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Abstract
Dystonia is a movement disorder characterised by involuntary muscle contractions resulting in abnormal movements, postures 
and tremor. The pathophysiology of dystonia is not fully understood but loss of neuronal inhibition, excessive sensorimotor 
plasticity and defective sensory processing are thought to contribute to network dysfunction underlying the disorder. Neu-
rophysiology studies have been important in furthering our understanding of dystonia and have provided insights into the 
mechanism of effective dystonia treatment with pallidal deep brain stimulation. In this article we review neurophysiology 
studies in dystonia and its treatment with Deep Brain Stimulation, including Transcranial magnetic stimulation studies, stud-
ies of reflexes and sensory processing, and oscillatory activity recordings including local field potentials, micro-recordings, 
EEG and evoked potentials.
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Abbreviations
DBS	� Deep brain stimulation
EcoG	� Electrocorticography
EMG	� Electromyography
EEG	� Electroencephalography
EP	� Evoked potentials
GPe	� Globus pallidus externus
GPi	� Globus pallidus internus
LFP	� Local field potentials
LTD	� Long-term depression
LTP	� Long-term potentiation
MEG	� Magnetic encephalography
PAS	� Paired associative stimulation

PD	� Parkinson’s disease
rTMS	� Repetitive transcranial magnetic stimulation
SICI	� Short latency intracortical inhibition
SSEPs	� Somatosensory evoked potentials
STN	� Subthalamic nucleus
TMS	� Transcranial magnetic stimulation
Vc	� Ventro-caudal nucleus of the thalamus
Vim	� Ventro-intermediate nucleus of the thalamus
Voi	� Ventral oral nucleus of the thalamus

Introduction

Dystonia is defined by “sustained or intermittent muscle 
contractions that lead to abnormal movements, postures, or 
both” (Fahn 1988). The most recent consensus definition 
of dystonia includes tremor and highlights that dystonic 
movements are “typically patterned, twisting, and may be 
tremulous, initiated or worsened by voluntary action and 
associated with overflow muscle activation” (Albanese 
et al. 2013). There are many different types of dystonia and 
causes; the current classification system uses dual axis of 
clinical features such as age of onset, body distribution and 
underlying cause such as neuropathology or gene (Albanese 
et al. 2013).

Although the pathophysiology of dystonia is not fully 
understood, the loss of intracortical inhibition, increased 

Communicated by Sven Bestmann.

 *	 Patricia Limousin 
	 p.limousin@ucl.ac.uk

	 Stephen Tisch 
	 stisch@stvincents.com.au

1	 School of Medicine, University of New South Wales, 
Sydney, Australia

2	 Department of Neurology, St Vincent’s Hospital, Sydney, 
Australia

3	 Department of Clinical and Movement Neurosciences, UCL 
Queen Square Institute of Neurology, 33 Queen Square, 2nd 
floor, Box 146, London WC1N 3BG, UK

http://orcid.org/0000-0002-2483-1816
http://orcid.org/0000-0001-5668-5545
http://crossmark.crossref.org/dialog/?doi=10.1007/s00221-020-05833-8&domain=pdf


1646	 Experimental Brain Research (2020) 238:1645–1657

1 3

cortical plasticity and abnormal sensorimotor integration 
are known to be involved in dystonia.

Deep brain stimulation of the globus pallidus interna 
(GPi-DBS) is considered effective and safe in refractory 
dystonia (Krauss et al. 1999; Coubes et al. 2000; Vidail-
het et al. 2005; Kupsch et al. 2006; Volkmann et al. 2012, 
2014). The time course of the effect is gradual but the mobile 
components tend to respond quickly and the tonic elements 
take longer (Chung and Huh 2016). In addition, different 
causes of dystonia can have different outcomes after DBS 
(Tisch 2018). GPi is the most commonly used target but 
some patients have also been implanted in the subthalamic 
nucleus (STN) and the thalamus.

DBS has also brought the opportunity to broaden research 
options in dystonia by allowing the record activity as well 
as measuring physiological changes in parallel to improve-
ment. Here we review the neurophysiology of dystonia and 
its response to DBS.

Transcranial magnetic stimulation (TMS)

The development of TMS by Barker in 1985 (Barker et al. 
1985) and its refinement as a viable tool for in vivo assess-
ment of motor cortex and cortico-motor pathways (Roth-
well 1991) heralded an important chapter in an improved 
pathophysiological understanding of dystonia. Concepts of 
decreased excitability of inhibitory circuits within the brain 
and spinal cord underlying dystonia, derived from studies 
of H-reflex reciprocal inhibition (Nakashima et al. 1989) 
and blink reflexes (Berardelli et al. 1985) led to initial TMS 
studies evaluating cortical excitability in dystonia. The first 
TMS study in dystonia was performed by Ridding and Roth-
well in 1995 and compared focal hand dystonia patients with 
healthy subjects and showed reduced short latency intra-
cortical inhibition (SICI) at rest, interpreted as evidence for 
decreased excitability within intracortical inhibitory circuits 
(Ridding et al. 1995). An additional important finding of 
this study was that defective cortical inhibition was present 
bilaterally despite dystonia being present only unilaterally, 
providing evidence of distributed pathophysiological abnor-
malities in brain regions unaffected by dystonia, a finding 
replicated in other studies leading to the important concept 
of endophenotypic abnormalities acting as a substrate upon 
which environmental factors may operate to produce dysto-
nia (Meunier et al. 2001). Further TMS studies demonstrated 
that reduced intracortical inhibition was present not only at 
rest but also preceding (Gilio et al. 2003) and during volun-
tary movement in focal hand dystonia patients (Chen et al. 
1997a, b; Stinear and Byblow 2004). Similar reductions in 
cortical inhibition were found in segmental and generalised 
forms of dystonia (Rona et al. 1998) and non-manifesting 
carriers of TOR1A/DYT1 (Edwards et al. 2006), further 

supporting the notion of abnormal endophenotypes in dys-
tonia. Using TMS techniques it has been demonstrated that 
patients with musician’s dystonia have greater reductions in 
SICI during hand muscle vibration stimuli than patients with 
writer’s cramp suggesting sensory input playing a greater 
role in musician’s dystonia (Rosenkranz et al. 2005). Col-
lectively, TMS studies have provided evidence of reduced 
excitability of inhibitory circuits within the motor cortex 
providing further support for the loss of inhibition model 
of dystonia where action selection and topographic motor 
specificity are compromised leading to unwanted movements 
and co-contraction (Mink 1996; Hallet 2004).

TMS studies have also elucidated important interac-
tions between pre-motor cortex and primary motor cortex 
in dystonia. In patients with writer’s cramp, low-frequency 
inhibitory TMS over the premotor cortex results in prolon-
gation of the primary motor cortex silent period reflecting 
reversal of abnormally reduced motor cortex inhibition and 
a corresponding improvement in handwriting performance 
(Murase et al. 2005). Abnormally increased inhibition of 
the primary motor cortex by the premotor cortex has been 
demonstrated in patients with writer’s cramp at rest and dur-
ing movement using a paired pulse TMS paradigm. In the 
same study, premotor cortex single pulse TMS preceding a 
manual choice reaction time task, reduced error rates with-
out altering reaction time. The inhibition exerted by premo-
tor cortex on primary motor cortex is likely supra-spinal as 
reflected in unchanged upper limb H-reflex amplitudes, and 
has been interpreted as compensatory in response to under-
lying disinhibition of the primary motor cortex in dystonia 
(Richardson et al. 2014).

A significant development in TMS studies for dysto-
nia appeared with techniques allowing the elicitation of 
short-term cortical plasticity effects resembling long- term 
potentiation (LTP) and long-term depression (LTD). Low-
frequency rTMS (repetitive TMS) around 1 Hz leads to 
sustained decreases in motor cortex excitability (Chen et al. 
1997a; Touge et al. 2001), higher frequency 5–25 Hz rTMS 
produces sustained increases in cortical excitability (Peine-
mann et al. 2004; Khedr et al. 2007), and pulsatile 50 Hz 
theta burst rTMS can efficiently induce either sustained 
increases or decreases in motor cortex excitability (Huang 
et al. 2005).

Motor cortex plasticity can also be generated using com-
bined TMS and median nerve stimulation with 25 ms inter-
val between stimuli, so called paired associative stimula-
tion (PAS) which allows topographically restricted increase 
in motor cortex excitability that can be blocked by NMDA 
antagonists suggesting LTP-like mechanisms (Stefan et al. 
2000, 2002). With shorter interstimulus intervals LTD like 
effects from PAS have also been demonstrated (Wolters et al. 
2003). Patients with focal dystonia display increased motor 
cortex plasticity to TMS PAS with reduced cortico-motor 
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topographic specificity (Quartarone et al. 2003; Weise et al. 
2006), providing evidence that altered sensorimotor corti-
cal plasticity may play an important role in dystonia. Motor 
cortex plasticity following TMS PAS is normal in patients 
with functional dystonia and increased in organic dystonia 
patients (Quartarone et al. 2009), whereas cortical and spi-
nal disinhibition is equal in both conditions (Espay et al. 
2006; Avanzino et al. 2008), suggesting that motor cortex 
plasticity changes may be a more fundamental feature of 
organic dystonia. The role of the cerebellum in modifying 
motor cortex plasticity in dystonia has been evaluated using 
TMS cerebellar cortex stimulation combined with PAS dur-
ing hand–eye coordination task, which found that patients 
with writer’s cramp have defective cerebellar inhibition of 
motor cortex plasticity (Hubsch et al. 2013). Increased brain 
plasticity in dystonia has also been demonstrated using TMS 
protocols other than PAS including low-frequency 1 Hz 
(Siebner et al. 2003; Baumer et al. 2007) and theta burst 
rTMS, where patients with cervical and segmental dystonia 
showed greater and longer lasting motor cortex inhibition 
than healthy subjects or non-manifesting TOR1A/DYT1 car-
riers (Edwards et al. 2006).

The emergence of GPi DBS stimulation as an effective 
treatment for dystonia (Krauss et al. 1999; Coubes et al. 
2000; Vidailhet et al. 2005) generated interest as to the 
underlying physiological mechanisms of improvement in 
dystonia after GPi DBS (Tisch et al. 2007a) and provided 
new opportunities to assess dystonia pathophysiology. The 
Queen Square group, including Prof John Rothwell, was 
among the first to utilize TMS techniques to evaluate the 
physiological effects of GPi DBS in dystonia. The safety 
of TMS in patients with implanted DBS systems had been 
established in a previous study which evaluated TMS cor-
tical excitability measures in patients with GPi DBS ON 
and OFF stimulation and demonstrated a reversible reduc-
tion in motor cortex excitability with GPi DBS OFF with 
no effects on intracortical inhibition (Kuhn et al 2003). The 
first study assessing effects of GPi DBS on motor cortex 
plasticity using TMS included ten patients with idiopathic 
isolated generalised dystonia, some TOR1A/DYT1 positive 
with stable significant improvement following effective GPi 
DBS evaluated using TMS PAS with DBS ON and OFF 
in separate sessions. With GPi DBS OFF patients showed 
similar degree of motor cortex plasticity to PAS as healthy 
controls; however, with DBS ON, excitatory motor cortex 
plasticity was abolished and shifted to cortical inhibition, 
which correlated with the degree of clinical improvement 
from DBS (Tisch et al. 2007b). The study provided evidence 
of reversal of abnormally excessive motor cortex plasticity 
as a possible mechanism of action of GPi DBS for dysto-
nia (see Fig. 1). The same group went on to study longi-
tudinal changes in motor cortex excitability and plasticity 
using TMS PAS in a cohort of dystonia patients before and 

after DBS and found that SICI was reduced and plasticity 
increased in dystonia patients prior to DBS. One month after 
DBS, TMS PAS motor cortex plasticity was abolished but 
gradually increased towards normal levels at 3 and 6 months, 
while SICI improved gradually over the same time course 
mirroring progressive improvement in clinical symptoms 
(Ruge et al. 2011a). The progressive time-course of improve-
ment in dystonia symptoms after GPi DBS is well described 
(Yianni et al. 2003; Vidailhet et al. 2005; Tisch et al. 2006a, 
b) and the finding of longitudinal changes in experimentally 
induced motor cortex plasticity suggests a potential mecha-
nistic role. How might GPi DBS decrease excessive motor 
cortex plasticity in dystonia? It is known GPi DBS reduces 
ipsilateral excessive cortical activation in premotor and pri-
mary motor areas likely through enhanced thalamocortical 
inhibition (Kumar et al. 1999; Detante et al. 2004). A further 
mechanism may be increased background activity from GPi 
DBS, which may interfere with plasticity formation as dem-
onstrated when anodal direct current stimulation is applied 
during PAS (Nitsche et al. 2007). Some further clues come 
from an interesting study, which evaluated the time-course 
of TMS PAS motor cortex plasticity in long-term GPi dysto-
nia patients before and after switching off the DBS for 2 days 
(Ruge et al. 2011b). In keeping with previous studies PAS 
plasticity was almost absent and SICI was reduced with DBS 
ON. With DBS OFF for 2 days there was no change in SICI 
or plasticity at a group level, however there was a strong cor-
relation between the amount of PAS plasticity ON DBS and 
the retention of clinical benefit after stopping DBS. These 
results suggest that many years of GPi DBS results in long-
term changes in motor cortex plasticity underlying clinical 
benefit and that individual variation in plasticity profiles may 
dictate the extent to which clinical benefits persist.

In summary, TMS has delivered important insights in 
dystonia pathophysiology and mechanisms of action of GPi 
DBS and the contribution of Professor John Rothwell to this 
field of study merits special acknowledgement.

Fig. 1   Effect of PAS on resting MEP amplitude with GPi DBS ON 
and OFF in dystonia patients. Note that DBS ON abolishes excitatory 
post-PAS plasticity (decrease in MEP amplitude), whereas DBS OFF 
and control subjects show preserved PAS response
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EMG, reflex studies and sensory processing 
in dystonia

Traditional perspectives of dystonia as primarily due to 
abnormal basal ganglia activity have evolved to current the 
view of dystonia as a network disorder operating at all levels 
of the nervous system including cerebral cortex, thalamus, 
basal ganglia, cerebellum, brain stem and spinal cord (Tisch 
2018). Important clinical hallmarks of dystonia including 
co-contraction and overflow of muscle activity, task and 
position specificity and sensory tricks (geste antagoniste), all 
recognized clinically for more than a century, are mediated 
by abnormal dystonia networks in which abnormal reflex 
activity to sensory inputs and sensory misprocessing play an 
important role. This section focuses on neurophysiological 
studies into these aspects.

EMG studies in dystonia

Early studies using surface electromyography (EMG) dem-
onstrated co-contraction of agonist and antagonist muscles 
in a task-specific manner during handwriting in patients 
with writer’s cramp (Rothwell et al. 1983). Patients with 
arm dystonia in the setting of idiopathic isolated segmental 
and generalized dystonia show abnormal co-contraction, 
muscle overflow activity and prolonged burst duration dur-
ing voluntary elbow movements (Van der Kamp et al. 1989). 
Abnormal co-contraction in dystonia differs from voluntary 
co-contraction by virtue of abnormally coherent, synchro-
nized motor unit activity driven by central descending input 
to motor neurons (Farmer et al. 1998). Reductions in low-
frequency (4–12 Hz) intermuscular EMG coherence activity 
occur after effective GPi DBS and partially correlate with 
clinical improvement (Doldersum et al. 2019). EMG stud-
ies in dystonia have also characterized myoclonic jerks in 
myoclonus dystonia (Obeso et al. 1983; Li et al. 2008) and 
rhythmic bursting activity corresponding to dystonic tremors 
(Jedynak et al. 1991).

H‑reflex and blink reflex in dystonia

Reflex excitability is altered in dystonia and in general a 
pattern of reduced excitability of inhibitory circuits result-
ing in reduced inhibition has been observed. At the spinal 
cord level the H-reflex, the neurophysiological equivalent of 
a tendon jerk, is modulated by disynaptic and presynaptic 
inhibition by 1a afferents of the antagonist muscle, meas-
ured as H-reflex reciprocal inhibition, which is turn modified 
by excitability of local spinal cord circuits and descending 
input. H-reflex reciprocal inhibition is decreased in focal, 
segmental and generalized dystonia (Nakashima et al. 1989; 

Panizza et al. 1989, 1990) even in unaffected limbs (Deuschl 
et al. 1992; Chen et al. 1995) consistent with an endopheno-
typic abnormality. Abnormally reduced presynaptic phase 
of H-reflex reciprocal inhibition is reversed after botulinum 
toxin therapy (Priori et al. 1995) likely due to denervation 
of intrafusal fibres and reduced muscle spindle afference 
(Giladi 1997; Rosales and Dressler 2010).

The blink reflex is characterised by an early oligosynaptic 
R1 and later polysynaptic R2 components. The R2 compo-
nent displays paired pulse inhibition with repeated stimuli 
(Kimura and Harada 1976) mediated by brainstem inhibi-
tory interneurons, themselves under control by projections 
from cerebral cortex, thalamus and basal ganglia (Berardelli 
et al. 1983). Blink reflexes thus provide a useful measure 
of brainstem excitability and indirectly probe basal ganglia 
output. Blink reflex R2 inhibition is abnormally decreased in 
patients with cranial (Berardelli et al. 1985), cervical (Tolosa 
et al. 1988), segmental and generalised dystonia including 
those without blepharospasm (Nakashima et al. 1990) and is 
present equally in manifesting and non-manifesting TOR1A/
DYT1 carriers (Fong et al. 2016). Unlike H-reflex recipro-
cal inhibition, blink reflex inhibition is normal in functional 
blepharospasm, and may assist in differentiating it from 
organic blepharospasm (Schwingenschuh et al. 2011).

Effects of GPi DBS on reflex circuits

GPi DBS restores abnormally reduced H-reflex reciprocal 
inhibition and blink reflex R2 inhibition in patients with gen-
eralized dystonia in a progressive time-course correlating 
with clinical improvement (see Fig. 2), indicating gradual 
normalisation of disinhibition within spinal and brainstem 

Fig. 2   Time-course of changes in presynaptic phase of H-reflex recip-
rocal inhibition (RI) after GPi DBS and clinical improvement. A line 
is superimposed at 0.6, which represents a normal level of RI. Clini-
cal improvement and changes in RI correlate and follow a logarithmic 
curve
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circuits as a marker or mechanism for clinical improvement 
().

Sensory processing in dystonia

Sensory involvement in dystonia is evident clinically by 
potent temporary reduction in dystonic symptoms with spe-
cific sensory tricks (Leis et al. 1992), the finding that lesions 
of the sensory system both central (Lehericy et al. 2001) 
and peripheral (Jankovic and Linden 1988) may result in 
acquired dystonia and the presence of sensory symptoms 
among dystonia sufferers (Ghika et  al. 1993; Stamelou 
et al. 2012). Neurophysiology studies have provided further 
insights into wide-ranging abnormalities of sensory process-
ing in dystonia.

Peripheral sensory input in the form of tonic vibration of 
the muscle tendon in patients with writer’s cramp worsens 
dystonic symptoms, while intramuscular injection of lig-
nocaine improves dystonia, both effects likely mediated by 
alteration in muscle spindle afference, as anaesthetic inhibi-
tion of Ia fibres which mediate the tonic vibration response 
may help to compensate for loss of presynaptic inhibition in 
dystonia (Kaji et al. 1995).

In dystonia there is abnormal summation of cortical 
sensory evoked potentials in response to peripheral nerve 
stimulation (Tinazzi et al. 2000) and enlarged, dedifferenti-
ated somatosensory receptive fields in thalamic receiving 
neurons such that the receptive field overflows from the sen-
sory Vc thalamic nucleus to the cerebellar outflow-motor 
cortex relay Vim nucleus (Lenz et al. 1999). As mentioned, 
the hand representation within the somatosensory cortex is 
also distorted in dystonia including the asymptomatic side 
(Meunier et al. 2001). In patients with focal hand dystonia, 
tactile spatial discrimination is reduced (Bara-Jimenez et al. 
2000a) and temporal discrimination of tactile and visuo-
tactile stimuli is abnormally prolonged (Bara-Jimenez et al. 
2000b; Fiorio et al. 2003). Sensory temporal discrimination 
is also prolonged non-manifesting TOR1A/DYT1 carriers 
(Fiorio et al. 2007) and unaffected first-degree relatives of 
dystonia sufferers in a frequency suggestive of an incom-
pletely penetrant dominant gene (Kimmich et al. 2011), 
supporting an endophenotypic role for abnormal tempo-
ral discrimination in dystonia (Conte et al. 2017). A study 
using combined sensory temporal discrimination testing and 
evoked potentials indicated that prolonged tactile sensory 
discrimination thresholds are the result of reduced excit-
ability of inhibitory circuits within the primary somatosen-
sory cortex (Antelmi et al. 2017). Abnormally prolonged 
sensory temporal discrimination thresholds in dystonia can 
be further worsened by high-frequency peripheral sensory 
stimulation, suggesting abnormal plasticity with the primary 
somatosensory cortex (Erro et al. 2018). Perhaps surpris-
ingly, in idiopathic isolated generalized dystonia tactile 

spatial sensory discrimination is normal (Molloy et al. 2003) 
and visual temporal discrimination thresholds are normal 
in patients with musician’s dystonia (Maguire et al. 2020) 
perhaps reflecting better recompensation among elite musi-
cians. Abnormally prolonged sensory temporal discrimina-
tion thresholds are present in functional dystonia to the same 
degree as organic dystonia (Morgante et al. 2011) interpreted 
as evidence for possible endophenotypic overlap between 
these disorders. Therapy studies indicate that abnormally 
prolonged sensory temporal discrimination thresholds in 
dystonia are not improved by GPi DBS (Sadnicka et al. 
2013) or botox therapy (Scontrini et al. 2011). Preserved 
structural integrity of the sensory system, as determined by 
somatosensory evoked potentials (SSEPs) may help predict 
patients more likely to benefit from GPi DBS (McClelland 
et al. 2018). The effectiveness of sensory trick in cervical 
dystonia also appears to depend on the remaining integrity 
of sensory processing, as better visuotactile sensory dis-
crimination correlates with effectiveness of sensory trick 
(Kägi et al. 2013).

Dystonia, in keeping with current models of a multilevel 
network disorder, discloses widespread sensory abnor-
malities, some of which may contribute to development of 
involuntary movements. The important concept of endophe-
notype is maintained, as many of the sensory abnormali-
ties may be detected in clinically unaffected body parts or 
asymptomatic dystonia gene carriers. Future studies are 
needed to better elucidate environmental triggers and as yet 
unrecognized intrinsic and external modifying factors. GPi 
DBS exerts potent inhibition of motor symptoms of dystonia 
and long-term changes in brainstem and spinal excitability, 
but seems ineffective in altering sensory endophenotypic 
defects, which supports their probable upstream role in dys-
tonia pathogenesis.

Oscillatory activity recordings: local field 
potentials, microrecordings, EEG and evoked 
potentials

Recording local oscillatory activity through DBS elec-
trode contacts (local field potentials LFP) can provide 
some insight into the pathophysiology of dystonia, in par-
ticular through the pattern of activity of the basal ganglia-
thalamo-cortical pathways. It can also inform us on the 
mechanisms of action of DBS. Single-cell recordings have 
been collected during DBS surgery, as part of the process 
of target localisation, and give us information at unicellu-
lar level. Cortical electrical activity recorded through EEG, 
electrocorticography (EcoG) or magnetic encephalography 
(MEG) allows to record activity at another point of the basal 
ganglia-thalamo-cortical circuitry. This activity has often 
been recorded in conjunction with basal ganglia LFP. Finally 
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evoked potentials (EP) from the DBS pulse within the GPi 
have been recorded on the cortex.

Local field potential and cortical recordings

In Parkinson’s disease (PD) many studies have reported 
increased activity not only in the beta band in the STN but 
also in GPi (Brown et al. 2001) and a correlation with brad-
ykinesia (Beudel et al. 2017). In dystonia, most recordings 
have been done in the GPi as it is the preferred DBS target. 
Several studies have demonstrated an increased power in 
the low-frequency band (4–12 Hz) in the GPi of dystonic 
patients (Silberstein et al. 2003; Chen et al. 2006a; Liu 
et al. 2008; Neumann et al. 2012; Zhu et al. 2018). Cor-
relations between this low-frequency activity and EMG 
activity have also been shown (Chen et al. 2006a). Using 
a measure assessing the direction of the coupling, Sharott 
et al. have shown that the coupling of GPi and the muscles 
is bidirectional and fluctuating but most of the drive was 
coming from GPi (Sharott et al. 2008). This low-frequency 
activity appears to be regulated by peripheral inputs, as 
demonstrated by a study on ‘geste antagonist’ in cervical 
dystonia (Tang et al. 2007a). The GPi LFP appear different 
in dystonia than other conditions such as Huntington disease 
(Zhu et al. 2018) and suggest that this activity has a role in 
the expression of the symptoms. LFP power in the 3–21 Hz 
band appears specific from GPi as it was also shown to be 
higher than in GPe (Chen et al. 2006b).

The LFP provide also information on the mechanism 
of action of DBS. The GPi low-frequency activity corre-
lated with the severity of dystonia and a better outcome was 
observed if the stimulated contact was close to the maxi-
mum low-frequency peak (Neumann et al. 2017). A reduc-
tion of the mean power in the 4–12 Hz band was observed 
when DBS was switched on with a decrease in coherence 
between cortical EEG and GPi LFP in the same band 30 s 
after switching off DBS (Barow et al. 2014). These changes 
were observed in patients with phasic dystonia (Barow 
et al. 2014). Therefore, one of the mechanisms of action of 
GPi DBS might be through the suppression of abnormally 
synchronised low-frequency activity between GPi and the 
cortex.

LFP activity has also been recorded in the STN of dys-
tonic patients, since the STN is also a target for dystonia, 
although less frequently used (Geng et al. 2017; Neumann 
et al. 2012). Low-frequency activity was also recorded in 
the STN in some studies (Geng et al. 2017; Neumann et al. 
2012) although Wang et al. (2016) did not find any differ-
ence in the STN activity between dystonia and PD patients.

There are many different types of dystonia and not all 
dystonia would have the same LFP activity. Although GPi 
DBS can be offered to many different subtypes the outcome 
tends to be different according to the cause. Many studies 

have included isolated dystonia, generalised or focal and 
with or without an identified gene. Two patients with geneti-
cally proven myoclonus dystonia patients have also been 
studied and have shown coherence at 3–15 Hz between GPi 
and muscles (Foncke et al. 2007) similarly to isolated dys-
tonia. Cervical dystonia has given rise to debate on the role 
of each GPi according to the pattern of muscle activation 
and direction of the cervical dystonia. In cervical dystonia 
interhemispheric differences have been measured in the 4–12 
and 13–30 Hz bands (Lee and Kiss 2014). Another study 
has confirmed a lateralised difference at the level of GPi but 
not GPe (Moll et al. 2014). Sedov et al. have also found an 
asymmetry of discharge pattern and Gamma oscillations in 
15 patients with cervical dystonia (Sedov et al. 2019a, b).

Most of the LFP recording was performed in the few 
days after surgery with externalised leads and before bat-
tery implantation. Local oedema and lasting effect of 
anaesthesia could affect those measures. Scheller et al. have 
recorded nine dystonic patients with long-term DBS using 
a Medtronic PC + S (Scheller et al. 2019). Patients were 
assessed with stimulation switched off for 5–7 h, the BFM 
rating scale was assessed and LFP were recorded. The level 
of low-frequency activity was associated with the dystonia 
severity even months after DBS implant and this was spe-
cific of that frequency band (Scheller et al. 2019).

It is also important to gain more understanding on the 
full range of frequency bands and how those activities 
change during different cognitive and motor tasks. Although 
some oscillations are probably responsible for the dystonic 
symptoms, others might still be important for physiological 
activity. As example it has been demonstrated that walking 
increased theta-alpha and reduced beta (Singh et al. 2011). 
Gamma activity has also been shown to change during 
movement and during cognitive tasks, having a possible role 
in motor learning (Brücke et al. 2008, 2012; Gillies et al. 
2017; Tsang et al. 2012). How DBS affects those physiologi-
cal frequency changed largely remains to be explored. The 
role of the low beta (13–21 Hz) cortico-pallidal coherence in 
initiation and execution of movement has been demonstrated 
but a lack of correlation with the severity of the dystonia was 
observed (Van Wijk et al. 2017; Singh et al. 2011; Tsang 
et al. 2012). Changes in the beta band have also been evi-
denced in the cortex or cortico-pallidal circuitry (Miocinovic 
et al. 2015; Neumann et al. 2015; Silberstein et al. 2003). 
Neumann et al. (2015) identified, with MEG and LFP, three 
networks: pallido temporal with theta (4–8 Hz) coherence, 
pallido cerebellar with alpha (7–13 Hz) coherence and cor-
tico pallidal with beta (13–30 Hz) coherence. The last one 
had a cortical source and the other two a pallidal source. 
Only the pallido-cerebellar activity was inversely correlated 
to the severity of the dystonia. A study in 12 patients with 
generalised or focal isolated dystonia has shown a reduction 
of the excessive alpha oscillations over the motor cortex and 
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interhemispheric alpha coherence during GPi or STN DBS 
(Miocinovic et al. 2018). This support the role of network 
desynchronization in the effect of DBS.

A study in 19 dystonic patients, 10 with phasic dystonia 
and 9 with tonic dystonia aimed at differentiating activity for 
these two types of symptoms. In patients with phasic dys-
tonia peaks in the GPi oscillatory activities were observed 
in the alpha frequency range (8–13 Hz) and was function-
ally coupled across the GPi, GPe, and the motor cortex. 
In patients with tonic dystonia, delta oscillatory activities 
(2–4 Hz) were measured in the GPi with delta GPi–GPe 
functional coupling (Yokochi et al. 2018).

All the findings related to the role of low-frequency activ-
ity in the GPi of dystonia patients have led to the proposal to 
use this activity as a biomarker for adaptive DBS in dystonia 
(Neumann et al. 2017; Piña-Fuentes et al. 2019).

Single‑cell recordings

Most studies on micro-recordings have reported that the 
signal recorded in GPi in patients with dystonia displays 
irregular grouped discharges with pauses (Vitek et  al. 
1999; Zhuang et al. 2004; Tang et al. 2007b). Several stud-
ies have compared activity in GPi of patients with dysto-
nia and PD. GPi neurons in dystonia have been shown to 
have significantly lower discharge rates and more irregular 
discharge patterns than in PD (Vitek et al. 1999; Sanghera 
et al. 2003; Alam et al. 2016; Tang et al. 2007b; Starr et al. 
2005). Higher number of bursts have also been identified in 
dystonia patients (Alam et al. 2016; Starr et al. 2005). The 
low-frequency rate has been inversely correlated with the 
severity of the dystonia (Starr et al. 2005).

Recordings in some studies have been done under general 
anaesthesia and the role of the anaesthetic agents on the 
recording is debated. Hutchinson argued that the lower dis-
charge rate recorded in dystonia was an artefact from the use 
of Propofol (Hutchison et al. 2003). Steigerwald studied the 
effect of Propofol and concluded that the reduced discharge 
rate was a real observation (Steigerwald et al. 2005).

Some studies have focussed on the difference between 
GPi and GPe activity since this information is important for 
target localisation. In one of the early studies spontaneous 
discharge rates of GPi and GPe neurons were similar, and 
the two nuclei were distinguished by neuronal discharge pat-
terns rather than rates (Starr et al. 2006). Sani et al. (2009) 
recorded pause in the awake human GPe that were char-
acteristic and distinguished primary dystonia from PD and 
secondary dystonia. Their hypothesis was that they might 
reflect increased phasic input from striatal D2 receptor 
positive cells in primary dystonia and are consistent with 
a recent model proposing that GPe provides capacity scal-
ing for cortical input. Interpause interval (IPI) was lower in 
primary dystonia (Sani et al. 2009).

Chen et al. (2006a) performed LFP and microrecord-
ing in awake dystonic patients to check if the LFP activ-
ity comes from the GPi neurones and not from volume 
conduction. They confirmed that the LFP in the 3–12 Hz 
band were synchronised to neuronal discharges recorded by 
microrecordings.

Microrecordings have also been done in the STN of 
patients implanted with dystonia and compared with PD 
showing also a lower discharge rate in patients with dysto-
nia. Bursts were observed both in PD and dystonia (Schrock 
et al. 2009). Zhuang also recorded activity in the STN of 
dystonic patients and observed reduced rate and irregular 
bursts (Zhuang et al. 2004).

Devetiarov et al. (2017) have recorded activity on the 
ventral oral nucleus of the thalamus (Voi) and surrounding 
areas in patients with cervical dystonia and compared it to 
activity in the ventro-intermediate nucleus of the thalamus 
(Vim) in PD patients. Those patients were undergoing thala-
motomy to treat their movement disorders. They identified 
single and burst pattern activities in all areas. They could not 
identify a disease specific pattern but there was a suggestion 
that Voa-Vop neurons in the surrounding areas were more 
hyperpolarised in dystonia because of the inhibitory pallidal 
outflow (Devetiarov 2017).

Evoked potentials

Evoked potentials (EP) from the DBS pulses within the 
GPi have been recorded on the cortex and contribute to our 
understanding of the mechanism of action of GPi DBS. The 
studies have demonstrated a peak in the central regions, 
likely to be the primary motor cortex, around 20–30 ms 
(Tisch et al. 2008; Bhanpuri et al. 2014; Ni et al. 2018). 
This peak is larger when the most effective contact is being 
stimulated and in good responders (Tisch et al. 2008; Bhan-
puri et al. 2014). The fact that this peak was absent in a 
patient who had a previous thalamotomy, combined with 
the latency, suggest the involvement of the pallido-thalamo-
cortical pathway (Tisch et al. 2008). In addition, coherence 
has been recorded in the beta band (13–30 Hz) between LFP 
recorded in GPi and motor and premotor oscillatory activity 
recorded with MEG (Neumann et al. 2015). Ni et al. identi-
fied two peaks in the central regions, in addition to the 25 ms 
peak, they identified an earlier peak at 10 ms (Ni et al. 2018). 
These two peaks had opposite polarity. The early peak was 
facilitatory and the later was inhibitory. This supports the 
hypothesis that the activation of the inhibitory output from 
GPi leads to inhibition of the motor cortex and normalisation 
of cortical plasticity in dystonia.

In summary dystonia severity appears related to GPi 
low frequency activity. One the mechanisms of action 
of DBS is probably through reducing this activity. 
This might be used as biomarker for adaptive DBS in 



1652	 Experimental Brain Research (2020) 238:1645–1657

1 3

the future. Nevertheless, the role of activities in other 
frequency bands and the effect of DBS on those activi-
ties need to be explored further. In addition, we do not 
know how these findings differ according to the type of 
dystonia. Microrecordings have confirmed that the low 
frequency activity recorded with LFP comes from the 
pallidal neurons and is relevant for the expression of the 
symptoms including real-time modulation of dystonic 
contractions by effective sensory tricks. Evoked poten-
tials and recordings of cortical activity also support the 
role of an inhibition of the motor cortex mediated by the 
pallido-thalamo-cortical pathway. Finally, adaptive DBS 
approaches may differ for thalamic targets owing to added 
complexity of thalamic reorganisation in dystonia (Lenz 
et al. 1999).

Conclusions

Dystonia pathophysiology as elucidated by neurophysiol-
ogy shows wide ranging abnormalities some of which nor-
malise after clinically effective GPi DBS. The keys facts 
are summarised Table 1. Some changes, for example sen-
sory misprocessing, are likely endophenotypic, providing 
a substrate for dystonia. Excessive motor cortex plasticity 
and low frequency pallidal output may play a more direct 
role in generating dystonic movements. GPi DBS reduces 
the dystonic symptoms, in proportion to reductions in 
excessive motor cortex plasticity and low-frequency activ-
ity suggesting an important mechanistic role. DBS is not 
a cure for dystonia and symptoms return after switching 
DBS off but benefits persist longer in those with more 
robust plasticity. While GPi DBS has proved a success-
ful and beneficial intervention for dystonia, it has some 

Table 1   Summary of physiology measures abnormalities in dystonia and the effect of GPi DBS

Structure Technique Dystonia Dystonia + GPi DBS

GPi Single cell Irregular groups discharges + pauses
Lower rate than PD
Higher bursts than PD
Low frequency correlation severity dystonia

LFP Increased power low frequency band (4–12 Hz)
Correlation low frequency—EMG
Coupling GPi/muscles bidirectional, drive from GPi
Low frequency affected by peripheral input
Correlation low frequency severity dystonia
Phasic dystonia: alpha (8–13 Hz) coupling GPi, GPe, cortex
Tonic dystonia delta (2–4 Hz)

DBS near LF site more effective
DBS reduced mean power 4–12 Hz

GPe Single cells Different pattern than GPi
Pauses different than PD

LFP Lower power in low frequency band than GPi
STN Single cell Lower rate than PD

Bursts
LFP Low frequency

Thalamus (Voi) Single cell Single activity and bursts
Pallido-cortical LFP Pallido-temporal theta (4–8 Hz)

Pallido-cerebellar alpha (7–13 Hz) inverse correlation sever-
ity

Cortico-pallidal Beta (13–30 Hz)

DBS reduced cortico-pallidal coherence

EP from GPi peak motor cortex 20–30 ms; larger effective contact and if 
good response (inhibitory)

Earlier peak 10 ms (facilitatory)
Cortex EEG

TMS
Abnormal excessive synchronised 4–12 Hz activity
Reduced motor cortex intracortical inhibition and silent 

period
Increased motor cortex plasticity
Pre-motor to motor cortex interactions

DBS reduced alpha oscillations motor cortex
DBS reduces interhemispheric alpha coherence
DBS slightly increases motor cortex excitability
DBS over time increases SICI
DBS reduces excessive motor cortex plasticity
Effects of DBS unknown

Brainstem Blink reflex Reduced blink reflex R2 inhibition DBS normalises R2 disinhibition
Spinal cord H-reflex Reduced H-reflex reciprocal inhibition DBS normalises reduced reciprocal inhibition
Muscle LFP + EMG Correlations GPi activity and EMG
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potential side effects including stimulation-induced Par-
kinsonian features (Tisch et al. 2007c; Mahlknecht et al. 
2018; Kosutzka et al. 2020). Further refinements of DBS 
including adaptive stimulation may allow improvement 
in DBS efficacy and side effect profile. Neurophysiology 
studies will remain essential in furthering our understand-
ing of both dystonia and DBS action.
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