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Loss of white matter (WM) integrity contributes to subcortical vascular mild cognitive
impairment (svMCI). Diffusion tensor imaging (DTI) has revealed damage beyond the
area of WM hyperintensity (WMH) including in normal-appearing WM (NAWM); however,
the functional significance of this observation is unclear. To answer this question, in this
study we investigated the relationship between microstructural changes in the WMH
penumbra (WMH-P) and cognitive function in patients with svMCI by regional tract-
based analysis. A total of 111 patients with svMCI and 72 patients with subcortical
ischemic vascular disease (SIVD) without cognitive impairment (controls) underwent DTI
and neuropsychological assessment. WMH burden was determined before computing
mean values of fractional anisotropy (FA) and mean diffusivity (MD) within WMHs and
WMH-Ps. Pearson’s partial correlations were used to assess the relationship between
measurements showing significant intergroup differences and composite Z-scores
representing global cognitive function. Multiple linear regression analysis was carried out
to determine the best model for predicting composite Z-scores. We found that WMH
burden in the genu, body, and splenium of the corpus callosum (GCC, BCC, and SCC
respectively); bilateral anterior, superior, and posterior corona radiata; left sagittal stratum
was significantly higher in the svMCI group than in the control group (p< 0.05). The WMH
burden of the GCC, BCC, SCC, and bilateral anterior corona radiata was negatively
correlated with composite Z-scores. Among diffusion parameters showing significant
differences across the 10 WM regions, mean FA values of WMH and WMH-P of the BCC
were correlated with composite Z-scores in svMCI patients. The results of the multiple
linear regression analysis showed that the FA of WMH-P of the BCC and WMH burden
of the SCC and GCC were independent predictors of composite Z-score, with the FA
of WMH-P of the BCC making the largest contribution. These findings indicate that
disruption of the CC microstructure—especially the WMH-P of the BCC—may contribute
to the cognitive deficits associated with SIVD.

Keywords: subcortical vascular mild cognitive impairment, white matter hyperintensities, normal-appearing white
matter, penumbra, diffusion tensor imaging
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INTRODUCTION

Age-related cognitive impairment (CI) is a significant public
health concern that will become increasingly prevalent with
the aging of the global population (Iadecola et al., 2019;
Kaneshwaran et al., 2019). CI of vascular etiology is the second
leading cause of cognitive deficits after Alzheimer’s disease
(AD) worldwide, and may be the predominant cause in East
Asia (Iadecola et al., 2019; Lam and Mok, 2019). Vascular
cognitive impairment (VCI) is a syndrome that encompasses a
wide spectrum of cognitive disorders associated with vascular
disease (Gorelick et al., 2011, 2016; van der Flier et al., 2018).
Subcortical VCI (SVCI), which is attributable to cerebral small
vessel disease, accounts for approximately 50%–70% of VCI
cases and ranges from subcortical vascular mild cognitive
impairment (svMCI) to subcortical vascular dementia (SVaD;
O’Brien et al., 2003; Lee et al., 2014; Shi and Wardlaw, 2016).
Themechanisms of brain injury in SVCI include vessel occlusion,
leakage of toxins, impaired vascular reactivity, decreased
clearance of waste products, oligodendrocyte dysfunction,
increased oxidation, and inflammation (Wardlaw et al., 2013).
Treatment options for SVCI are limited and disease-modifying
therapies are not yet available; reliable biomarkers for early
diagnosis and disease monitoring are therefore urgently needed
(Fu et al., 2019; Sang et al., 2020). A prodromal stage of
SVaD has been recognized based on the observation that
the progression from svMCI to SVaD can be prevented
by managing risk factors and through drug treatments
(Seo et al., 2010; Lee et al., 2014; Jung et al., 2018).

White matter hyperintensity (WMH) is the most common
and critical magnetic resonance imaging (MRI) finding of
SVCI (Moran et al., 2012; Wardlaw et al., 2013), and is
caused by microvessel disruption, breakdown of the blood–brain
barrier, small infarcts in white matter (WM), glia activation,
loss of oligodendrocytes, and demyelination caused by chronic
diffuse hypoperfusion or reduced cerebral blood flow (Pantoni,
2010; De Silva and Miller, 2016). The location and extent of
WMH have been linked to CI (Papp et al., 2014; Altermatt
et al., 2019; Lampe et al., 2019). In a previous study, tissue
damage was observed to extend from WMHs to larger adjacent
areas of normal-appearing WM (NAWM; Promjunyakul et al.,
2016), suggesting an ischemic mechanism underlying WMH
expansion. Furthermore, changes in NAWM were found to be
associated with a decline in cognitive function as determined
by diffusion tensor imaging (DTI; Huang et al., 2007; Papma
et al., 2014; Hirsiger et al., 2017). NAWM surrounding WMHs
that can only be detected on a microstructural level is referred
to as the WMH-penumbra (WMH-P; Maillard et al., 2011);
neuroimaging studies have revealed damage below the detection
threshold in these non-lesioned WM areas (Promjunyakul
et al., 2015, 2016; Wu et al., 2019). WMH does not fully
explain the neuroimaging correlates of cognitive decline in
SVCI, as histopathologic alterations in the WMH-P can
also lead to CI (Simpson et al., 2007; Gouw et al., 2011;
Promjunyakul et al., 2015); however, as these changes are
subtle, it may be possible to prevent their aggravation through
early intervention.

The pathology of SVCI involves structural abnormalities
in WM that contribute to a disconnection syndrome and
are correlated with loss of cognitive function (López-Gil
et al., 2014; Tuladhar et al., 2016). Loss of WM tract
integrity in SVCI has been observed by neuroimaging. For
example, microstructural damage in the anterior corpus callosum
(CC), internal and external capsules, and periventricular
WM has been demonstrated in SVCI by tract-based spatial
statistics (TBSS; Papma et al., 2014; Holland et al., 2015;
Chen et al., 2018; Wang et al., 2020), which also revealed
significant associations between microstructural changes in
WM tracts underlying intra-and inter-hemispheric cerebral,
thalamocortical, and cerebello-thalamic connections—including
the CC and corona radiata—and cognitive performance (van
der Holst et al., 2018; Mascalchi et al., 2019). An automated
fiber quantification (AFQ) study found that changes in diffusion
characteristics—especially in the right inferior fronto-occipital
fasciculus and right inferior longitudinal fasciculus—may be
involved in WMH-related MCI (Chen et al., 2020). However,
AFQ can only analyze the central portion ofWM fiber tracts, and
cannot therefore exclude the contribution of other portions to
CI; moreover, it does not allow tracing of all the fiber bundles
in the human brain. TBSS can only be used to analyze voxels
on the skeleton with the highest fractional anisotropy (FA),
which also excludes a large part of the WM (Roine et al., 2015).
Additionally, neither AFQ nor TBSS can be used to detect WMH
or its penumbra in fibers.

In this study, we combined region-of-interest (ROI) and tract-
based analyses to explore changes in WM microstructure in
svMCI and their association with cognitive function. ROI and
tract-based DTI analyses allow the parcellation of WM into
pathways associated with specific functions, thereby allowing
disease processes to be analyzed in terms of functional systems,
which is an advantage over other methods (Liu et al., 2019;
Chen et al., 2020). We aimed to characterize DTI changes in
WMH andWMH-P of WM fiber bundles in order to explore the
relationship between progressive damage to WMmicrostructure
and decline in cognitive performance. We hypothesized that
microstructural abnormalities reflected by WMH or NAWM
(WMH-P) in specific WM fibers contribute to cognitive deficits
in svMCI.

MATERIALS AND METHODS

Participants
This research was approved by the Research Ethics Committee
of Renji Hospital, School of Medicine, Shanghai Jiao Tong
University. Signed, informed consent was obtained from each
subject before their enrollment. All procedures were carried out
in accordance with institutional guidelines.

SIVD patients (age range: 50–88 years) were recruited from
the Neurology Department of Renji Hospital between January
2017 and December 2019. SIVD was defined as the presence
of a subcortical WMH lesion with at least 1 lacunar infarct by
neuroimaging (Erkinjuntti et al., 2000; Galluzzi et al., 2005). The
patients were divided into two groups—svMCI (n = 111) and
non-CI (control, n = 72)—according to previously published
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criteria (Petersen et al., 1999). The inclusion criteria were
subjective cognitive complaints reported by the patient or
caregiver; normal activities of daily living; quantifiable CI in 1 or
more domains (memory, attention-executive function, language,
or visuospatial function); and no dementia. The control group
had neuropsychological test scores within the normal range
and was matched to the svMCI group in terms of age, sex
ratio, and education level. Exclusion criteria were as follows:
dementia; neurodegenerative diseases (e.g., Parkinson’s disease
or AD); severe brain atrophy, intracranial space-occupying
lesions, microbleeds or hemorrhage revealed by susceptibility-
weighted imaging; non-SVD-related WMH mimics (e.g.,
multiple sclerosis); psychiatric disease interfering with cognitive
testing; alcoholic encephalopathy; recent or current use of
certain drugs such as acetylcholine-esterase inhibitors, L-
dopa, or neuroleptic agents; and MRI contraindications or
known claustrophobia. Early SVCI is characterized by deficits
in executive functioning or information processing speed
with relatively intact retentive memory, and is less likely to
produce subjective complaints; in contrast, AD or mixed CI
are associated with memory problems. Thus, participants
with memory complaints were excluded. All the patients were
right-handed.

Neuropsychological Assessment
All subjects underwent a battery of standardized
neuropsychological evaluations carried out by an experienced
neurologist (QX) within 1 week after the MRI scan. None of the
subjects experienced transient ischemic attack or stroke in the
interval between the MRI scan and neuropsychological testing.
General cognitive function was evaluated with the Mini-Mental
State Examination (MMSE) and Montreal Cognitive Assessment
(MoCA). Additionally, the following tests were used to evaluate
four specific cognitive domains as described in a previous study
(Xu et al., 2014): (1) attention and executive function: Trail-
Making Tests A and B, Stroop color-word test (Stroop C-T),
and verbal fluency test; (2) visuospatial function: Rey-Osterrieth
Complex Figure Test (copy); (3) language function: Boston
Naming Test (30 items); and (4) memory function: auditory
verbal learning test (short and long delayed free recall). The
reference value (norm) used for each measurement was based
on the mean score, which was determined from a small-scale
pilot study conducted in Shanghai, China (Guo et al., 2007).
Cognitive dysfunction was defined as −1.5 standard deviation
(SD) relative to the normal value for at least 1 test item. To
calculate performance on each cognitive domain, the raw score
was transformed to a Z-score. Global cognitive function was
represented by the composite Z-score, which was calculated as
the average of Z-scores of all four cognitive domains.

MRI Data Acquisition
Subjects were scanned using a 3.0T MRI scanner (Signa HDxt;
GE HealthCare, Milwaukee, WI, USA) with an eight-channel
phased array head coil. Head movement was restricted by
placing foam padding around the head of the subject during
the scan. Three-dimensional T1 high-resolution imaging, axial
fluid-attenuated inversion recovery (FLAIR), and MR DTI

scans were performed for each subject. Sagittal T1-weighted
images covering the whole brain were acquired with a 3D-fast
spoiled gradient recalled echo (SPGR) sequence with the
following parameters: repetition time (TR) = 5.6 ms, echo
time (TE) = 1.8 ms, inversion time (TI) = 450 ms, flip
angle = 15◦, matrix = 256 × 256, number of slices = 156, slice
thickness = 1.0 mm, and field of view (FOV) = 256 × 256 mm2.
The parameters used to obtain axial FLAIR images were as
follows: TR = 9,075 ms, TE = 150 ms, TI = 2,250 ms,
matrix = 256× 256, number of slices = 66, slice thickness = 2mm,
and FOV = 256 × 256 mm2. DTI images were acquired
using a spin-echo single shot echo-planar pulse sequence with
the following parameters: TR = 17,000 ms, TE = 89.8 ms,
matrix = 128× 128, number of slices = 66, slice thickness = 2mm,
gap = 0, FOV = 256 × 256 mm2, number of excitations = 1,
and gap = 0. Diffusion-sensitizing gradients were applied along
20 non-collinear directions with a b value of 1,000 s/mm2, a
reference image with no diffusion gradients applied (b0 scan) was
also acquird.

MRI Data Processing
The T1 3D-SPGR images were uniformly segmented using
Statistical Parametric Mapping 81 running on MATLAB
R2014a (MathWorks, Natick, MA, USA), from which tissue
maps of gray matter (GM), WM and cerebrospinal fluid
(CSF) were generated in the native space. WMH maps in
the native space were segmented using T1 3D-SPGR and
FLAIR images as raw materials with the lesion prediction
algorithm in LST Toolbox v1.1.42 (Schmidt et al., 2012).
Brain volumes including total intracranial, GM, WM, CSF, and
WMH volumes were calculated from T1 3D-SPGR images.
Normalized WMH volume (NWMHV) was calculated as
the WMH volume percentage relative to brain parenchyma
volume, which was the sum of GM and WM volumes
(NWMHV ‰ = measured WMH volume/brain parenchyma
volume × 1,000‰).

WMH-P was defined as spatially peripheral WM tissue
regions forming rings around WMH lesions and was assumed to
have abnormal microstructure (de Groot et al., 2013; Nasrallah
et al., 2019). To more precisely measure the WMH-P, WMH
clusters were further subclassified into periventricular WMHs
(PVWMH) and deep WMHs (DWMH) according to the
so-called ‘‘continuity to ventricle rule’’ (Griffanti et al., 2018).
Probabilistic maps for WMHs were processed by binarization.
By linearly aligning the binary WMH map to the T1 3D-SPGR
image, a NAWM layer mask for each dataset was created
according to previous studies (Promjunyakul et al., 2015, 2016),
which comprised 15 separate layers outside of PVWMHs and
DWMHs. Each parallel layer successively dilated from theWMH
by 1 mm.

DTI dataset was obtained using the PANDA v1.3.1 pipeline
toolbox3, which is based on the FMRIB Software Library tools
(Cui et al., 2013). The original DTI images were modified using

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
2www.statistical-modeling.de/lst.html
3http://www.nitrc.org/projects/panda
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FIGURE 1 | The flowchart showing data processing pipeline and results from some of the intermediate steps. (A) Bars showing mean and range of variation of
normal-appearing white matter hyperintensity volume (NWMHV) for subcortical vascular mild cognitive impairment (svMCI) and control group. The red bar and small
square stood for svMCI group while the blue bar and small circle stood for control group. (B) White matter hyperintensity (WMH) burden in each WM fiber tract based
on the ICBM-DTI-81 WM label atlas. The atlas we used was a 60% probability map which included 68 WM fiber tracts in total. The red line corresponded to svMCI
group and the blue line corresponded to control group. (C) ICBM-DTI-81 WM label atlas in standard (MNI) space and in individual space of one subject. (D) The
WMH and WMH penumbra (WMH-P) mask image of the same subject. The white area represented for the general WMH lesion. The blue area represented for
periventricular WMH (PVWMH) and deep WMH (DWMH), and the yellow area represented for penumbras surrounding either PVWMH or DWMH. (E) The fractional
anisotropy (FA) and mean diffusivity (MD) map of the same subject.

TABLE 1 | Demographic, imaging and clinical characteristics of patients
with SIVD.

svMCI group Control group p
(n = 111) (n = 72)

Demographic characteristics
Age (years) 65.2 ± 7.8 65.4 ± 7.6 0.92
Sex ratio [Female, N (%)] 27 (24.3) 11 (15.3) 0.14
Edcation level (years) 10.4 ± 2.9 11.2 ± 3.2 0.06
Imaging characteristics
NWMHV, ‰ 1.10 ± 0.95 0.73 ± 0.72 0.005∗∗

Global cognitive scores
MMSE 27.3 ± 2.1 28.6 ± 1.37 <0.001∗∗∗

MoCA 22.2 ± 3.3 25.9 ± 2.4 <0.001∗∗∗

Composite Z-score −0.84 ± 0.85 0.17 ± 0.50 <0.001∗∗∗

Data represent number (percentage), mean ± standard deviation (SD); two-sample
t-tests were performed to assess group comparison for age, education level, NWMHV,
MMSE, MoCA, composite Z-score, and χ2-test for sex ratio. P-value <0.05 was
considered to be statistically significant. NWMHV (normalized WMH volumes, ‰),
measured WMH volume/brain-parenchymal volume × 1,000‰; MMSE, Mini Mental
State Examination; MoCA, Montreal Cognitive Assessment; svMCI, subcortical vascular
mild cognitive impairment. ∗∗p < 0.01, ∗∗∗p < 0.001.

the brain extraction tool and by eddy current-induced distortion
and coregistration. FA and mean diffusivity (MD) were then
simultaneously calculated with amask created from the b0 image.
FA and MD maps of each subject were first coregistered to the
corresponding individual T1 3D-SPGR image using the b0 image

and then smoothed with a 6 mm full width at half-maximum
Gaussian kernel, then resliced into a 2 × 2 × 2 mm3 voxel-size
matrix. According to the previous studies and our recent work
(Promjunyakul et al., 2015, 2016; Wu et al., 2019), the size
of FA and MD penumbras of PVWMH and DWMH were as
follows: 6 mm for both FA and MD penumbras of PVWMH,
4 mm for the FA penumbra of DWMH, and 2 mm for the
MD penumbra of DWMH. The FA and MD penumbras was
gained by summing the FA or MD penumbra of PVWMH
and DWMH.

We used the JohnsHopkins University Inventory of Cognitive
Bias in Medicine (ICBM)-DTI-81 WM label atlas (Mori et al.,
2008) as an anatomic guide to parcel the WM into 68 ROI,
with each ROI representing a labeled region in the atlas. We
inversely coregistered the ICBM-DTI-81 WM atlas to individual
space, then calculated the WMH burden in each of the 68 WM
tracts for each subject. Taking into consideration differences
in brain volume across subjects, WMH burden was defined
and measured as the percentage of WMH voxels in all single
WM fiber bundle voxels. Thus, for each subject, all relevant
images—i.e., diffusion as well as brain segmentation maps,
including WMH and WMH-P maps and subject-specific WM
ROI mask—were uniformly co-aligned in the individual T1
3D-SPGR space. The mean values of FA and MD in WMH
and WMH-P of WM ROIs were extracted. Figure 1 depicts
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FIGURE 2 | Results of group comparison of WMH burden. Both the visual map (A) and the column diagram (B) showed 10 WM fiber tracts altogether that had
significant difference of WMH burden between svMCI and control groups. (B) The red column corresponded to svMCI group and the blue column corresponded to
control group. GCC, genu of corpus callosum; BCC, body of corpus callosum; SCC, splenium of corpus callosum; ACR.R, right anterior corona radiata; ACR.L, left
anterior corona radiata; SCR.R, right superior corona radiata; SCR.L, left superior corona radiata; PCR.R, right posterior corona radiata; PCR.L, left posterior corona
radiata; SS.L, left sagittal stratum.

TABLE 2 | White matter hyperintensity (WMH) burdens of WM fiber bundles that
had significant differences between svMCI and control group.

WM regions svMCI mean ± SD Control mean ± SD q

GCC 0.086 ± 0.084 0.040 ± 0.038 0.001
BCC 0.120 ± 0.081 0.084 ± 0.065 0.019
SCC 0.092 ± 0.072 0.064 ± 0.057 0.041
ACR.R 0.215 ± 0.203 0.108 ± 0.122 0.002
ACR.L 0.194 ± 0.190 0.098 ± 0.114 0.002
SCR.R 0.312 ± 0.240 0.182 ± 0.179 0.002
SCR.L 0.281 ± 0.212 0.174 ± 0.175 0.006
PCR.R 0.385 ± 0.233 0.277 ± 0.217 0.018
PCR.L 0.389 ± 0.247 0.280 ± 0.225 0.023
SS.L 0.118 ± 0.140 0.048 ± 0.077 0.002

Data represent mean ± standard deviation (SD). q-value referred to false discovery
rate-corrected p-value. svMCI, subcortical vascular mild cognitive impairment; GCC,
genu of corpus callosum; BCC, body of corpus callosum; SCC, splenium of corpus
callosum; ACR.R, right anterior corona radiata; ACR.L, left anterior corona radiata;
SCR.R, right superior corona radiata; SCR.L, left superior corona radiata; PCR.R, right
posterior corona radiata; PCR.L, left posterior corona radiata; SS.L, left sagittal stratum.

the data processing pipeline and results from some of the
intermediate steps.

Statistical Analysis
All statistical analyses were performed using SPSS v25 (IBM,
Armonk, NY, USA). The Kolmogorov–Smirnov test was used
to determine whether the data were normally distributed. The
independent sample t-test was used to compare continuous
variables and the χ2-test was used for all other variables.
False discovery rate corrections were applied (q-value = 0.05).
Partial correlations were used to evaluate correlations between
WMH burden, DTI parameters, and composite Z-scores. A
stepwise multiple linear regression model was used to predict
the independent effect of each variable on composite Z-
score. Variables obtained in the two steps that were strongly
correlated with composite Z-score were used as predictors.
Collinearity was tested using the variance inflation factor
(VIF); variables with VIFs ≥5 were removed because of
multicollinearity. Durbin–Watson statistics were used to detect
the presence of autocorrelation. All p-value <0.05 were
considered statistically significant.

FIGURE 3 | Results of group comparison of diffusion tensor imaging (DTI)
parameters. Column diagram showing diffusion parameters based on the
10 WM fiber tracts which had significant between-group difference of WMH
burden. The red column corresponded to svMCI group and the blue column
corresponded to control group. The left Y-axis indicated mean FA value and
the right Y-axis indicated mean MD value.

RESULTS

Demographic and Clinical Characteristics
of the Study Population
There were no significant differences in age, sex ratio,
or education level between svMCI and non-CI (control)
groups. NWMHV was significantly higher (Figure 1A) whereas
composite Z-scores and MMSE and MoCA scores were lower
(Table 1) in svMCI patients than in control subjects.

WMH Burden and DTI Parameters
The svMCI group had higher WMH burden compared to
control subjects in 10 fibers: the genu, body, and splenium of
the CC (GCC, BCC, and SCC, respectively); bilateral anterior,
superior, and posterior corona radiata (ACR, SCR, and PCR,
respectively); and left sagittal stratum (all q < 0.05; Figure 2,
Table 2). For the 10 WM fibers, 11 DTI parameters were
found to differ significantly between groups including FA of
WMH in the BCC, SCC, and right ACR; MD of WMH
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TABLE 3 | Diffusion tensor imaging (DTI) parameter values of the WMH and WMH-P of WM fiber bundles that had significant WMH-burden differences between svMCI
and control group.

svMCI mean ± SD Control mean ± SD p

GCC FA of WMH 0.18 ± 0.06 0.20 ± 0.11 0.380
MD of WMH 15.98 ± 2.46 16.79 ± 3.30 0.119
FA of WMH-P 0.342 ± 0.07 0.345 ± 0.08 0.843
MD of WMH-P 15.20 ± 2.21 15.54 ± 2.26 0.318

BCC FA of WMH 0.25 ± 0.05 0.27 ± 0.07 0.021∗

MD of WMH 14.03 ± 1.93 13.61 ± 1.55 0.143
FA of WMH-P 0.41 ± 0.07 0.44 ± 0.07 0.046∗

MD of WMH-P 14.87 ± 2.19 14.39 ± 1.92 0.129
SCC FA of WMH 0.37 ± 0.06 0.40 ± 0.07 0.017∗

MD of WMH 13.08 ± 1.93 12.99 ± 1.54 0.730
FA of WMH-P 0.53 ± 0.06 0.55 ± 0.06 0.032∗

MD of WMH-P 14.73 ± 1.84 14.39 ± 1.45 0.186
ACR.R FA of WMH 0.22 ± 0.05 0.25 ± 0.06 0.010∗

MD of WMH 12.57 ± 1.09 11.94 ± 0.88 0.006∗∗

FA of WMH-P 0.32 ± 0.05 0.35 ± 0.07 <0.001∗∗∗

MD of WMH-P 11.27 ± 0.82 11.21 ± 0.82 0.620
ACR.L FA of WMH 0.22 ± 0.04 0.24 ± 0.05 0.117

MD of WMH 12.54 ± 1.18 12.25 ± 1.17 0.243
FA of WMH-P 0.31 ± 0.04 0.34 ± 0.07 <0.001∗∗∗

MD of WMH-P 11.38 ± 0.90 11.20 ± 0.60 0.185
SCR.R FA of WMH 0.31 ± 0.08 0.32 ± 0.08 0.357

MD of WMH 11.92 ± 1.09 11.90 ± 1.70 0.921
FA of WMH-P 0.40 ± 0.06 0.42 ± 0.06 0.026∗

MD of WMH-P 11.27 ± 1.25 11.08 ± 1.74 0.519
SCR.L FA of WMH 0.314 ± 0.08 0.315 ± 0.08 0.955

MD of WMH 11.87 ± 1.10 11.76 ± 1.10 0.610
FA of WMH-P 0.40 ± 0.05 0.41 ± 0.07 0.139
MD of WMH-P 11.18 ± 1.16 11.05 ± 0.66 0.500

PCR.R FA of WMH 0.30 ± 0.07 0.32 ± 0.06 0.058
MD of WMH 12.07 ± 1.90 11.97 ± 1.37 0.742
FA of WMH-P 0.41 ± 0.05 0.43 ± 0.05 0.016∗

MD of WMH-P 11.52 ± 2.02 11.63 ± 2.16 0.746
PCR.L FA of WMH 0.29 ± 0.08 0.30 ± 0.08 0.555

MD of WMH 12.00 ± 1.80 11.67 ± 1.25 0.267
FA of WMH-P 0.40 ± 0.06 0.42 ± 0.06 0.024∗

MD of WMH-P 11.18 ± 1.51 10.99 ± 1.25 0.446
SS.L FA of WMH 0.30 ± 0.05 0.31 ± 0.05 0.152

MD of WMH 14.82 ± 2.04 15.21 ± 2.86 0.454
FA of WMH-P 0.41 ± 0.05 0.42 ± 0.05 0.070
MD of WMH-P 12.49 ± 1.18 12.57 ± 1.56 0.725

Data represent mean ± standard deviation (SD). P-value <0.05 was considered to be statistically significant. WMH, white matter hyperintensity; WMH-P, white matter hyperintensity
penumbra; FA, fractional anisotropy; MD, mean diffusivity (MD values are not marked in unit since being post-processed); svMCI, subcortical vascular mild cognitive impairment;
GCC, genu of corpus callosum; BCC, body of corpus callosum; SCC, splenium of corpus callosum; ACR.R, right anterior corona radiata; ACR.L, left anterior corona radiata; SCR.R,
right superior corona radiata; SCR.L, left superior corona radiata; PCR.R, right posterior corona radiata; PCR.L, left posterior corona radiata; SS.L, left sagittal stratum. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.

of right ACR; FA of WMH-P of BCC, SCC, bilateral ACR,
bilateral PCR and right SCR (p < 0.05, Figure 3, Table 3).
The FA values of WMH and WMH-P were lower while
MD value was higher in the svMCI group compared to the
control group.

Associations Between Influential Factors
and General Cognitive Function
In svMCI patients, the WMH burden of the GCC, BCC,
SCC, bilateral ACR, and SCR was negatively correlated with
composite Z-scores (Table 4), with age, sex ratio, and education
as covariates. In the svMCI group, the FA values of WMH and
WMH-P in the BCC were positively correlated with composite
Z-scores (Figure 4, Table 5), with age, sex ratio, education
level, and corresponding WMH burden as covariates. In the

control group, only the FA value of WMH in the BCC
had significantly negative correlation with composite Z-score
(Table 6), with age, sex ratio and education level as covariates.
A regression equation was developed based on the relationship
between observed and predicted values for composite Z-scores.
The composite Z-score was significantly and independently
associated with FA of WMH-P in the BCC, WMH burden
of the SCC, and WMH burden of the GCC, with the FA of
WMH-P in the BCC making the most significant contribution
(Table 7).

DISCUSSION

The main objective of this study was to investigate the
relationship between microstructural abnormalities in WMH
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TABLE 4 | Partial correlations between WMH burden and composite Z-scores in
svMCI group.

WMH burden Composite Z-score
r p

GCC −0.321 0.006∗∗

BCC −0.262 0.027∗

SCC −0.369 0.002∗∗

ACR.R −0.303 0.010∗

ACR.L −0.284 0.016∗

SCR.R −0.347 0.003∗∗

SCR.L −0.296 0.012∗

PCR.R −0.218 0.074
PCR.L −0.181 0.139
SS.L −0.083 0.503

P-value <0.05 was considered to be statistically significant. GCC, genu of corpus
callosum; BCC, body of corpus callosum; SCC, splenium of corpus callosum; ACR.R,
right anterior corona radiata; ACR.L, left anterior corona radiata; SCR.R, right superior
corona radiata; SCR.L, left superior corona radiata; PCR.R, right posterior corona radiata;
PCR.L, left posterior corona radiata; SS.L, left sagittal stratum. ∗p < 0.05, ∗∗p < 0.01.

and NAWM (WMH-P) in specific fiber tracts and the
development of CI in svMCI, which is an early stage of SVCI that
has been overlooked in most previous work. Thus, our results
provide prospective information that can guide early therapeutic
decision-making.

We found that the WMH burden in some parts of the CC and
corona radiata was significantly higher in patients with svMCI
than in control subjects. FA values of WMH in the BCC, SCC,
and right ACR and those of WMH-P in the BCC, SCC, bilateral
ACR, right SCR, and bilateral PCR were lower whereas the MD
value of WMH in the right ACR was higher in svMCI patients.
Furthermore, a significant correlation between FA of WMH-P
in the BCC and general cognitive function was found in svMCI
patients but not in control subjects.

Consistent with previous studies (Lin et al., 2015; Tu et al.,
2017; Chen et al., 2018; Liu et al., 2019; Wang et al., 2020), the
strongest associations between abnormal DTI parameters and
cognitive decline were found in the CC and corona radiata. As
one of the most extensively myelinated brain regions, the CC
is composed of fibers arising from large pyramidal neurons,
with the anterior portion containing axons of corticocortical

communicating fibers from corresponding posterior lobar
regions (Matsunami et al., 1994; Abe et al., 2004). Fibers from
these regions converge in the corona radiata, which contains
projection fibers that are involved in information transmission.
The critical roles of these ascending/descending pathways and
inter-hemispheric connections in cognitive function can explain
the CI associated with microvascular damage in the CC and
corona radiata. WM tracts in the CC harboring commissural
fibers connecting the frontal lobe and other cortical areas were
found to be damaged at the early stage of SVCI (Reginold
et al., 2016; Moscufo et al., 2018), indicating that SVCI is
associated with the loss of integrity of the CC microstructure.
The association betweenWM tract abnormalities and CI was also
evidenced by the fact that SVCI lesions were present not only in
certain areas but along the entire fiber structure.

The correlation between FA of WMH in the BCC and
cognitive function was positive in svMCI patients and negative
in control subjects. This discrepancy may be explained by
the heterogeneity of pathologic changes that give rise to
WMHs, which include incomplete ischemia mainly related
to cerebral small vessel arteriolosclerosis; disruption of the
blood-brain barrier; vasomotor reactivity, autoregulation, and
endothelial dysfunction; systemic oxidative stress; inflammation;
and chronic edema (Bakker et al., 1999; Pantoni, 2002; Hassan
et al., 2003; Chung and Hu, 2010; Xu et al., 2010), which may
coexist with tissue damage and repair. SIVD has a relatively long
disease course. Although WMH progression was traditionally
thought to be continuousand uniform, it is now known to be a
dynamic and highly variable process that sometimes regresses
(Schmidt et al., 2002; van Leijsen et al., 2017). The attenuation
of WMHs is often incomplete because repair processes can be
disrupted by the inhibitory responses of glial cells (Hayakawa and
Lo, 2016). Thus, changes in FA values are complex and can be
difficult to interpret.

Previous studies have shown that ischemic changes in the
WMH-P reflect those in WMHs, with the only difference being
that the former are more subtle and prodromal (Maillard et al.,
2011; Jiaerken et al., 2019). We found a significant association
between FA of WMH-P in the BCC and composite Z-scores

FIGURE 4 | Scatterplot of the partial correlations of composite Z-score with DTI parameters on WM tracts (A,B). For panels (A,B), lines and shaded areas
represented the correlation coefficient and each 95% confidence interval (CI), respectively.
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TABLE 5 | Partial correlations between DTI parameters of WMH and WMH-P of
significant WM fiber bundles and composite Z-scores in svMCI group adjusted for
age, sex ratio, education level, and WMH burden.

DTI parameter Composite Z-score
r p

FA of WMH of BCC 0.25 0.037∗

FA of WMH of SCC −0.073 0.555
FA of WMH of ACR.R −0.056 0.693
MD of WMH of ACR.R −0.03 0.841
FA of WMH-P of BCC 0.33 0.005∗∗

FA of WMH-P of SCC 0.219 0.075
FA of WMH-P of ACR.R −0.007 0.955
FA of WMH-P of ACR.L 0.025 0.844
FA of WMH-P of SCR.R 0.109 0.378
FA of WMH-P of PCR.R 0.059 0.635
FA of WMH-P of PCR.L 0.061 0.625

P-value <0.05 was considered to be statistically significant. BCC, body of corpus
callosum; SCC, splenium of corpus callosum; ACR.R, right anterior corona radiata;
ACR.L, left anterior corona radiata; SCR.R, right superior corona radiata; PCR.R, right
posterior corona radiata; PCR.L, left posterior corona radiata; WMH, white matter
hyperintensity; WMH-P, white matter hyperintensity penumbra. ∗p < 0.05, ∗∗p < 0.01.

TABLE 6 | Partial correlations between DTI parameters of WMH and WMH-P in
significant WM fiber bundles and composite Z-scores in control group adjusted
for age, sex ratio and education level.

DTI parameter Composite Z-score
r p

FA of WMH of BCC −0.530 0.011∗

FA of WMH of SCC −0.165 0.464
FA of WMH of ACR.R −0.055 0.806
MD of WMH of ACR.R 0.197 0.380
FA of WMH-P of BCC −0.393 0.070
FA of WMH-P of SCC 0.107 0.636
FA of WMH-P of ACR.R 0.088 0.696
FA of WMH-P of ACR.L 0.147 0.515
FA of WMH-P of SCR.R 0.089 0.693
FA of WMH-P of PCR.R 0.123 0.587
FA of WMH-P of PCR.L 0.196 0.383

P-value <0.05 was considered to be statistically significant. BCC, body of corpus
callosum; SCC, splenium of corpus callosum; ACR.R, right anterior corona radiata;
ACR.L, left anterior corona radiata; SCR.R, right superior corona radiata; PCR.R, right
posterior corona radiata; PCR.L, left posterior corona radiata; WMH, white matter
hyperintensity; WMH-P, white matter hyperintensity penumbra. ∗p < 0.05.

in svMCI subjects but not in control subjects, underscoring the
contribution of the penumbra to the cognitive deficits observed
in svMCI, although the mechanistic details remain unclear.

We found that diffusion features of theWMH-P distinguished
svMCI patients from control subjects, indicating that the
degree of abnormality in WMH-P microstructure plays an
important role in cognitive decline, possibly through a decreased
connectivity caused by demyelination and axonal damage

(Moscufo et al., 2018). The WMH-P represents a region of
milder injury surrounding WMH lesions and has a higher
probability of progressing to WMH than NAWM outside the
penumbra (Maillard et al., 2011); moreover, while it is not in itself
destructive, the WMH-P is a risk factor for future brain injury
that presumably contributes to CI. The histopathologic origins
of age-related WM degeneration include gliosis, degeneration in
myelinated axons, and importantly, small vessel changes whose
direct effects on WM integrity may induce the transition of
WMH-P to WMH. Hypertension, diabetes, and other SVCI risk
factors at their earliest stages are accompanied by progressive
and subtle WM degeneration that manifests as WMH (de Leeuw
et al., 2002; van Dijk et al., 2004). This is relevant to the
clinical interpretation of WMH-P, which is considered as a more
diffuse and incipient brain injury, and may represent a novel
treatment target that, if salvaged, might modify the time course of
progressive WMH and its cognitive consequences. Additionally,
early treatment of reversible cardiovascular risk factors may slow
the progression of WM damage in SVCI. Previous longitudinal
studies found that some WMHs regress after minor stroke, with
potential improvement of neurologic outcomes. Thus, WMH is
reversible, which may be attributable to the transience of blood-
brain barrier disruption and resultant changes in interstitial fluid
(Cho et al., 2015; Ding et al., 2015; Wardlaw et al., 2017).

We also found that the MD of WMH in the right ACR was
higher in svMCI patients than in control subjects, which was the
only positive result for MD value. This suggests that MD is less
sensitive than FA in detecting the degree of WM damage—in
disagreement with previous studies on AD (Jin et al., 2017) or
CSVD (Chen et al., 2020)—and that the magnitude of diffusion
is a more sensitive index than the direction, possibly because
microstructural changes in the chronic stage of injury reflects
a combination of quantitative and directional injury caused by
Wallerian degeneration.

There were several limitations to our study. First, the study
design was cross-sectional and the sample size was small;
longitudinal studies with a larger sample are needed in the future.
Second, as with all MRI studies of svMCI we were limited by the
lack of pathologically confirmed cases, although we used both
neuropsychological assessment andMRI for diagnosis. Third, we
excluded patients with serious brain atrophy andmicrobleeds but
did not control for the number of lacunar infarcts, which may
have confounded our analysis of the association between WMH
and its penumbra and cognitive performance. In our future
work, we will quantify and model this confounder to clarify the
role of the WMH-P in cognitive function. Fourth, the cognitive
data were combined into a composite Z-score; however, analyses

TABLE 7 | Stepwise multiple linear regression of composite Z-scores.

R R2 (adjusted) β t p VIF Durbin–Watson

(Constant) - - - −2.456 0.017 - 2.094
FA of WMH-P of BCC 0.562 0.295 0.432 4.071 <0.001 1.134
WMH burden of SCC 0.493 0.232 −0.236 −2.334 0.023 1.029
WMH burden of GCC 0.596 0.325 −0.214 −2.004 0.049 1.154

P-value <0.05 was considered to be statistically significant. BCC, body of corpus callosum; SCC, splenium of corpus callosum; GCC, genu of corpus callosum; VIF, variance inflation
factor; WMH, white matter hyperintensity; WMH-P, white matter hyperintensity penumbra.
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of individual cognitive domains are warranted as they involve
different brain regions. Finally, the field strength and resolution
of the MRI could be improved by including a larger number of
gradient directions for a more sensitive measure of changes in
WMmicrostructure.

CONCLUSIONS

The significant fiber damage observed in svMCI suggests that loss
of microstructural integrity of specific WM fibers—especially
those ofWMH-P in the BCC—contributes to cognitive deficits in
patients with svMCI. These findings can aid the early diagnosis
of svMCI so that timely and appropriate interventions can be
initiated to slow cognitive decline in patients and reduce the
progression from svMCI to SVaD.
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