reporter mice, or

heterozygous DKK1-knockout mice. Osteocytic cells

(OCYs) were enriched by sequential collagenase digestion

as reported previously [21,22].

Cell culture

Bone marrow stromal cells and OBs were treated with OB

differentiation medium containing 50 lg�mL�1 ascorbic

acid and 10 mM b-glycerophosphate for 0, 7, or 14 days

[23]. BMSCs, OBs, OCYs, or 8-week-old male mice femoral

bones were treated with 100 ng�mL�1 recombinant human

BMP2 (R&D Systems, Minneapolis, MN, USA), several

concentrations (0, 10, 20, 50, 100, or 200 ng�mL�1) of

rhWnt3a (R&D Systems), 100 ng�mL�1 rhDkk1 (R&D Sys-

tems), 100 ng�mL�1 rhWnt1 (R&D Systems), 100 ng�mL�1

rhWnt5a (R&D Systems), 10 lM KCl (Sigma Aldrich

Chemicals, St. Louis, MO, USA), or 10 lM LiCl (Sigma

Aldrich Chemicals) for 1 day. HEK293T cells were main-

tained and cultured as reported previously [24].

Administration of bromoindirubin oxime BIO and

analysis of femoral bones from mice

Bromoindirubin oxime (BIO; Sigma Aldrich Chemicals) or

control vehicle was administered intraperitoneally into 8-

week-old wild-type male mice (0.75 mg�kg�1 IP 3 times

over 9) [25]. Mice were sacrificed at 1 day after last BIO

injection. Femoral bones were collected. Animal protocols

were approved by the Harvard Medical Area Institutional

Animal Care and Use Committee (Protocol #04043 to

V.R.)

Ectopic bone formation assay

The bone formation effects induced by BMP2 in vivo were

examined using an ectopic bone formation assay [26].

rhBMP2 (R& D Systems) (1 lg) were blotted onto a colla-

gen sponge disk (6 mm diameter, 1 mm thickness) made

from commercially available bovine collagen sheets (Helis-

tat, Integra LifeSciences, Plainsboro, NJ, USA), freeze-

dried, and maintained at �20 until being implanted into

the mice. All procedures were performed under sterile con-

ditions. The mice were anesthetized using pentobarbital

(Kyoritsu Seiyaku, Tokyo, Japan), and collagen pellets

were surgically implanted into dorsal muscle pouches (2

pellets/animal) of the mice (8 weeks old).

RNA isolation and quantitative real-time PCR

Total RNA was isolated from cells using Trizol (Invitro-

gen, Carlsbad, CA, USA) and then reverse-transcribed into

cDNA using Transcriptor First Strand cDNA Synthesis

Kit (Roche, Basel, Switzerland). The cDNA was amplified

by quantitative real-time PCR (qPCR) using primers speci-

fic for murine BMP3 (forward, tctcccaagtcatttgatgct;

reverse, gcgtgatttgatggtttcaa), murine osteocalcin (OC) (for-

ward, agactccggcgctacctt; reverse, ctcgtcacaagcagggttaag),

murine SOST (forward, caggagaggaagcttgagtcc; reverse,

agggtagaaagacccccatc), murine DKK1 (forward, ccgggaac

tactgcaaaaat; reverse, ccaaggttttcaatgatgctt), murine alka-

line phosphatase (ALP) (forward, cggatcctgaccaaaaacc;

reverse, tcatgatgtccgtggtcaat), and b-actin (forward, aaggc

caaccgtgaaaagat; reverse, gtggtacgaccagaggcatac). qPCR

was performed in 96-well plate using Fast Start Universal

SYBR Green Master (Roche) with iCycler Multicolor

Real-Time PCR Detection system (BIO-RAD, Richmond,

CA, USA) [27]. Values were normalized to b-actin using

the 2-DDCt method [28].

b-Galactosidase activity, cell transfection, and

luciferase activity

b-Galactosidase activity was determined by the Beta-Glo

Assay System (Promega, Madison, WI, USA) according to

the manufacturer’s instructions. HEK293T cells were
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transfected with plasmids using Lipofectamine 3000 (Invit-

rogen) according to the manufacturer’s instruction. Lucifer-

ase assays were performed using pGL4.26- or pGL4.26-

containing R2 luciferase plasmid and phRL-SV40 (Pro-

mega) with the Dual-Glo Luciferase Assay System (Pro-

mega) as previously described [17].

Chromatin immunoprecipitation assay

ChIP was performed with a ChIP assay kit (Cell signaling,

Beverly, MA, USA) according to the manufacturer’s

instructions using anti-b-catenin rabbit polyclonal antibody

(#9562; Cell Signaling) and normal rabbit IgG (MBL,

Aichi, Japan). The purified DNA was analyzed by PCR

using primers. The primer pairs for R1 (forward, TCA

GTA TGT CTT GCT GGC GA; reverse, TTT TAT TAC

CCG ACA CAG GTG), R2 (forward, TGT GAC TAT

GGG TGA TGG AG; reverse, TTG CCA TTT GTT TAC

TTT CTC C), or R3 (forward, GCT GCA AGG ACA

TTT CAC AC; reverse, GAG AGG CTC CAA TGA GAT

CA).

Western blot analysis

The following antibodies were used for western blot analy-

sis: anti-BMP3 mouse monoclonal antibody (C-9, sc390046;

Santa Cruz, Santa Cruz, CA, USA), anti-b-catenin rabbit

polyclonal antibody (#9562; Cell Signaling), and anti-b-
actin mouse monoclonal antibody (Sigma Aldrich Chemi-

cals).

In silico experiments

DNA sequences were aligned using BLASTN [29] version

2.2.26� or ECR Brower [30] through the respective online

servers or locally using MUSCLE in MEGA5 software [31]. The
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Fig. 1. The expression of BMP3 increases with OB differentiation. BMSCs (A–C) and primary calvarial OBs (D–G) were treated with OB

differentiation medium containing 50 lg�mL�1 ascorbic acid and 10 mM b-glycerophosphate. The messenger RNA levels of BMP3 (A, D),

ALP (B), OC (C, E), SOST (F), and DKK1 (G) were determined by qPCR on 0, 7, or 14 days (A–G). One microgram of BMP2 was implanted

subfacially to induce ectopic bone formation in wild-type mice (each time course n = 4). After 0, 10, or 20 days, the implants were removed

and examined using soft X-ray analysis. Represented pictures were shown. Scale bar corresponds to 5 mm (H). After 0, 10, or 20 days, the

implants were determined for the expression levels of BMP3 (I) and OC (J) by qPCR. The data are expressed as the mean � SD (n = 3).

**P < 0.01, versus 0 day.
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consensus sequence upstream of Bmp3 was constructed

using the Los Alamos National Laboratory’s Simple Con-

sensus Maker (http://www.hiv.lanl.gov/content/sequence/

CONSENSUS/consensus.html) using ‘Output aligned’

parameter. For the identification of transcription factor

binding sites, DNA sequences were first aligned using ZPIC-

TURE [32].

Plasmids

Sequences corresponding to specific regions upstream of

murine Bmp3-R2 [chr5:98846288–98846834 (547 bp)] were

amplified and cloned into the promoter-firefly luciferase

reporter vector pGL4.26 (Promega). Mutant Bmp3-R2

plasmid was generated using the following specific primer:

50-ctaaaatgctaattttggttttttttgagtcctgtgactatgggt-30 (mutation

underlined). All of the final constructs were confirmed by

sequencing.

Statistical analysis

Comparisons were made on at least three independent

experiments using an unpaired ANOVA with Tukey–

Kramer post hoc test and Wilcoxon’s signed rank test. The

results are shown as the mean � SD. The statistical signifi-

cance is indicated as follows: **P < 0.01 and *P < 0.05.

Results

The expression of BMP3 increases with

osteoblast differentiation

BMP3 is highly expressed by OBs and osteocytes, but

very low in BMSCs and mesenchymal stem cells resid-

ing in the periosteum, which are progenitor cells for

OBs and osteocytes [17]. Thus, we monitored the

expression levels of BMP3 in the process of OB differ-

entiation and maturation in vitro. BMP3 expression in

BMSCs and primary calvarial OBs increased during

the process of OB differentiation and subsequent mat-

uration (Fig. 1A,D). This increased BMP3 expression

correlates with the expression levels of OB marker

genes including ALP, OC, and the cWnt signal inhibi-

tors such SOST (gene coding sclerostin) and DKK1

(Fig. 1B,C,E–G). BMP3 expression also increased
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Fig. 2. Wnt3a stimulates the expression levels of BMP3 in OB lineage cells. BMSCs (A) or OBs (B) from wild-type mice were treated with

control vehicle, 100 ng�mL�1 rhBMP2, or 100 ng�mL�1 rhWnt3a for 1 day. BMSCs (C) or OBs (D) were treated with 0, 10, 20, 50, 100, or

200 ng�mL�1 rhWnt3a. b-Galactosidase activities were determined in BMSCs (E) and OBs (F) from heterozygous BMP3 LacZ-knock-in

reporter mice on 1 day. OCYs (G) or femoral bones removed bone marrows (H) were cultured with or without 100 ng�mL�1 rhWnt3a. The

messenger RNA levels of BMP3 were determined by qPCR on 1 day (A–D and G, H). The data are expressed as the mean � SD (n = 3).

**P < 0.01, *P < 0.05 versus control vehicle treatment (A–H).
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during BMP2-mediated ectopic bone formation in

skeletal muscle tissue (Fig. 1H–J).

cWnt signaling regulates BMP3 expression in

osteoblast lineage cells

Canonical Wnts and BMPs are produced by OB lin-

eage cells and regulate osteoblastogenesis through sev-

eral complex interactions [33]. When we examined the

effect of BMP2 or Wnt3a on BMP3 expression, we

found that Wnt3a induced the mRNA levels of BMP3

in BMSCs and OBs, in a dose-dependent manner, in

contrast to BMP2 (Fig. 2A–D). Using BMSCs or OBs

obtained from BMP3-LacZ mice as a system to mea-

sure BMP3 levels, we found that Wnt3a greatly

increases BMP3 production (Fig. 2E,F). When osteo-

cytes and bone marrow flushed from femurs, which

contained a large number of OBs and osteocytes, were

treated with Wnt3a (Fig. 2G,H), the expression levels

of BMP3 also increased, suggesting that Wnt3a regu-

lates BMP3 expression in OB lineage cells.

Not only cWnt but also noncanonical Wnts are

important for bone metabolism [34]. We next exam-

ined whether other Wnts or the factors modulating

Wnt signaling affect BMP3 expression. Wnt1, another

cWnt, and with LiCl, an inhibitor of GSK3b also
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induced BMP3 expression, while treatment with

Wnt5a, an activator of noncanonical Wnt signaling,

had no effect on BMP3 expression. Furthermore, treat-

ment of OBs with Dkk1, a potent cWnt signaling inhi-

bitor, reduced basal levels of BMP3 (Fig. 3A–C). We

previously reported the region from 0 to �0.8 kbp

upstream of bmp3 in mammals containing promoter by

comparative genomics and functional analyses [20]. By

same strategy, we used ECR Browser [32] to identify

regions of nucleotide conservation between Homo sapi-

ens (humans) and Mus musculus (mouse). We focused

on murine chromosome 5 from position 98802021 to

position 98855113, which corresponds to the entire

region between the annotated murine BMP3 transcrip-

tional start site and the nearby 1700007G11Rik open

reading frame (Fig. 3D), because, in general, the cis-

regulatory regions reside at upstream of transcriptional

start of the genes [20]. This revealed that seven evolu-

tionarily conserved regions (ECRs; ≥ 77% homology

between humans and mouse) were identified and R1

(located at �12 kb), R2 (�8 kb), and R3 (�1.6 kb)

contain putative Tcf/Lef binding sequences (Fig. 3D).

ChIP analysis demonstrated that endogenous b-catenin
binds to R2 region when the cells were treated with

Wnt3a (Fig. 3E). Furthermore, the luciferase reporter-

containing R2 region responded to Wnt3a and its

activity increased (Fig. 3F), suggesting that at least in

part cWnts–b catenin signaling directly regulates

BMP3 expression via R2 region.

Enhanced cWnt signaling has high expression

levels of BMP3 in mice

We finally examined whether the BMP3 expression

increased in cWnt enhancing model in vivo. The

expression levels of BMP3 were found to be increased

in OBs from DKK1 heterozygous-knockout mice,

resulting in enhanced cWnt signaling and increased

bone mass [35] (Fig. 4A). The inhibition of GSK3b by

BIO injection increased mRNA levels of BMP3 and

Axin2, which is direct target gene of cWnt signaling

(Fig. 4B,C). Administration of BIO also stimulated the

expression levels of b-catenin and BMP3 in femoral

bone in vivo (Fig. 4D).

Discussion

In this report, we demonstrated that the BMP and

cWnt signaling pathways interact at the level of

BMP3. BMP signaling and cWnt signaling are essen-

tial for osteoblastogenesis, and crosstalk between both

signaling is known. cWnt signaling stimulates the

transactivation of BMP2 through the Tcf/Lef response

elements in the BMP2 promoter [36]. Activation of

Wnt signaling also induces expression of BMP family

members including BMP2, BMP4, and BMP7 and

increases expression of BMP target genes such as Msx

and gremlin in the mesenchyme [37]. cWnt signaling

also enhances BMPs expression in C3H10T1/2 cells
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[38,39]. In contrast, some in vitro studies demonstrated

that BMPs induce cWnts in C2C12 cells and primary

OBs [40,41]. However, BMP signaling upregulates scle-

rostin and DKK1 expression, leading to an inhibition

of cWnt signaling and a decrease in bone mass [42–
44]. Thus, interpretation of crosstalk between BMPs

and cWnts is sometimes controversial, and these physi-

ological roles are still largely unknown. Our finding

provides novel insights into the nature of functional

crosstalk integrating the BMP and cWnt pathways in

OB differentiation and skeletal homeostasis.

BMP3 is negative regulator of osteoblastogenesis

and bone mass acting as acvr2b antagonist [17,18,45].

Administration of Acvr2bFc, a second soluble type II

Acvr2b decoy, also leads to an increased bone forma-

tion in adult mice [46]. The importance of cWnt signal-

ing in bone is well documented, and in general,

increasing cWnt signaling correlates with enhanced

bone formation through increased differentiation and

maturation of OBs. More recently, neutralizing anti-

bodies targeting antagonists of the cWnt pathway,

such as SOST and DKK1, have entered clinical trials

as systemic agents that enhance bone formation [11].

Taken together, the induction of BMP3 by cWnt

seems to be negative feedback mechanism in the aspect

of osteoblastogenesis and bone formation, suggesting

that reducing BMP3 levels may provide an additional

benefit to increasing bone mass using agents that

enhance cWnt signaling. Needless to say, it is impor-

tant to establish animal model and analysis. In conclu-

sion, cWnt signaling upregulates BMP3 expression in

OB lineage cells.
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