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The leading cause of morbidity and mortality in cystic fibrosis (CF) is progressive lung
disease secondary to chronic airway infection and inflammation; however, what drives CF
airway infection and inflammation is not well understood. By providing a physiological
snapshot of the airway, metabolomics can provide insight into these processes. Linking
metabolomic data with microbiome data and phenotypic measures can reveal complex
relationships between metabolites, lower airway bacterial communities, and disease
outcomes. In this study, we characterize the airway metabolome in bronchoalveolar
lavage fluid (BALF) samples from persons with CF (PWCF) and disease control (DC)
subjects and use multi-omic network analysis to identify correlations with the airway
microbiome. The Biocrates targeted liquid chromatography mass spectrometry (LC-MS)
platform was used to measure 409metabolomic features in BALF obtained during clinically
indicated bronchoscopy. Total bacterial load (TBL) was measured using quantitative
polymerase chain reaction (qPCR). The Qiagen EZ1 Advanced automated extraction
platform was used to extract DNA, and bacterial profiling was performed using 16S
sequencing. Differences in metabolomic features across disease groups were assessed
univariately using Wilcoxon rank sum tests, and Random forest (RF) was used to identify
features that discriminated across the groups. Features were compared to TBL and
markers of inflammation, including white blood cell count (WBC) and percent neutrophils.
Sparse supervised canonical correlation network analysis (SsCCNet) was used to assess
multi-omic correlations. The CF metabolome was characterized by increased amino acids
and decreased acylcarnitines. Amino acids and acylcarnitines were also among the
features most strongly correlated with inflammation and bacterial burden. RF identified
strong metabolomic predictors of CF status, including L-methionine-S-oxide. SsCCNet
identified correlations between themetabolome and the microbiome, including correlations
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between a traditional CF pathogen, Staphylococcus, a group of nontraditional taxa,
including Prevotella, and a subnetwork of specific metabolomic markers. In conclusion,
our work identified metabolomic characteristics unique to the CF airway and uncovered
multi-omic correlations that merit additional study.
Keywords: cystic fibrosis, metabolomics, microbiota (16S), pediatrics, bronchoalevolar lavage,
infection, inflammation
INTRODUCTION

Progressive obstructive lung disease is the leading cause of
morbidity and mortality in persons with cystic fibrosis
(PWCF) (Gibson et al., 2003; Rowe et al., 2005); however, the
complex interplay between bacterial communities infecting the
lower airway, inflammation, and lung destruction remains to be
defined. Despite the development of exciting new therapies that
have been shown to improve clinical outcomes (Rowe et al.,
2014; Bernarde et al., 2015; Hisert et al., 2017), airway infection
and inflammation are persistent in PWCF. While chronic
infection is a hallmark of CF lung disease (Govan and Nelson,
1992; Sagel and Accurso, 2002; Gibson et al., 2003; Nichols et al.,
2008), the inflammatory response is persistent and heightened
relative to bacterial burden and has been observed in the CF
airway even in the absence of infection in both human and
animal models (Hendry et al., 1999; Sagel and Accurso, 2002;
Chmiel and Davis, 2003; ChmiEL and Konstan, 2010; Keiser
et al., 2015; O’Connor et al., 2021). Improving our understanding
of the pathophysiological processes associated with airway
infection and inflammation can provide insight into the
mechanisms of CF lung disease and identify therapeutic targets.

Detecting, identifying, and treating infections in the lower
airway are cornerstones of clinical management to preserve lung
function in CF; however, surveillance cultures of airway secretions
alone have limitations based on sample type and scope. While
molecular-based approaches like 16S ribosomal RNA (rRNA)
sequencing have identified communities of bacteria present in
the upper and lower airways of PWCF that may diversify and
shift over time (Coenye et al., 2002; Rogers et al., 2004; Sibley et al.,
2006; Bittar et al., 2008; Willner et al., 2012; Lim et al., 2014; Hoen
et al., 2015; LiPuma, 2015; Tracy et al., 2015; Prevaes et al., 2016;
Feigelman et al., 2017; Jorth et al., 2019), this method in isolation
does not provide insight into active community metabolism and
dynamics of an ever-shifting airway environment (Quinn et al.,
2016). Metabolomics, which profiles endogenous and microbial
metabolites within biological specimens, can provide a
comprehensive physiological snapshot of metabolic activity in
the lower airway environment, help identify putative biomarkers
of disease, and shed light on the mechanisms of infection and
disease pathogenesis (Serkova et al., 2011). Combining the power
of mass-spectrometry (MS) based metabolomic approaches with
16S rRNA sequencing data can provide unique and valuable
insight into the mechanisms driving infection and inflammation
in the CF airway (Quinn et al., 2016).

While metabolomics has been performed on samples from
PWCF, including sputum (Jones et al., 2000; Palmer et al., 2007;
gy | www.frontiersin.org 2
Bensel et al., 2011; Yang et al., 2012; Twomey et al., 2013; Quinn
et al., 2016) and exhaled breath (Barker et al., 2006; Celio et al., 2006;
Newport et al., 2009; Robroeks et al., 2010; Montuschi et al., 2012;
Monge et al., 2013), studies in bronchoalveolar lavage fluid (BALF)
have been limited. Previous work characterizing the BALF
metabolome has identified metabolites associated with
inflammation, bronchiectasis, and structural lung disease (Wolak
et al., 2009; Esther et al., 2015; Esther et al., 2016); however, those
studies were limited in sample number and did not include non-CF
DC subjects, which can provide valuable comparisons to identify
CF-specific metabolomic signatures (Masood et al., 2021).
Furthermore, those studies did not compare metabolomic
features with the lower airway microbiome. Modern multi-omics
approaches that link metabolomic and microbiome genomic data
have the power to reveal complex relationships between
metabolites, lower airway bacterial communities and phenotypic
measures (Chen et al., 2013; Quinn et al., 2016; Shi et al., 2019).
Previous workwith themicrobiome andmetabolome in CF sputum
has highlighted complex relationships between bacterial
communities, metabolomic characteristics, and clinical features
(Twomey et al., 2013; Quinn et al., 2016; Quinn et al., 2019;
Hahn et al., 2020; Raghuvanshi et al., 2020). Increased abundance
of CF pathogens has been found to correlate with metabolomic
disease states characterized by increased peptides and amino acids
(Quinn et al., 2019) and with increased markers of inflammation
(Zemanick et al., 2015). Additionally, strong correlations have been
identified between the presence of strict anaerobes in sputum and
the abundance of putrescine, pyruvate, and lactate (Twomey et al.,
2013). While we would expect to see similar correlations between
microbes and metabolomic features in the lower CF airway, no
multi-omics correlations have been reported in bronchoalveolar
lavage fluid (BALF) to date.

Through the integration of targeted metabolomics, microbiome
data, and phenotypic measures, including cellular markers of
inflammation, our objective was to apply a modern multi-omics
network analysis approach to investigate the complex relationships
between the airway microbiome and metabolomic features in
BALF from PWCF across the age spectrum.
MATERIALS AND METHODS

Study Design and Population
Stored BALF previously collected from PWCF and DCs
undergoing clinically indicated bronchoscopies under
institutional IRB-approved protocols at multiple sites throughout
March 2022 | Volume 12 | Article 805170
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the United States was used. BALF from PWCF was collected at 13
CF centers as part of a previous multi-center study (Zemanick
et al., 2017). BALF from DC subjects, defined as those without a
confirmed diagnosis of CF, was collected at Children’s Hospital of
Colorado and the University of Minnesota. Associated
demographic and clinical data, including comorbidities, lung
function measures, cell counts, and culture data, were collected
through the electronic medical record and the Cystic Fibrosis
Foundation Patient Registry (CFFPR). Informed consent,
adolescent assent, and parental permission along with HIPPA
(Health Insurance Portability and Accountability Act of 1996)
authorization from subjects and/or legal guardians was obtained
according to each individual site’s IRB rules and regulations.

Sample Collection and Processing
Flexible bronchoscopy with lavage was performed on subjects in
accordance with each site’s standard of care guidelines and
leftover BALF was collected and stored for research. Neat
unprocessed samples were directly aliquoted and set aside, and
volume permitting, remaining sample was centrifuged at 250 x G
for 10 minutes at 4°C followed by separation of supernatant
and pellet. Then, following that separation, the supernatant was
centrifuged again at 4000 x G for 20 minutes at 4°C and separated
again. Finally, all neat, pellet, and supernatant samples were
aliquoted and stored at -80°C. All samples were shipped to
Lurie Children’s Hospital of Chicago, the central site for sample
storage, on dry ice. Similarly, samples were shipped on dry ice to
collaborating sites, which included Children’s Hospital Colorado,
where quantitative polymerase chain reaction (qPCR) and 16S
rRNA sequencing were performed, and the University of
Minnesota, where metabolomic profiling was conducted.

Metabolomic Profiling
Supernatant samples were vortexed and centrifuged again at
5000 x G for 5 minutes at 4°C followed by separation of the pellet
and supernatant for the removal of additional debris. 200 mL of
supernatant was manually loaded onto the Biocrates Life
Sciences Absolute IDQ p400 HR (Biocrates Life Sciences
catalog number 21018) deep 96-well polypropylene plate.
Samples were pipetted in four 50 µL increments. The addition
of each increment was followed by drying under liquid nitrogen
for 30 minutes. The supernatant was pipetted into the designated
well in a randomized plate layout created in MetIDQ and the
plate was sealed with a clean silicon mat. A Thermo Scientific, Q
Exactive TM, Hybrid Quadrupole-Orbitrap TM, mass
spectrometer equipped with a Thermo Scientific Ultimate 3000
UHPLC and an autosampler was used for metabolomic
characterization analysis. The autosampler was set to collect
eluent from 0.2 to 1.5-minute retention times. The Xcalibur
Qual Browser software was used for MS data processing.
Metabolomic feature concentrations were quantified using the
integrated MetIDQ Biocrates software (Wenk, 2005). The
Biocrates platform was used to measure a total of 409
metabolomic features set by the manufacturer using isotope-
labeled calibration standards from 8 different families (number
of features), including Acylcarnitines (55), Amino Acids (21),
Biogenic amines (21), Cholesterol Esters (14), Glycerides (60),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Glycerophospholipids (197), Sphingolipids (40), and Sugars (1).
Features included groups of isomers that could not be separated
by chromatography. In addition to BALF samples and
calibration standards, on each plate, 3 zero sample replicates
were used for background noise calculation, 1 blank sample was
used for background subtraction, and 3 plasma quality control
samples spiked with different amounts of isotope-labeled internal
standard were used to assess variation between plates. The mid-
level plasma quality control sample was pipetted after every 20
wells of the plate to assess variation between plate well locations.
The limit of detection (LOD) for each metabolomic feature was
calculated using the MetIDQ software and was equal to 3 times
the median background noise approximation.

Microbiome Analysis
Detailed information regarding the microbiome analysis is
included in the supplementary material. Briefly, the Qiagen EZ1
advanced automated extraction platform (Qiagen, Valencia, CA,
USA) was used to extract DNA from the samples in accordance
with the manufacturer’s instruction. Total bacterial load (TBL)
was measured using a quantitative polymerase chain reaction
(qPCR) assay as previously done on CF BALF samples (Nadkarni
et al., 2002; Zemanick et al., 2010; O’Connor et al., 2021). Broad
range amplification and sequence analysis of the V1/V2 variable
region (27F/338R) of the 16S rRNA gene was used to profile
airway bacterial taxa in a process previously reported (Hara et al.,
2012;Markle et al., 2013; Laguna et al., 2016; Zemanick et al., 2017;
O’Connor et al., 2021). All unique sequences were assigned
taxonomic information using SINA (Pruesse et al., 2012).
Operational taxonomic units (OTUs) were generated by totaling
counts for sequences assigned to the same taxonomic group.

Data Processing and Statistical Analysis
For the analysis of demographic data, categorical variables were
compared across disease groups using Chi-squared tests and
Fisher’s exact tests, and comparison of numerical variables across
groups was performed using Wilcoxon rank-based tests. For
metabolomic analysis, preprocessing was performed using
MetaboAnalystR (v3.0.3). Features with 50% of the values
outside the limit of detection and features with constant values
across the sample set were excluded from analysis. Missing
values were imputed using K-nearest neighbors (KNN)
imputation, which has been previously described (Troyanskaya
et al., 2001). Metabolomic feature concentrations were scaled and
centered for normalization prior to all analyses. Differences in
feature concentrations across disease groups were assessed
univariately using Wilcoxon rank sum tests, p-values were
corrected using false discovery rate (Benjamini and Hochberg,
1995), and fold change was calculated as the ratio between group
means using data before column normalization. Random forests
consisting of 5,000 classification trees were used to identify the
subset of top metabolomic features which best discriminated
across the groups (Breiman, 2001). Relationships between
metabolomic features and inflammatory cell markers and TBL
were assessed using Spearman correlations. A canonical
correlation-based approach was used to evaluate associations
between metabolomics and 16S rRNA gene sequencing data
March 2022 | Volume 12 | Article 805170
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(SsCCNet function in R) for the subset of samples with both data
types. Phenotypes of interest included CF status, which was
determined based on whether the subject had a confirmed
diagnosis of CF, as well as markers of inflammation, which
included white blood cell count and percent neutrophils. Sparse
supervised canonical correlation network analysis (SsCCNet) on
all the samples incorporated the CF phenotype. Network analysis
was also run on the CF only sample set both unsupervised (no
phenotypic outcome) and incorporating inflammation as the
phenotypic variable (Shi et al., 2019). Statistical analyses were
performed with R version 3.5.1 (R Foundation for Statistical
Computing, Vienna Austria).
RESULTS

Study Population
Ninety BALF samples were collected, which included 68 (76%)
from PWCF and 22 (24%) from DCs. Demographics and
relevant clinical characteristics are presented in Table 1.
PWCF had more airway inflammation and more positive
BALF cultures (p=0.01), with higher rates of Pseudomonas
aeruginosa (p=0.02) and methicillin-susceptible Staphylococcus
aureus (p=0.02). PWCF were over three times as likely to be
treated with antibiotics at the time of sample collection (p<0.01).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Indications and primary diagnoses of DC samples are
summarized in Supplementary Table 1.

Metabolomics Analysis
409 features were measured in BALF. There were 470 (1.3%)
values outside the limit of detection. Five acylcarnitines were
excluded for having over 50% of the values outside the limit of
detection, and an additional 3 features, including 2
glycerophospholipids and 1 sphingolipid, were excluded for
having constant values across the sample set, resulting in a
total of 401 features being included in the analysis.

CF BALF had notably higher concentrations of amino acids
and lower concentrations of acylcarnitines compared to DCs
(Figure 1) . Additional differences included several
glycerophospholipids as well as sphingomyelin (39:2), which
were significantly higher in the DC group (FDR p-value =
0.01), and L-methionine S-oxide, which was significantly
higher in the CF group (FDR p-value < 0.01). Random forest
classification using Biocrates metabolomic features had a
predictive accuracy of 81.1% in classifying CF and DC samples.
Strong predictors of CF status from the random forest included
lysophosphatidylcholine (12:0), the biogenic amine L-
methionine S-oxide (Met-SO), and acylcarnitine (0:0)
(Figure 2A). Lysophosphatidylcholine (12:0) and acylcarnitine
(0:0) concentrations were lower and L-methionine S-oxide
TABLE 1 | Data are presented as n, median (range) or n (%), unless otherwise stated.

CF (n = 68) Disease Control (n = 22) P-value

Age years, median (range) 12 (0.5-28.0) 7.2 (1.3-19.0) 0.07
<2 years, number (%) 4 (6%) 3 (14%) 0.21*
2-5 years, number (%) 9 (13%) 5 (23%)
6-10 years, number (%) 16 (24%) 7 (32%)
11-17 years, number (%) 26 (38%) 6 (27%)
18 years and older, number (%) 13 (19%) 1 (5%)

Female, number (%) 32 (47%) 12 (55%) 0.54
Weight (kg), median (range) (data available) 43.0 (6.4-87.0) (N=64) 27.2 (9.9-83.0) (N=22) 0.18
Height (cm), median (range) (data available) 149.7 (64.5-185.4) (N=64) 125.7 (74.0-181.9) (N=22) 0.12
Genotype, data available N=59 N/A :_
F508del/F508del, number (%) 37 (63%) N/A :_
F508del/other, number (%) 17 (29%) N/A :_
Other/other, number (%) 5 (8%) N/A :_

FEV1 % predicted, median (range) (data available) 80.5 (41.0-125.0) (N=50) 87.5 (38.0-121.0) (N=12) 0.19
BALF Cell Counts, data available N=68 N=22
White blood cells, median (range) (data available) 620.0 (0.0-41167.0) (N=68) 231.0 (38.0-2555.0) (N=22) 0.34
Percent Neutrophils, median (range) (data available) 67.0 (0-100.0) (N=57) 4.5 (1.0-100.0) (N=22) <0.01
Percent Lymphocytes, median (range) (data available) 3.0 (0-28.0) (N=55) 10.0 (0-65.0) (N=22) 0.02

BALF culture results, data available N=64 N=19
Negative, number (%) 17 (27%) 11 (58%) † 0.01
Pseudomonas aeruginosa, number (%) 16 (25%) 0 (0%) 0.02*
MSSA, number (%) 16 (25%) 0 (0%) 0.02*
MRSA, number (%) 9 (14%) 0 (0%) 0.19*
Haemophilus influenzae, number (%) 4 (6%) 0 (0%) 0.57*
Stenotrophomonas maltophilia, number (%) 13 (20%) 0 (0%) 0.06*
Achromobacter xylosoxidans, number (%) 2 (3%) 0 (0%) 0.99*
Burkholderia cepacia, number (%) 1 (2%) 0 (0%) 0.99*
Nontuberculous mycobacteria, number (% positive with NTM testing) (number with test done) 5 (8%) (N=60) 1 (5%) (N=22) 0.99*

Antibiotic Use number (% of those with data available) (number with data available) 40 (63%) (N=64) 4 (20%) (N=20) <0.01*
Ma
rch 2022 | Volume 12 | Article
CF, cystic fibrosis; FEV1, forced expiratory volume in 1 s; BALF, bronchoalveolar lavage fluid; MSSA, methicillin-susceptible Staphylococcus aureus; MRSA, methicillin-resistant
Staphylococcus aureus; N/A, not applicable. *P-value calculated using Fisher’s exact test †Of the 8 positive cultures: 2 detected Actinomyces; 2 Streptococcus Pneumonia; 2 Mixed
Upper Respiratory Flora; 1 Beta Hemolytic Strep Group A and 1 Moraxella catarrhalis & streptococcus pneumoniae.
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concentrations were higher in PWCF (Supplementary
Figure 1). The first two dimensions of the multidimensional
scaling (MDS) plot from the proximity matrix indicate a lack of
separation between PWCF and DC subjects for about one-third
of the CF samples, the remaining CF samples are grouped in a
distinct cluster (Figure 2B).

Correlations Between Metabolomic
Features and Measures of Infection
and Inflammation
The 50 metabolomic features most strongly correlated with white
blood cell count and percent neutrophils are displayed in
Figure 3. Amino acids were among the metabolomic features
most positively correlated with white blood cell count and
percent neutrophils, while glycerides, glycerophospholipids,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
and acylcarnitines were among the features most negatively
correlated (Figures 3A, B). Similar correlations were observed
with total bacterial load, as measured by qPCR (Figure 3C). The
Spearman correlations broken down by CF status are displayed
in Supplementary Figure 2.

Sequencing and Network Analysis
Of the 90, 57 of the samples had sufficient load for sequencing,
which included 47 (70%) of the CF samples and 10 (45%) of the
DC samples. Demographics and relevant clinical characteristics
for the samples with sufficient load for sequencing are presented
in Supplementary Table 2. Relative abundances are displayed in
Supplementary Figure 3. The median number of taxa identified
in the entire sample set was 18, with the number of taxa
identified ranging from 2 to 82. When split by CF status,
A B

FIGURE 2 | (A) Random forest multiway importance plot showing mean decrease Gini verses mean decrease in accuracy, with important metabolic features
identified by both criteria labeled and point colored by class (B) multidimensional scaling plot of the proximity matrix, red circles corresponding to CF samples, and
blue triangles corresponding to disease control samples.
FIGURE 1 | Volcano plot of metabolites organized by class, with the y-axis being -log10(FDR p-value) from a Wilcoxon rank sum test and the x-axis being log2(fold
change) of the values prior to column-wise normalization. Points higher up on the y axis indicate features with greater significance. Points on the left side indicate
features found in less abundance in CF samples and points on the right side indicate features found in greater abundance in CF samples.
March 2022 | Volume 12 | Article 805170
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medians (ranges) of taxa detected included 17 (2-74) taxa for CF
samples and 55 (10-82) taxa for DC samples (p<0.01). Sparse
supervised canonical correlation analysis (SsCCA) performed on
the entire sample set revealed subnetwork variation between
PWCF and DCs. Notably, the networks contain mostly weak
associations between metabolomic features and microbial taxa.
The subnetwork with the strongest correlations is shown in
Figure 4, and included a subnetwork with 16 taxa nodes,
including the traditional CF pathogen, Staphylococcus, and
nontraditional pathogens, Prevotella, Streptococcus, and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Veillonella, that were correlated with a network of 19
metabolomic features, including 8 glycerophospholipids, 6
amino acids, 2 biogenic amines, and 3 acylcarnitines. Notably,
in PWCF, L-methionine S-oxide was negatively correlated with
the anaerobic taxa Prevotella, Streptococcus, and Veillonella and
positively correlated with the traditional CF-pathogen
Staphylococcus (Supplementary Figure 4). An additional
subnetwork is included in the supplementary material
(Supplementary Figure 5).

SsCCA was performed again on just the samples from PWCF,
using no phenotypic outcome as well as white blood cells and
percent neutrophils as the phenotypic outcomes (Figure 5).
Interestingly, similar networks were identified in the CF
samples, regardless of phenotype. Each analysis resulted in one
subnetwork with taxa nodes including nontraditional CF
pathogens, Fusobacterium, Neisseria, Veillonella, Prevotella, and
Streptococcus that were correlated with a mixed network of
amino acids, glycerophospholipids, acylcarnitines, and
sphingolipids (Figure 5). Additional subnetworks are included
in the supplementary material (Supplementary 6).
DISCUSSION

In this study, we harnessed the power of metabolomics and
microbiome data to comprehensively assess the complex
interplay between infection and inflammation in the lower
airways of PWCF across the age spectrum. We determined
differences in the lower airway metabolome between PWCF and
DC subjects using the gold standard BALF sample. By
characterizing the metabolome in BALF with the Biocrates
platform, we identified metabolomic characteristics unique to
the lower CF airway and identified relationships between
metabolomic features and measures of infection and
inflammation. By integrating metabolomics data with
FIGURE 4 | Trimmed module subnetwork identifying microbiome-
metabolome correlations with the CF phenotypic outcome. Yellow edges
indicate positive correlations and turquoise edges indicate negative
correlations. Wider network edges indicate stronger correlations. Blue nodes
are taxa identified in 16S and black nodes are metabolites.
A B C

FIGURE 3 | Correlations between metabolite concentrations and (A) the logarithm of white blood cell count, (B) percent neutrophils, and (C) TBL. Bottom of the y-
axis are the most negatively correlated and the top of the y-axis are the most positively correlated. Metabolites are color coded by class, and only the 50 most
strongly correlated metabolites were included.
March 2022 | Volume 12 | Article 805170
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microbiome data acquired through 16S sequencing, we were able
to determine hypothesis-generating multi-omics correlations.
Based on previous work, we expected to see correlations
between the microbiome and metabolomic markers associated
with inflammation, proteolytic activity, and anaerobic glycolysis as
has been previously shown in sputum (Twomey et al., 2013;
Zemanick et al., 2015; Quinn et al., 2019). In our study, using
BALF, we expanded upon previous findings and identified
additional complex relationships between metabolomic features
and bacterial communities present in the lower airways of PWCF
and DC subjects providing unique insight into the active
metabolism within the airway environment.

The metabolome of the CF airway had increased amino acids
and decreased acylcarnitines compared to DC children,
identifying potential biomarkers of an inflamed CF lower
airway. Previous studies have shown increased amino acid
concentrations in CF serum and sputum (Barth and Pitt, 1996;
Masood et al., 2021), as well as decreased acylcarnitine
concentrations in CF plasma (Kovesi et al., 1994). Our findings
demonstrate the potential utility of using acylcarnitine and
amino acid concentrations as biomarkers of CF, indicating
there may be key differences in amino acid and fatty acid
metabolism in the CF airway. Amino acids and acylcarnitines
were also correlated with inflammation, as measured by white
blood cell count and percent neutrophils, and bacterial burden,
as measured by qPCR, in the entire sample set and specifically in
CF BALF samples. The correlation between inflammation and
amino acid concentration has been well documented in CF
(Wolak et al., 2009; Esther et al., 2015) and amino acids have
been known to play a crucial role in host-pathogen metabolomic
crosstalk (Ren et al., 2018). Acylcarnitines have also been
implicated in inflammatory signaling (Rutkowsky et al., 2014),
suggesting that those two defining features of the lower CF
airway may coincide with altered CF immune response to
infection. Random forest analyses revealed strong predictors of
a CF status in the airway, including lysophosphatidylcholine
(12:0), which was found to be in lower concentrations in PWCF.
Decreased lysophosphatidylcholine has been previously reported
in CF tracheobronchial secretions (Slomiany et al., 1982), so our
results further emphasize altered lipid metabolism in the CF
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
airway (Yang et al., 2012). Another predictor of CF status, L-
methionine-S-oxide, is a byproduct of the oxidation of
methionine by myeloperoxidase in periods of oxidative stress
(Pattison and Davies, 2001; Denkel et al., 2011) and is correlated
with structural lung damage and airway neutrophils in early
stages of CF (Chandler et al., 2018). Overall, our characterization
of the CF metabolome paints a picture of a highly inflamed lower
airway where enhanced immune response and corresponding
neutrophilic influx may be resulting in more free amino acids,
altered lipid metabolism, and increased production of damaging
reactive oxygen species.

SsCCA revealed complex and intriguing multi-omic
correlations between the metabolome and the microbiome,
characterized by 16S sequencing. In the trimmed subnetwork
with the strongest correlations, we observed relationships
between Staphylococcus, a known CF pathogen, anaerobic taxa,
including Prevotella, Streptococcus, Veillonella, and Fusobacterium,
and a subnetwork of metabolomic features made up of mostly
amino acids and glycerophospholipids. Previous findings have
already shown traditional CF pathogens to be associated free
peptides and amino acids in sputum (Quinn et al., 2019),
however our work expanded on that identifying anaerobic
bacteria as other correlates with airway proteolytic activity.
Among the other features in the subnetwork were acylcarnitine
(0:0) and L-methionine-S-oxide, two of the strongest predictors of
a CF status in BALF from random forest, which suggests that the
composition of the CF airway metabolome may be defined by the
polymicrobial bacterial communities present within it.

L-methionine-S-oxide displayed the strongest correlations in
the subnetwork of all BALF samples, being strongly positively
correlated with Staphylococcus and negatively correlated with
anaerobes in the CF lower airway. Review of the scatter plots of
the L-methionine-S-oxide indicated that, while strong correlations
were observed in the normalized data, unnormalized data had
varying ranges of the metabolite present. L-methionine-S-oxide
was decreased in the DC samples with CF subjects having an
increased range of concentrations measured. In CF BALF,
decreased concentrations of this metabolite were associated with
varying relative abundances of Prevotella, Veillonella, and
Streptococcus, while increased concentrations were associated
A B C

FIGURE 5 | Trimmed module subnetworks identifying microbiome metabolome correlations with no phenotypic outcome (A), WBC phenotype (B) and percent
neutrophil outcome (C). Yellow edges indicate positive correlations and turquoise edges indicate negative correlations. Wider network edges indicate stronger
correlations. Blue nodes are taxa identified in 16S and black nodes are metabolites.
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with significantly decreased abundances of those taxa. Therefore,
the concentration of this L-methionine-S-oxide biomarker appears
to be dependent on other taxa present, like Staphylococcus, which
was positively correlated in CF, confirming the likely polymicrobial
nature of the lower CF airway. The additional positive correlations
observed between L-methionine-S-oxide and other amino acids in
the subnetwork further demonstrates the potential utility of using
that biogenic amine as a biomarker of infection and inflammation
in CF lung disease, which has been previously shown (Chandler
et al., 2018). Previous studies have demonstrated an inverse
relationship between the presence of anaerobes and traditional
CF pathogens (Zemanick et al., 2017; O’Connor et al., 2021), with
in vitro studies suggesting anaerobes prime the CF lung for chronic
infection of traditional pathogens like Pseudomonas aeruginosa
(Flynn et al., 2016). Therefore, the dual opposite correlations
observed between L-methionine-S-oxide and anaerobes and
Staphylococcus, along with its correlation with infection and
inflammation, indicate that L-methionine S-oxide could be a
crucial metabolite involved in microbial cross talk. It could be a
defining feature of the CF airway metabolome that correlates with
the CF lung’s intense inflammation and enhanced bacterial burden
which sets the stage for chronic infection and lung damage and
should be further investigated.

Additional multi-omic networks in this study demonstrated
several weaker relationships between metabolomic features and
taxa, including the subnetwork demonstrating correlations
between traditional CF pathogens Pseudomonas and
Stenotrophomonas and amino acids within the CF BALF
samples, which merits further investigation. When observing
subnetworks found in only the CF samples using unsupervised
SsCCNet and SsCCNet incorporating inflammation as the
phenotypic variable, we saw similar classes of weaker
subnetworks with and without the inflammation phenotype.
This suggests that even when inflammation is not specifically
incorporated into the correlation analysis, the same subnetworks
of typical CF pathogens are seen, indicating that inflammation
may be a natural driver of metabolome-microbiome correlations.

Our study is not without limitations. BALF samples were
collected from multiple sites, so although processing was
conducted in the same way, sample collection was not performed
uniformly at each institution. Similarly, because all BALF samples
were collected from clinically indicated bronchoscopies mostly
during periods of illness, metabolomic characterization of these
samples is not representative of baseline stability. PWCF were also
more frequently undergoing antibiotic treatment at the time of
sample collection, which can impact the features of the airway
metabolome (Hahn et al., 2020; Raghuvanshi et al., 2020).
Furthermore, PWCF were slightly older in age at collection,
which can correspond to changes in the airway microbiome
(Zemanick et al., 2017; O’Connor et al., 2021). While changes in
the airway metabolome have been observed in short longitudinal
studies (Hahn et al., 2020; Raghuvanshi et al., 2020), the dynamics
of the CF airway metabolome across the age spectrum require
further investigation. Additionally, because our DC subjects, which
were limited in sample number, had a variety of diagnoses and
clinical indications, our findings in that cohort are not
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
representative of a healthy lower airway metabolome and are
limited by the heterogeneity of the underlying diseases and
sample size. Lastly, we used the CCA analyses to uncover
potential correlations between the metabolome and the
microbiome, which required that the data be transformed.
Therefore, our results may be harder to interpret. We presented
the associations on the raw scale in an attempt to address this
limitation. We recognized alternative approaches to multi-omics
analysis, but we chose the CCA approach because it allowed us to
estimate correlations between omics and to consider a
phenotype simultaneously.

In this hypothesis-generating study, by performing targeted
metabolomics of BALF samples obtained from PWCF and DC
subjects across the age spectrum, we provided unique insight into
the lower CF airway metabolome. While our analysis prevents us
from drawing strong inferences, our observations suggest the CF
airway’s hyperimmune response and corresponding neutrophilic
inflammation may be resulting in more free amino acids, changes
in lipid metabolism, and the production of reactive oxygen
species damaging to the lower airway. By integrating BALF
metabolomic data and 16S sequencing data as well as
phenotypic outcome measures, we were able to use a modern
multi-omics approach to support the likely polymicrobial nature
of the CF lower airway and elucidate the complex relationships
between the microbiome, the metabolome, and CF inflammation.
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