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Adaptation is a multi-faceted phenomenon that is of interest in terms of both its

function and its potential to reveal underlying neural processing. Many behavioral studies

have shown that after exposure to an oriented adapter the perceived orientation of

a subsequent test is repulsed away from the orientation of the adapter. This is the

well-known Tilt Aftereffect (TAE). Recently, we showed that the dynamics of recurrently

connected networks may contribute substantially to the neural changes induced by

adaptation, especially on short time scales. Here we extended the network model and

made the novel behavioral prediction that the TAE should be attractive, not repulsive,

on a time scale of a few 100ms. Our experiments, using a novel adaptation protocol

that specifically targeted adaptation on a short time scale, confirmed this prediction.

These results support our hypothesis that recurrent network dynamics may contribute

to short-term adaptation. More broadly, they show that understanding the neural

processing of visual inputs that change on the time scale of a typical fixation requires

a detailed analysis of not only the intrinsic properties of neurons, but also the slow and

complex dynamics that emerge from their recurrent connectivity. We argue that this

is but one example of how even simple recurrent networks can underlie surprisingly

complex information processing, and are involved in rudimentary forms of memory,

spatio-temporal integration, and signal amplification.
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INTRODUCTION

In a broad sense, sensory adaptation is the phenomenon that perception depends not only on the
current stimulus, but also what was presented before. Adaptation is found across a wide range of
time scales, from contrast adaptation occurring within a few hundreds of milliseconds (Shapley
and Victor, 1978; Heinrich and Bach, 2001) to slow serial dependence spanning beyond seconds
(Chopin and Mamassian, 2012; Fischer and Whitney, 2014). These behavioral phenomena are of
interest in terms of their function, but also as a tool to gain insight into the underlying neural
mechanisms. Here, we focus on visual adaptation on the timescale of a few 100ms. This has high
ecological relevance as it corresponds to the typical duration of a single fixation in the primate.

It is well-known that exposure to an oriented stimulus (the “adapter”) affects the perceived
orientation of a subsequent stimulus (the “test”). In behavioral experiments with such an adaptation
protocol, subjects typically report that the test orientation is more different from the adapter than
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it really is. This is called the tilt aftereffect (TAE); the test is
repulsed away from the adapter (Gibson, 1933). Functionally,
this phenomenon is thought to reflect the visual system’s
constant adjustment and recalibration to improve its ability to
discriminate visual inputs (Clifford et al., 2000; Krekelberg et al.,
2006a; Kohn, 2007; Schwartz et al., 2007; Kristjansson, 2011).

In primary visual cortex, similar adaptation protocols result in
two well-documented changes (Gilbert and Wiesel, 1990; Müller
et al., 1999; Dragoi et al., 2000; Felsen et al., 2002; Wissig and
Kohn, 2012; Patterson et al., 2013, 2014). First, neurons shift
their preferred orientation. The dependence of these shifts on
the properties of the adapter are complex, but repulsive shifts
(away from the adapter) dominate at short time scales (Wissig
and Kohn, 2012; Patterson et al., 2013, 2014). Second, neurons
change their peak response to the test stimulus. Here too the
neural changes are complex, but rate suppression is found when
the adapter is small compared to the receptive field (Wissig and
Kohn, 2012; Patterson et al., 2013, 2014).

Although tuning shifts and rate suppression are sometimes
both described as being the consequence of plasticity (Yao
and Dan, 2001; Felsen et al., 2002), we recently showed that
tuning shifts could arise from the attractor dynamics imposed
by a network’s recurrent connections. We studied the dynamics
of orientation-tuned units in a recurrently connected network
model without any form of plasticity (i.e., no changes in the
biophysical, intrinsic properties of neurons or their synaptic
connections) and showed that this model quantitatively captured
the tuning shifts observed in monkey and cat V1 (Quiroga
et al., 2016). This model, however, could not account for
rate suppression, which does appear to require a mechanism
involving some form of plasticity (Sanchez-Vives et al., 2000a,b).

Several modeling studies have linked the neural to the
behavioral phenomena. As has been noted previously (Gilbert
and Wiesel, 1990; Yao and Dan, 2001; Teich and Qian, 2003;
Jin et al., 2005), tuning curve repulsion predicts (perhaps
counterintuitively) an attraction of the percept, contrary to the
typical TAE. However, rate suppression predicts a repulsion of the
percept. Hence, to account for the fact that the behavioral TAE
is typically repulsive, we have to assume that, in a typical TAE
experiment, rate suppression is more potent than tuning shifts
(Jin et al., 2005; Ursino et al., 2008). In the current contribution,
we use this link between neural and behavioral findings to
generate behavioral predictions based on our model, and test
them in healthy human subjects.

Specifically, we reasoned that a hypothetical V1 with recurrent
connections but without plasticity (i.e., with tuning shifts, but
without rate suppression) should lead to an attractive TAE, while
a V1 with plasticity but without recurrent connections should
lead to a repulsive TAE. Given that no experimental methods
can block all plasticity or remove all recurrent connectivity,
testing this prediction will necessarily be somewhat indirect. Our
experimental test relies on two observations. First, our previous
modeling results show that the influence of attractor dynamics
plays a significant role for adaptation on a time scale of at most a
few 100ms. Second, experimental data in macaque V1 show that
rate-suppression is a comparatively slow process; its magnitude
is small when adaptation is brief, and it increases substantially on

a time scale of several hundreds of milliseconds (Patterson et al.,
2013). This leads to the prediction that the attractive TAE (caused
by the recurrent connectivity) should dominate at short time
scales. To test this prediction, we designed a novel variant of the
TAE adaptation protocol that minimizes long-term adaptation.
Our experiments show that the TAE in human subjects is indeed
attractive on a time scale of <200ms. In the discussion we return
to the question of how this informs our view of early visual
processing, and the role of recurrent connections in particular.

METHODS

All experimental procedures were approved by the local
Institutional Review Board, followed the Declaration of Helsinki,
and the National Institutes of Health’s guidelines for the ethical
treatment of human subjects. All subjects provided written
informed consent.

Apparatus
Stimuli were presented on a Sony FD Trinitron (GDM-
C520) CRT monitor using custom software (Neurostim, http://
neurostim.sourceforge.net). The display measured 40◦ (width)×
30◦ (height) at a viewing distance of 57 cm. Eye-position was
monitored using a 500Hz video-based eye tracker (Eyelink II;
SR Research, Mississauga, Canada) and the subject’s head was
stabilized using a bite bar.

Short-Term Adaptation Paradigm
Subjects were required to maintain fixation within a 3◦ ×

3◦ square at the center of the display (around the fixation
point) for the duration of each trial (excluding the response
epochs). Each trial started when the subject fixated; trials in
which subjects failed to fixate appropriately were terminated
immediately, discarded, and repeated at a random later time
within the block.

The trial started 250ms after fixation with the presentation
of the adapter (an oriented Gabor) on the left or right (selected
randomly) and a null adapter (See section Visual Stimuli) on
the other side. The null adapter was included to match spatial
frequency and contrast adaptation on both sides of fixation and
to maintain relative symmetry in the display (to prevent shifts
of attention to one side). Immediately after, two oriented Gabors
were presented for a variable duration, one on either side of the
fixation point. Subjects were instructed to report which of these
Gabors was tilted more clockwise. The Gabor that appeared in
the same location as the adapter is referred to as the “test” (right
Gabor in the example trial shown in Figure 2A), and the Gabor
that appeared in the location of the null-adapter is the “reference”
(left Gabor in the example trial shown in Figure 2A). After the
presentation of the test and reference stimuli, two masks were
presented in the same spatial locations on either side of the screen
for 500ms. These masks were identical to the null-adapters; they
served to minimize afterimages and limit the amount of temporal
integration of the target stimuli. Subjects indicated which Gabor
(left/right) appeared more clockwise by pressing one of two
designated keys on the keyboard.
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In a traditional adaptation paradigm, the same (or similar)
adapter orientation is repeated on every trial. In such a
paradigm, effects can accumulate across trials and therefore
mix the influence of mechanisms that operate on a short
and long time scale (Discussion). Here, we minimized the
contribution of long-term effects by choosing a new random
adapter orientation on each trial (orientation drawn from a
flat distribution between 0 and 180◦), thereby spreading long-
term orientation-specific effects equally across orientation space
over the session. Under these circumstances, orientation-specific
behavioral consequences of adaptation can only be ascribed to a
mechanism that operates on the timescales of single trials.

Subjectively, this paradigm is substantially more difficult to
perform than a standard orientation discrimination paradigm.
The reasons for this include the variation of the reference across
trials (which requires subjects to compare the two test stimuli on
each trial), the brief duration of the test, and the potent masking
stimuli. For this reason, all subjects practiced the task (without
adapters) for at least two and up to 5 h prior to completing
experimental trials. Auditory feedback was provided during these
practice runs and the data were only used to assess whether the
subject consistently performed the task.

Invisible Adapter TAE Experiment
Eight naïve subjects (three males, five female) participated. All
participants had normal or corrected-to-normal vision, were
aged between 17 and 36, and right-handed.

In this experiment, we used adapters that were high enough
in spatial frequency that their orientations could not be resolved
by the subjects (“invisible” adapters; see “Isolating Short-term
Attractive Aftereffects” in Results for the rationale). The spatial
frequency of the adapter Gabors was fixed for the duration of the
experiment but varied per subject, according to their individual
ability to perceive orientation at high spatial frequencies (based
on the screening experiment, below). To avoid the necessity
of using spatial frequencies beyond the limits of our monitor
(resolution: 1,280 × 960 at a refresh rate of 90Hz), the stimuli
were placed at relatively high eccentricity (centers at 12 degrees
of visual angle (dva) to either side of the fixation dot).

Both experimental data (Felsen et al., 2002) and our model
(Quiroga et al., 2016) show that the largest tuning curve shifts
occur when the difference between the adapter and the test
is ∼20◦. Hence, to maximize the expected attractive TAE, we
jittered the offset between the reference and the adapter using a
uniform probability distribution between 17◦ and 23◦ or between
−17◦ and −23◦, all in randomly interleaved trials. In the main
analysis, we ignored the small variation around the ±20◦ mean
and grouped the trials based only the sign of the offset between
the reference and the adapter (clockwise condition: +20◦ or
counterclockwise condition:−20◦).

We used an adaptive procedure (Kontsevich and Tyler, 1999)
to choose the orientation offset between the test and reference
Gabors in each trial and estimate the point of subjective equality.
The adapting stimulus was presented for 200 ms.

To test subjects’ ability to perceive the orientation of the
adapter, we randomly interleaved (10%) catch trials. In these

trials, the test Gabor was replaced by a null-adapter, leaving the
adapter as the only oriented element on that side of the screen.

Trials were presented in blocks of 64 trials for each test
duration: [50, 100, 200] ms. Each 15-min run consisted of four
blocks, and subjects typically completed two to three runs in a 1-h
session. Subjects completed between 6000 and 9000 trials (mean
7000) across multiple days.

Screening Experiment
We mapped each participant’s ability to discriminate the
orientation of two Gabors at 12 dva eccentricity as a function of
spatial frequency. The task was identical to the TAE experiment
except that there were no adapters and no masks (i.e., only
the reference and test were shown). The spatial frequencies
for the reference and test were chosen from [3, 4, 5, 6, 7, 8]
cycles per degree of visual angle (cpd) across trials (though
always matched on each trial). Because our goal was to measure
the discriminability of the orientation of the adapter and the
reference in the main experiment, the orientation offset between
the test and the reference in the screening experiment was ±20◦

plus a random jitter of±3◦ (following the same procedure as the
TAE experiment). As for the other experiments, the subjects’ task
was to identify the most clockwise stimulus (left or right). The
test was presented for 200ms, matching the longest test in the
TAE experiment, and thus provided an upper bound to visibility
for all test durations.

From their responses, we determined two spatial frequencies
per subject. The first was the highest spatial frequency for which
they performed the task at least 80% correct; this was used
for the test stimulus in the invisible adapter TAE experiment.
The second was the lowest spatial frequency that was higher
than that of the test and for which the subject was at or close
to chance performance. This was used as the spatial frequency
of the adapter in the invisible adapter TAE experiment. This
ensured that the subject was unable to judge the orientation of the
adapter stimulus accurately, while keeping the spatial frequencies
of the adapter and test as similar as possible (see section Results
for rationale).

Visible Adapter TAE Experiment
In this control experiment, the centers of the stimuli were
positioned 3 dva to either side of the fixation dot. The spatial
frequency of the sinusoidal modulations underlying both Gabors
and null-adapters was 2 cpd. The orientation of the test was
offset from that of the reference by −12, −8, −4, 0, 4, 8, or
12◦, which allowed us to compute a psychometric curve. The
adapting stimulus was presented for 100ms. All other procedures
matched those in the invisible adapter TAE experiment. Three
subjects participated in this experiment. One subject could not
reliably perform this task at the shortest test duration (50ms),
even for the largest differences between test and reference. Hence,
we excluded this condition from the analysis for this subject.

Visual Stimuli
The adapter, test, and reference stimuli were oriented Gabors
(sinusoidal luminance gratings modulated by a Gaussian contrast
envelope to fade smoothly into the background). The standard
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deviation of the Gaussian envelope was 0.8 dva, the contrast
was 75%, and the phase of each was randomized independently
on each trial. We constructed the null-adapters by adding
together eight Gabors whose orientations spanned 180◦ evenly
with a random phase offset. These null-adapters were matched
in spatial frequency to the adapting and testing Gabors, but
contained little orientation specific energy (Figure 2). The
contrast of the component gratings in the null-adapters was
adjusted to produce an approximate perceptual match to the
contrast of the single Gabor stimuli. The fixation stimulus
was a small red square located in the center of the screen,
which remained visible for the duration of the trial. The
mean luminance of the equal energy white screen was set to
30 cd/m2.

Data Analysis
The adapter orientation was randomized between 0◦ and 180◦

across trials (to avoid accumulation of adaptation across the
session; see above), but the reference and test orientation were
defined relative to the adapter on each trial. This allowed
us to analyze the data in the standard way, by calculating
psychometric functions for adapters that were either clockwise
or counterclockwise (relative to the reference). To estimate the
lapse rate, we fitted a logistic psychometric function to the
data [using the psignifit toolbox (Wichmann and Hill, 2001b)]
while pooling across clockwise and counterclockwise adapters,
separately for each subject. Then, we fitted the responses in the
trials with clockwise and counterclockwise adapters separately,
fixing the lapse rates to the previously estimated values. We
defined the shift in perceived orientation (i.e., the TAE) as
the difference between the points of subjective equivalence
(PSE) in these two curves. A positive difference signals an
attractive shift; that is, the perceived orientation of the test
was biased toward that of the adapter. Statistical comparison
of the PSE differences in individual subjects was performed
using Monte Carlo simulations based on the response data, as
implemented in the pfcmp function for Matlab (Wichmann and
Hill, 2001a).

At the group level, we used the increased power of parametric
tests (Student T-test, and repeated measures analysis of variance)
after confirming that the dependent measures (the TAE) did not
deviate significantly from normality using the Lilliefors test.

Model
Recurrent Network and Dynamics
We implemented an artificial network consisting of a bank
of orientation-tuned V1 units, each receiving weakly tuned
feedforward input (representing V1 neurons’ judicious selection
of LGN inputs), and recurrent excitatory and inhibitory input
from its neighbors (Carandini and Ringach, 1997; Teich and
Qian, 2003). All model parameters were rooted in empirically
observed measurements and the units exhibited typical V1-like
tuning curves and response dynamics to isolated oriented stimuli.
We list the essential model specifications here, but for full details
see Quiroga et al. (2016).

Each of the 256model neurons wasmodeled as a single passive
voltage compartment, whose membrane potential Vθ obeyed the
differential equation:

τ
dVθ

dt
+ Vθ = Vθ

lgn + Vθ
cortex, (1)

with τ the membrane time constant, Vθ
lgn

the synaptic potential

generated by the thalamic inputs to the model neuron and
Vθ
cortex is the net synaptic input to the neuron from its cortical

neighbors (Carandini and Ringach, 1997; Teich and Qian, 2003).
For each neuron, the input from LGN was a function of stimulus
orientation ω and contrast c:

Vθ
lgn (ω, c) = cJlgnf

(

ω|θ , κlgn
)

, (2)

where Jlgn represents the strength of the input and f
(

ω|θ , κlgn
)

is a von Mises function with period π , mean θ , and
concentration κlgn

f (x|µ, κ) = eκ cos(2(x−µ))

�2π I0(κ), (3)

and Io (κ)is the modified Bessel function of order zero. The
recurrent connection profiles were modeled as the difference of
an excitatory and inhibitory von Mises distribution:

Fθ (φ) = Jcortex
(

f (φ|θ , κE) − rIEf (φ|θ , κI)
)

. (4)

In this recurrent connection profile Jcortex represents the strength
of the cortical connections, and rIE the ratio of the strength of
inhibition to the strength of excitation. With this connection
profile we can define the recurrent input as:

Vθ
cortex (t) =

∑

φ

Fθ (φ)Rφ (t) (5)

The instantaneous firing rate was calculated as a piecewise linear
function of the membrane potential:

Rθ (t) = αmax
(

Vθ (t) , 0
)

, (6)

with α a gain factor (i.e., increase in firing rate in spikes
per second for a 1mV increase in the membrane potential
above zero). The model and all simulations were implemented in
MATLAB and solved numerically using ode45, an adaptive time
step Runge-Kutta method. Model parameters were determined
in a non-linear optimization procedure that resulted in a
quantitative match with the tuning curve shifts observed for brief
duration adaptation in anesthetized macaque V1 (i.e., Figure 5 in
Patterson et al., 2013). For details of this procedure see Quiroga
et al. (2016). The parameters were: τ = 8ms; α = 3.88 Hz/mV;
Jlgn= 11.04 mV/Hz; κlgn= 0.47; Jcortex= 2.84 mV/Hz; rIE= 1.24;
κE= 1.12; κI= 0.56.

Frontiers in Systems Neuroscience | www.frontiersin.org 4 November 2019 | Volume 13 | Article 67

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Quiroga et al. Adaptation and Recurrent Connections

Rate Suppression
The recurrent networkmodel reported previously (Quiroga et al.,
2016) was developed specifically to isolate the role of recurrent
connections and show that they are sufficient to explain dynamic
tuning curve shifts even in the absence of all plasticity. Here we
extended the model to investigate the potential interaction of
recurrent dynamics with the changes in intrinsic properties that
are also known to occur in the brain. In visual cortex, exposure to
a stimulus is known to result in the reduction of the response to
subsequent stimuli (Patterson et al., 2013). We modeled this as a
reduction in rate that is proportional (with gain β) to the neuron’s
mean firing rate in the adaptation period

〈

Rθ
〉

and recovers on an
exponential time course with time constant ρ after the offset of
the adapter at t = t0. Formally:

Radapt
θ (t) = Rθ (t) − β

〈

Rθ
〉

e
−

t−t0
ρ (7)

RESULTS

We first present model simulations based on macaque V1
responses that lead to the prediction of a short-term attractive
TAE, and then the results of a set of psychophysical experiments
that test and confirm the prediction in human observers.

Model Simulations
We used a network model of orientation processing in V1
in which the neurons’ weak orientation selectivity that arises
from the afferent input is sharpened by strong, Mexican-hat
type, recurrent intracortical connectivity (see section Methods).
Figure 1A shows the population activity dynamics in the model
for a simulated experiment in which an adapter with orientation
20◦ is first presented for 200ms and then followed immediately
by a 0◦ test stimulus. At the start of the adaptation phase (yellow;
t = 5ms), the hill of activity is broad, reflecting the tuning that
arises from the combination of LGN input. While the adapter is
on the screen (t < 200ms) the hill of activity grows and narrows
under the influence of the recurrent connections.

When the 0◦ test stimulus is shown (t = 200ms), the LGN
input is switched immediately (afferent delays to the LGN are
ignored in this simulation) to provide maximal input to the unit
that prefers 0◦; and yet, the hill of activity in V1 moves only
gradually toward the neuron that prefers 0◦. Quiroga et al. (2016)
showed that these population dynamics can be surprisingly slow,
even though all neurons in the network have short membrane
time constants (here 8ms; see section Methods). The traveling
speed of the hill of population activity is a complex function of
the network connectivity, but using parameters estimated from
macaque V1 (Patterson et al., 2013), it takes several hundreds of
milliseconds after test stimulus onset before the hill reaches its
stable state (Figure 1B). For a full discussion of the model, and
how it captures the magnitude and dynamics of tuning curve
shifts observed in cat and monkey V1, we refer to Quiroga et al.
(2016). Here we focused on behavioral predictions of the model.

We used a labeled line readout to translate population activity
into a (predicted) perceived orientation. Specifically, the decoded
orientation was defined as the sum of the preferred orientations

of the neurons, weighted by their instantaneous firing rate.
To match the experimental protocol (see below), we did this
separately for a 20◦ adapter and a −20◦ adapter and defined the
TAE as the difference in the model’s perceptual readout for these
two conditions (Figure 1C; blue curve).

By design, the model of Quiroga et al. (2016) captured only
the influence of network dynamics and not the changes in
intrinsic neuron properties that can lead to a suppression of
firing after adaptation. Hence, in a model without plasticity (blue
curve in Figure 1C), one would predict an attractive TAE with a
magnitude<15 degrees (the value early after test stimulus onset),
and because the curve almost reaches zero in 300ms, the duration
of the attractive TAE should be <300 ms.

However, rate suppression clearly does occur during
adaptation; we extended the model to quantify the contribution
of rate suppression. We made no specific assumptions about the
underlying cellular mechanisms, but assumed that each neuron’s
firing rate suppression was proportional (β) to its average
response to the adapter (i.e., we assumed that suppression was
tuned) and that this response suppression recovered with an
exponential (ρ) time course (Methods). We estimated these
parameters based on Figures 2, 5 in Patterson et al. (2013). For
adaptation periods on the order of seconds, the Patterson et al.
data show that rate suppression is substantial (β = 50%) and
recovery slow (σ = 500ms). Entering these parameter estimates
into the model leads to the prediction of a repulsive TAE (“strong
suppression;” Figure 1C; red dashed line). This is consistent with
behavioral findings and conceptually similar to the explanation
of the repulsive TAE by Jin et al. (2005) and Teich and Qian
(2003). For adapters that are presented for at most a few
100ms, however, rate suppression in V1 is small (β = 20%) and
recovers rapidly (ρ = 100ms). Therefore, the model predicts an
attractive TAE (“weak suppression;” Figure 1C; red solid line),
for adaptation protocols that isolate short-term adaptation.

Isolating Short-Term Attractive Aftereffects
To measure a short-term attractive TAE, we need to address
two important issues. First, to emphasize short-term effects, the
design should minimize the accumulation of adaptation both
within a trial but also across trials. We addressed this by using
brief adapters, and, unlike common TAE protocols, a random
adapter orientation on each trial.

More specifically, subjects were instructed to respond which
of two oriented Gabors (presented on each side of the fixation
stimulus) was tilted more clockwise. One of these Gabors
(the “test”) was preceded by an oriented adapter at the same
spatial location, whereas the other (“reference”) was preceded
by a non-oriented stimulus (null-adapter; see section Methods).
Importantly, the orientation of the adapter was chosen randomly
on each trial (i.e., any angle between 0 and 180◦). The
reference was on average oriented either 20◦ clockwise or 20◦

counterclockwise to the adapter orientation; this offset generates
the largest tuning curve shifts in V1 and in the model (see section
Methods). Randomization of the adapter orientation minimized
the build-up of plasticity effects (i.e., rate suppression) across
trials. This paradigm therefore allowed our measurements to
isolate perceptual effects that are induced on the time scale of
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FIGURE 1 | Recurrent network model simulations of an adaptation protocol in which a 20◦ adapter was followed by a 0◦ test. (A) Population activity dynamics in a

model without plasticity. Color indicates progression over time. The earliest pattern (orange) represents the activity at the start (t = 5ms) of the adaptation phase; the

hill of activity is broad but, due to the recurrent connections, it gradually narrows around the neurons that prefer 20◦. After 200ms (black arrow) the 0◦ test stimulus is

presented and the hill of activity gradually moves to position itself around the neurons that prefer 0◦. (B) The dynamics of the location of the hill of population activity

(here represented by its centroid). In the adaptation phase (t < 0ms), the hill is centered on 20◦. Once the 0◦ test is presented, the hill moves toward 0◦, but this takes

a surprisingly long time (Quiroga et al., 2016). Colors match those used to represent time in (A). Time points omitted for clarity from (A) are shown here in black. (C)

Predicted TAE in three models. One model (blue curve) has no plasticity and its tuning curve shifts are the consequence of the recurrent network dynamics alone. The

other two models include the effect of spike rate suppression that occurs for prolonged (seconds) adapter presentations (red dashed curve; strong suppression) or for

brief adapter presentations (red solid curve; weak suppression). These modeling results predict that the common long-term adaptation protocols should evoke the

well-documented repulsive TAE, while an adaptation protocol that isolates (or emphasizes) the contribution of short-term effects should result in an attractive TAE.

adapter presentation (200ms in this experiment, matching the
simulations in Figure 1). We measured the recovery time scale
of these effects by presenting the “test” stimulus for one of
three durations: 50, 100, and 200ms, which the model predicts
to be associated with progressively weaker attractive aftereffects
(Figure 1B).

The second issue addressed by our design was a potential
substitution confound. Given the brief test stimulus
presentations, it is conceivable that on some trials subjects
could compare the adapter (rather than the test) to the
reference orientation. From this, we would infer the presence
of an attractive aftereffect, independent of any true influence
of adaptation. To address this, we exploited the invisible
adapter paradigm of He and MacLeod (2001). They used laser
interferometry to create a grating stimulus directly on the
fovea with a spatial frequency so high that its orientation was
invisible to the participants. Such invisible patterns nevertheless

evoked a TAE in test stimuli with a lower spatial frequency (and
therefore visible orientation) (He and MacLeod, 2001; Rajimehr,
2004). This offers an opportunity to study the TAE without
the presence of the substitution confound. Our experiment
was analogous to He and MacLeod, except that, lacking an
interferometer, we presented the gratings at high eccentricity
where even the orientation of gratings with more modest spatial
frequencies cannot be resolved. Although strictly speaking only
the orientation of these patterns was invisible, we refer to these
patterns as invisible adapters.

Screening Experiment
The screening experiment was designed to find such invisible
patterns, separately for each subject. For each subject we assessed
the ability to discriminate orientation as a function of spatial
frequency. This experiment matched the test phase of the main
experiments but no adapters or masks were present (because the
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FIGURE 2 | Experimental Paradigms. In each experiment, subjects fixated a central red dot for the duration of the trial. At the end of the trial they reported which of

the oriented Gabors in the test display (left or right) was tilted more clockwise. (A) An example trial in the Invisible Adapter TAE experiment. An oriented pattern and a

non-oriented mask appeared on either side of the fixation stimulus. The adapter’s orientation was chosen at random in each trial to avoid the build-up of plasticity

effects across trials, and the spatial frequency of the adapter was chosen such that the subject could not reliably perceive the orientation of the adapter (i.e., it was

“invisible”). Immediately after the adaptation phase, an oriented test stimulus appeared on the same side as the adapter while a reference stimulus appeared on the

opposite side. Finally, non-oriented masks were presented in both locations. (B) An example trial from the screening experiment. A reference and test stimulus with

matching spatial frequencies, but an orientation difference of 20◦, were shown for 200ms. (C) Control experiment which followed the design shown in (A) with the

exception that the adapter now had the same low spatial frequency as the test stimulus and was therefore visible to the subject.

FIGURE 3 | Screening Invisible Adapters. Psychometric curve for a single

subject’s performance on the screening task. This subject performed near

chance for 8 cpd (dashed arrow) and above 80% correct for spatial

frequencies above 6 cpd (solid arrow). Solid curve shows a logistic fit to the

psychometric data. Based on this screening experiment, this subject’s adapter

frequency was set to 8 cpd and the test frequency to 6 cpd. Using the

notation (8/6) to denote this outcome, two other subjects’ screening

experiments resulted in the same frequency setting outcome (8/6), four

subjects had (7/4), and one subject had (6/4).

adapters in the main study were not forward masked; Figure 2B).
The example subject in Figure 3 could not reliably discriminate
the orientation of 8 cpd patterns (dashed arrow). In the TAE
experiment of this subject, the spatial frequency of the adapter
was therefore set to 8 cpd; thus minimizing the possibility that
the subject could report the orientation of the adapter.

In the model, the TAE results from the recurrent connections
between neurons representing the adapter and the test. In V1
such connections are likely stronger between neurons with
similar spatial frequency preference (Ts’o et al., 1986; Malach

et al., 1993). Hence the model predicts a larger TAE if the test
stimulus has a high spatial frequency similar to the adapter, while
the logic of the experiment requires that the test stimulus spatial
frequency is low enough to make it visible. We compromised
between these conflicting demands by setting the test frequency
to the highest spatial frequency at which the subject could reliably
perform the task in the screening experiment (>80% correct).
For the example subject this was 6 cpd (solid arrow).

Invisible Adapter TAE Experiment
Figure 4A shows a stacked histogram of TAE sizes for all
subjects. The overall mean TAE was 1.5◦, which was significantly
larger than zero (p < 0.05; one-sided T-test), and confirms our
prediction that the TAE for brief (200ms) adapters is attractive
for a short time after (≤200ms). This overall measure, however,
averages over an underlying decay time-course that is seen more
clearly in the average across subjects in Figure 4B. Statistical
analysis confirmed a significant effect of duration on the TAE
[F(2) = 38, p < 0.001; one-way repeated measures ANOVA],
reflecting the rapid recovery of the TAE on a 200ms time scale.
Post-hoc tests showed that only the shortest duration test (50ms)
led to a significant positive TAE (p <0.01; one-sided T-test).
For this shortest test duration, the effect was 3.9◦ in magnitude.
TAE at test durations of 100 and 200ms were not significantly
larger than zero (p > 0.5), nor were they significantly different
from each other (p > 0.7). At the single subject level, the TAE
at the shortest duration was attractive for all but one subject,
and significantly larger than zero in 4 out of 8 subjects (p <

0.05; Monte Carlo comparison of PSEs; see section Methods). No
subjects had a significantly repulsive TAE.

The experiment was designed to make the adapter’s
orientation invisible and thereby remove the potential confound
that the subjects reported based on the orientation of the adapter
instead of the test. However, due to drifts in subject thresholds,
it is possible that subjects performed near chance for a high
spatial frequency in the screening experiment, but were still
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able to detect the pattern’s orientation in the TAE experiment.
To assess whether this could account for the attractive TAE,
we used interleaved catch trials in which the test grating was
replaced by a null-adapter. In these trials the adapter was the only
oriented element on the test side of the display. If the subjects
could see the adapter, they would likely respond clockwise if
the adapter was clockwise to the reference. We used this to
estimate adapter visibility by calculating the proportion of trials
in which the subject’s report (CW vs. CCW) was consistent with
the relation between the adapter and the reference. The extent to
which these proportions differed from 50% provides a measure
of adapter visibility. Figure 5 shows the relationship between
the TAE and adapter visibility. On average, adapter visibility
was 5.7 ± 4.2% (mean ± standard deviation), suggesting little
awareness of adapter orientation, as intended by our design. For
five of the data points (data points surrounded by black squares
in Figure 5), we could not reject the null hypothesis that the
adapter was invisible (p < 0.05, binomial test). These data points,
however, did not drive the main results illustrated in Figure 4.
Notably, even after excluding these data points, the mean TAE
was significantly larger than zero (p < 0.05; one-sided T-test)
and the TAE depended significantly on adapter duration [F(2)
= 23; p < 0.001]. Furthermore, if inadvertent adapter visibility
caused the attractive TAE, it should be larger in conditions
with high adapter visibility. Figure 5, however, shows that the
magnitude of the TAE did not depend on the visibility of the
adapter (Pearson correlation r =−0.084, p > 0.69).

Visible Adapter TAE Experiment
As explained above, we used an invisible adapter to avoid the
possibility that the subjects reported the orientation of the
adapter, instead of the test. For completeness, and to demonstrate
that the attractive TAE is not restricted to the use of an
invisible adapter, we performed a control experiment using a
standard, visible, adapter. In this experiment all Gabor stimuli
(adapter, test, null) had a spatial frequency of 2 cpd, and
were presented at 3◦ eccentricity. Subjects performed the same
orientation discrimination task (Figure 2C), but we used the
method of constant stimuli to obtain better estimates of the
full psychometric functions. In this experiment, the adapter was
presented for only 100ms (compared to the 200ms used in the
invisible adapter experiment). The example subject whose results
are shown in Figure 6 had a significant, attractive TAE for a 50ms
test duration (p < 0.05; Monte Carlo simulations; see section
Methods), but not for the longer test stimuli.

Figure 7 shows the average size of the TAE across the three
subjects that performed this experiment, as a function of test
duration. Each subject had a significant, attractive TAE at the
shortest test duration for which they could perform the task (p <

0.05, Monte Carlo simulations; see section Methods). This result
is consistent with the findings for invisible adapters (Figure 4);
brief adaptation results in an attractive TAE that decays on a time
scale faster than 200ms.

As explained above, in this experiment, we cannot exclude
the possibility that subjects inadvertently reported the orientation
of the adapter. We note, however, that the full psychometric
curves (e.g., Figure 6) suggest that subjects primarily reported

FIGURE 4 | Attractive tilt aftereffects following an invisible adapter. (A)

Histogram of TAE magnitude, across subjects for each test duration (legend).

The mean TAE (white arrow) was attractive: 1.48◦. (B) Average TAE per test

duration. Error bars show the standard error in the mean. This figure shows

that an adapter presented for 200ms induced an attractive TAE that lasted

<200 ms.

the orientation of the test (as instructed) and not the adapter.
Notably, if the subject always reported the adapter orientation,
the psychometric curves would have been independent of the
test orientation (i.e., the figure would have shown two flat lines
with the green line (a clockwise adapter) above the blue line
(counterclockwise adapter). The sigmoidal shape of the subjects’
psychometric functions showed that they responded primarily to
the test stimulus, not to the adapter. Given, however, that this
potential confound limits the forcefulness with which these data
can be interpreted, we did not pursue this experimental design
with a larger number of subjects.

DISCUSSION

Our experiments show that briefly presented oriented stimuli
are perceived to be more similar to immediately preceding
stimuli than they really are. This effect is opposite to the well-
known (repulsive) tilt aftereffect. Under the conditions of these
experiments, it is induced on a time-scale of 100–200ms and
recovers on a similar time scale: it is a short-term attractive tilt
aftereffect. The attractive nature of the aftereffect and its fast
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FIGURE 5 | TAE as a function of the visibility of the adapter in catch trials.

Individual TAEs are shown for all subjects and durations (legend) as a function

of the visibility of the adapter on catch trials in matched conditions. The arrow

indicates the mean visibility (5.7%), and data points surrounded by black

squares indicate conditions in which the null hypothesis that the adapter was

invisible could not be rejected (p < 0.05). TAE and adapter visibility were not

significantly correlated (r = −0.084; p = 0.7), suggesting that the subjects

indeed reported the orientation of the test and not, inadvertently, that of

the adapter.

recovery were predicted by our recurrent network model and
therefore supports the view that orientation tuning curve shifts
in V1 on the order of hundreds of milliseconds may be generated
by the attractor dynamics of recurrent networks.

Attractive and Repulsive Tilt Aftereffects
Gibson and Radner (1937) showed that 1min of exposure to
an adapter leads to a sizable tilt aftereffect. Even in that first
paper, both repulsive and attractive aftereffects were reported.
Repulsion was found when the orientation difference between
the adapter and the test was between 10◦and 30◦ (the so-
called direct TAE), while attraction was observed in trials with
large orientation differences (50◦-90◦; the indirect TAE). Our
model predicted an attractive TAE even for small orientation
differences, hence we focused on the direct TAE where the
prediction appeared to conflict with well-established findings
of a repulsive TAE even for brief test stimuli (Sekuler and
Littlejohn, 1974; Wolfe, 1984). The apparent conflict is resolved
by distinguishing two, logically distinct time scales involved
in adaptation.

The first is the time scale of recovery from adaptation. This
time scale can be probed, for instance, by leaving a gap between
adapter and test or by varying the duration of the test stimulus.
Previous studies have probed this recovery timescale extensively
and concluded that shorter test stimuli generate larger TAEs
(Wolfe, 1984; Magnussen and Johnsen, 1986; Harris and Calvert,
1989; Wenderoth and van der Zwan, 1989). The horizontal axes

FIGURE 6 | Short-term attractive tilt aftereffects with visible adapters.

Psychometric curves for one example subject, for three test durations: 50,

100, and 200ms. For the shortest duration of the test stimulus (50ms), the

perceived test orientation was significantly attracted toward the adapter.

Horizontal error bars show 95% confidence intervals on the estimated PSE.

in Figures 4B, 7 represent this recovery time scale, and these
figures show that our findings are consistent with those previous
reports; short test flashes produce larger aftereffects.

The second is the time scale of the induction of adaptation.
The duration of the adapter partially determines this time
scale and previous work has shown that TAE magnitude
increases with longer induction (Magnussen and Johnsen, 1986).
Importantly, the duration of the adapter on a single trial is
not the only determinant of the time scale of induction. In
fact, Magnussen and Johnsen (1986) showed that multiple short
presentations of the same adapter generate more adaptation
than a single long presentation with the same total duration.
This demonstrates that—as long as the adapter stays the same—
adaptation accumulates over multiple trials (This is likely part of
the reason why the commonly used top-up paradigm generates
large adaptation effects even with brief top-up adapters). In
previous work, the same adapter (or a small set of adapters)
was presented repeatedly. This allowed such paradigms to tap
into induction mechanisms operating on slow time scales, even
when individual adapters were presented only briefly (Sekuler
and Littlejohn, 1974).
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FIGURE 7 | Recovery time course of short-term tilt aftereffects. The figure

shows the change in PSE as a function of the test duration. For each of the

subjects, the aftereffect was attractive at the shortest test duration at which

they reliably performed the task (50 or 100ms). Error bars show 95%

confidence intervals based on Monte Carlo simulations (see section Methods).

In our experimental paradigm, adapter orientation was
randomized across trials. Therefore, adaptation could not
accumulate across trials in an orientation specific manner, and
this isolated the TAE that is generated on a short induction time
scale. There is therefore no contradiction between our finding
of an attractive (direct) TAE and previous reports of a repulsive
(direct) TAE; the separate induction time scales account for
the difference.

Time Scales
Although the time scale of the attractive TAE may seem short
in terms of traditional behavioral adaptation experiments, it
is actually well-matched to natural behavior. During normal
exploratory behavior, primates make eye movements two to
three times per second, hence new inputs arrive in the visual
system on a time scale of hundreds of milliseconds (Ibbotson and
Krekelberg, 2011). Our findings suggest that the V1 recurrent
network is well-suited for the need to integrate and amplify
information available within a typical fixation period.

Of course, recurrent network dynamics are unlikely to be
responsible for neural and behavioral response changes on
very long time scales. For instance, training on an orientation
discrimination task results in tuning changes in early visual
cortex (Schoups et al., 2001; Ghose et al., 2002). The link
between these neural changes and behavioral improvements
[i.e., perceptual learning (Watanabe and Sasaki, 2015)] is only
partially understood (Ghose et al., 2002; Teich and Qian, 2003)
and models that incorporate plastic changes (Teich and Qian,
2003; Chelaru and Dragoi, 2008; Ursino et al., 2008) are needed
to understand this link. In a recurrent network, however,
changes in connectivity can cause substantial changes in network
dynamics (e.g., Figures 3, 4 in Quiroga et al., 2016). This shows
that changes taking place on the slow time scale of learning
can influence dynamics at the rapid sub-second time scale.
Considering this aspect may help to generate testable predictions

for changes in neural response properties and how these affect
behavioral performance.

Motion
Kanai and Verstraten (2005) reported repulsive motion
aftereffects for long induction time scales, and attractive
motion aftereffects for induction time scales below 200ms. This
phenomenological similarity of the short-term aftereffects in
the motion and orientation domain is intriguing and suggests
that similar recurrent network mechanisms could underlie these
phenomena. This view is supported by theoretical and empirical
work demonstrating that recurrent network dynamics could play
a fundamental role in motion tuning (Mineiro and Zipser, 1998;
Joukes et al., 2014; Pachitariu and Sahani, 2017).

Because there is substantial interaction between orientation
and motion processing (Krekelberg et al., 2003; Kourtzi et al.,
2008), one can also ask whether motion signals may lead to
the short-term attractive TAE. In any adaptation paradigm, the
successive presentation of the adapter and test has the potential to
generate apparent motion signals, and theoretically, these could
affect the perception of orientation. This would be analogous
to the many ways in which translational motion can induce
a misperception of position (Krekelberg, 2001; Krekelberg and
Lappe, 2001; Müsseler et al., 2002). In our view, however, it is
unlikely that the apparent motion signal played an important role
in the perception of orientation in our experiments. First, the
phase of the adapter and test were randomized independently,
this should limit the strength of apparent motion. Second, in
the invisible adapter experiment the spatial frequency of the
adapter was higher than that of the test. This further reduces
the strength of apparent motion and yet, the attractive TAE
was of a similar magnitude. Of course, these arguments do not
preclude the possibility that stronger motion signals could affect
orientation adaptation. In fact, our recent findings show that
one link between the neural mechanisms of complex form and
motion processing is their reliance on recurrent connectivity
(Joukes et al., 2017). This predicts that some of the adaptation
effects resulting from recurrent connectivity could affect both
form and motion perception.

Neural Mechanisms
Previously, we showed that our model can account quantitatively
for the repulsive tuning curve shifts observed in V1 (Quiroga
et al., 2016). Here, we show that these repulsive tuning curve
shifts predict an attractive TAE. Although counterintuitive, this
apparent contradiction follows directly from the labeled line code
(Gilbert and Wiesel, 1990; Yao and Dan, 2001; Teich and Qian,
2003; Jin et al., 2005). Consider a neuron that normally prefers
0◦–in any labeled line decoder, spikes from this neuron are always
interpreted as evidence in favor of 0◦. Across a population of
labeled line neurons, the percept is given by the location of the
peak or center of the population activity. The statement that
“adaptation causes a repulsive tuning curve shift” means, for
example, that after adaptation at −10◦, the 0◦ neuron responds
most strongly to a 2◦ stimulus. That implies, however, that for
a 2◦ stimulus, the population activity is centered on 0◦. And
this, in turn, means that the 2◦ stimulus is decoded as 0◦. In
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other words, the 2◦ stimulus is attracted to the −10◦ adapter.
The inversion from repulsion to attraction occurs because the
former describes tuning curves (the response of a single neuron
to different stimuli; a theoretical construct that exists only across
trials), while the latter describes population activity (the response
of many neurons to a single stimulus; this construct exists in each
trial and underlies perception). For a more extensive discussion
of these issues in the context of speed perception see Krekelberg
et al. (2006b).

In our model, repulsive tuning curve shifts (and therefore the
attractive TAE) results from the persistence of neural activity
evoked by the adapter. This persistence is determined by the
strength of the recurrent connections (as discussed in detail
by Quiroga et al., 2016) and results in a predicted recovery
time scale of the aftereffect on the order of a few 100ms
(Figure 1). Given that the model parameters were determined
solely from the macaque V1 responses, the match between the
model prediction and the behavioral results is surprisingly good
and supports our claim that recurrent connections could underlie
this behavioral effect.

Quantitatively, the model (Figure 1) predicts a larger TAE
than we observed in our subjects. Part of this could be
explained by well-known, but uncontrolled experimental factors.
For instance, occasional reductions in attentional focus would
reduce adaptation (Rezec et al., 2004) and fixational instability
during the brief presentation of the adapter could also reduce
adaptation. Our data provide support for the latter hypothesis;
the interquartile range of fixational eye positions during the
presentation of the adapter was negatively correlated with the
TAE (Pearson r =−0.7; p= 0.03).

At the same time, because the model parameters were
constrained only by data obtained in the anesthetized
macaque, a mismatch between the model and human
behavior should not be too surprising. The magnitude
of tuning curve shifts increases when excitatory lateral
connections are narrowly tuned, when inhibitory
connections are broadly tuned, or when the overall
strength of lateral connections is large compared to
the afferent thalamic input (Quiroga et al., 2016). Most
likely, these parameters are not the same across species,
or even across individuals, or across retinal location
within an individual. This implies that a range of TAE
magnitudes is to be expected, just as the magnitude of
tuning curve shifts also varies considerably across studies
(Dragoi et al., 2000; Felsen et al., 2002; Patterson et al., 2013).

It would be interesting to find better methods to constrain
model parameters. In principle, it should be possible to use
behavioral responses to sequences of oriented gratings to infer
the underlying functional connectivity in a network model.
However, this problem is ill-constrained and adaptation is a
poor replacement for an electrode (Krekelberg et al., 2006a;
Sawamura et al., 2006; Hegdé, 2009; Solomon and Kohn, 2014;
Kar and Krekelberg, 2016). Nevertheless, we believe that progress
could be made by using carefully tailored paradigms, and models
that are constrained not only by behavioral data, but also by
the properties of rapid adaptation at the single neuron level
(Benucci et al., 2009).

Function
In our model, the short-term attractive TAE can be attributed to
repulsive tuning curve shifts, which are caused by the pushing
and pulling of population activity in a network with Mexican
hat shaped recurrent connectivity (Quiroga et al., 2016). This
connectivity pattern has many potential benefits. For instance,
it sharpens orientation tuning and amplifies weak signals
(Carandini and Ringach, 1997; Hahnloser et al., 2002; Teich and
Qian, 2003), or it can implement a statistical prior assumption
that changes in the sensory input are typically small (Deneve
et al., 2001; Schwartz et al., 2007). The attractive TAE could
therefore be interpreted as a side effect of such mechanisms that
optimize orientation processing. The fact that these side-effects
are not immediately obvious from themodel, but require detailed
simulations and exploration, attests to the fact that even simple
recurrent networks can generate surprisingly complex responses.
Phrased more positively, recurrent networks can underlie highly
complex functionality. For instance, recurrent networks are able
to implement rudimentary forms of memory that are needed
in motion detection (Joukes et al., 2014), generate sensitivity
for higher-order statistics (Joukes et al., 2017), or amplify weak
stimuli in a state-dependent manner (Rutishauser and Douglas,
2009). These are elementary computations that are useful in
perception and cognition and may be a reason why recurrent
connections are ubiquitous across cortex.

Alternative Models
The attractive TAE can be seen as an example of temporal
integration; the response to the test is integrated with the
response to the adapter and therefore the test looks like
the adapter. This is an appealing, simple phenomenological
description, but our goal is to understand the underlying
neural mechanisms. In other words, one can postulate that
a hill of persisting activity represents the adapter in a set of
orientation-tuned neurons, and the interaction of this persisting
activity with activity generated by the test could result in
an attractive aftereffect. This description, however, does not
answer the question of how such persistence is generated.
Our model provides one answer to this question: we propose
that recurrent connections lead to persistence and underlie
temporal integration. In the model, the recurrent connections
are necessary to explain an attractive TAE that lasts 50–100ms
(Figures 4, 7) because without them persistence is short, as
activity dissipates on the time scale of the membrane time
constant (8 ms).

There may well be other answers to the question of what
generates (or contributes to) the persistence and temporal
integration. For instance, prolonged exposure to visual input
could affect the state or dynamics of slow channels and
thereby result in persisting activity, or at least subthreshold
depolarization, on a time scale of several 100ms in individual
neurons. Experimental data from cat visual cortex, however,
show that prolonged exposure to visual input hyperpolarizes
neurons by opening K-channels, and reduces their spiking
activity (Sanchez-Vives et al., 2000a,b). The model shows that
such effects shorten the recovery time course, and, when spike
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rate suppression is large enough, result in a repulsive, not an
attractive TAE (Figure 1C).

Another possibility is that exposure to the adapter strengthens
lateral connections between V1 neurons. This can generate
repulsive tuning curve shifts (Felsen et al., 2002) and would
therefore also lead to attractive aftereffects. To explain our
findings, however, one would have to assume that a single 200ms
presentation of an adapter is sufficient to change the effective
synaptic connectivity between neurons. We are not aware of
experimental data that support the existence of such rapid
plasticity in V1. Instead, plasticity is typically observed after the
repeated exposure to the same (pairs of) stimuli (Yao and Dan,
2001). Just like the traditional TAE paradigm, this potentially taps
into slow mechanisms that accumulate over seconds, even if the
individual stimulus presentations are brief.

Of course, the neural mechanisms underlying the TAE need
not be restricted to V1. The orientation-specificity of the TAE,
however, demonstrates that the integrators must be orientation-
tuned, which argues for at least a cortical locus. In addition, the
finding that the TAE occurs even without conscious awareness of
the adapter orientation (as in our invisible adapter experiment)
suggests that its neural locus is relatively early (pre-attentive) in
visual processing (Clifford, 2014). While it is certainly possible,
ultimately even desirable, to construct a model that spans all
levels of visual processing, it is difficult to constrain such a model
with currently available experimental data.

In summary, in Quiroga et al. (2016) we proposed that
recurrent network connections could underlie tuning curve shifts
in V1 and supported this model with electrophysiological data.
Here we used the recurrent network model, fully constrained
by neural data, to generate novel predictions about orientation
perception. Our experiments confirmed the predicted attractive
TAE. Because the model uses only well-supported patterns
of recurrent connectivity, it is a parsimonious, mechanistic
explanation of repulsive shifts in short-term tuning curves and
the short-term attractive TAE. We emphasize, however, that
neither the electrophysiological nor the current behavioral data
prove that the model is correct, or that recurrent connections are
necessary to explain these phenomena. Such proofs of necessity
are fundamentally beyond the purview of models. Instead,

model value derives from the ability to generate conceptually
novel understanding of neural processing and experimentally
testable hypotheses.
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