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We examine the problem of allocating a limited supply of vaccine for controlling an infectious disease with
the goal of minimizing the effective reproduction number R,. We consider an SIR model with two interacting
populations and develop an analytical expression that the optimal vaccine allocation must satisfy. With limited
vaccine supplies, we find that an all-or-nothing approach is optimal. For certain special cases, we determine the
conditions under which the optimal R, is below 1. We present an example of vaccine allocation for COVID-19
and show that it is optimal to vaccinate younger individuals before older individuals to minimize R, if less

than 59% of the population can be vaccinated. The analytical conditions we develop provide a simple means
of determining the optimal allocation of vaccine between two population groups to minimize R,.

1. Introduction

A natural objective in minimizing the outbreak of an infectious
disease is to minimize the effective reproduction number, R,; this is the
average number of secondary cases per infectious case in a population
with both susceptible and infected individuals. If a vaccine is avail-
able for the disease, vaccination is one means of controlling epidemic
spread. However, vaccine supplies may be limited, particularly for
newly identified diseases such as COVID-19 [1]. Here we consider the
problem of allocating a limited supply of vaccine for controlling an
infectious disease with the goal of minimizing R,.

A number of studies have considered the vaccine allocation prob-
lem. Some researchers have proposed a mixed-integer or linear pro-
gramming formulation to minimize the number or cost of vaccines
under the constraint that the reproduction number is below 1 [2-4].
Other researchers use optimal control to determine the allocation of
vaccine which minimizes vaccination cost plus the cost of infection [5,
6]. Some studies have considered vaccination for seasonal influenza,
typically using age-structured compartmental models and numerical
simulation of alternative policies [7,8] or numerical optimization to
determine the optimal allocation between different groups [9,10]. Re-
cent studies have focused on optimal vaccination policies for COVID-19
using age-structured compartmental models. One study finds that the
optimal vaccine allocation should prioritize age-based fatality rates
rather than occupation-based infection rates in order to minimize the
cost of infections plus economic losses [11]. Other studies find that vac-
cinating older groups averts more deaths, whereas vaccinating younger
groups averts more infections [12-14]. Here we consider the optimal

allocation of vaccine between two population groups with the goal of
minimizing the effective reproduction number.

2. SIR model with vaccination

We develop an SIR model of a population with two interacting
groups in which an infectious disease is spreading (Fig. 1). Individuals
in each group i can be susceptible (.S;), infected (1), recovered (R;),
or dead (D;). Individuals in group i can acquire infection from contact
with individuals in their own population group (at rate g;; > 0) or the
other population group j (at rate f;; > 0). Infected individuals in group
i either recover (at rate y; > 0) or die (at rate y; > 0). We consider
a relatively short time horizon and thus do not include births, non-
infection-related deaths, or other forms of entry into and exit from the
population.

We assume that a preventive vaccine with effectiveness n > 0 is
available and that vaccination of susceptible individuals moves them
to a recovered health state. We assume that vaccination takes place
at time 0. Vaccination does not affect the transmission rates between
infected and susceptible individuals (f;;) nor the recovery rates of
infected individuals (y;). We denote by P the population size, v =
(vy, v,) € R? the proportion of individuals vaccinated, S;(0), I;(0), R;(0),
D;(0) the proportion of the entire population in each compartment
at time 0 without vaccination, and S;(v; 1), I;(v;1), R;(v;1), D;(v;t) the
proportion of individuals in each compartment at time ¢ in the presence
of vaccination v. Since v; is the proportion of the entire population that
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Fig. 1. Dynamic compartmental model.

is vaccinated and belongs to group i, we have the constraints v; < S;(0)
fori=1,2.

Without loss of generality, we assume S,(0) > S,(0). We further
assume that a limited number of vaccines, N, are available to be
distributed at time 0, where N/P < 5,(0) and v; + v, < %. Since
vaccination only impacts the initial conditions, we have
S;(0;0) = 5;(0) — nv;

1,(0;0) = I,(0)
R;(v;0) = R;(0) + nv;
D,(v;0) = D,(0)

@

fori=1,2.
3. Derivation of the effective reproduction number

We first derive the basic reproduction number R, for the epidemic
model using the next-generation method [15,16]; R, is the average
number of secondary cases per infectious case in a fully susceptible pop-
ulation. The model has two infected host compartments, x = [I; L,].
Let F; be the rate at which new infected individuals enter compartment
i, and let V; be the transfer of individuals into and out of compartment
i. We define two matrices F and V, where F;; = %, Vi = W;T(’;"),

and x, is the disease-free equilibrium. Using this notation, we have

‘3—’; = (F — V)x. For our model, F and V are as follows:

F= |PuS /31251]

Br1Sy  BnS,
V= [71 + Uy 0 ]
0 72+ 1

R, is given by the largest eigenvalue of the next generation operator
FV~!, where the entry (i, j) represents the expected number of sec-
ondary cases in compartment i caused by an individual in compartment
J.

1
- [ﬂuSl ﬂlzsl] it ]
Bo1Sy  BnSs 0 p—s
B B2y
_ | ntm r2tHy
| S PnS)
y1t+u ratuy

The largest eigenvalue of FV ™! is:

Bi1S BnSy B11S)

R = S
072 +py) 20+ ) 12(r + )

2(rp + H2)

|+\/ﬁ12132151 S, (2

We next derive the effective reproduction number R,. With vaccina-
tion v = (vy, v,), the starting susceptible population in group i becomes
S; — nv;, and the effective reproduction number is:

f(©) = R,(v)
_ Bii(Sy —nv) PSSy —nvy) 1 Bu(St—nv)  Bn(S; —nvy)
2(ry + 1) 2(yy + m2) 2(ry + my) 2(ry + 1)
+ V1221 (S) — nvy)(Sy — nvy)

3

If

B (S| —nuy) S By —nvy)

71+ 1 - Y2+ Hy
then we have:
S —
f()=R,(v) = M + \/ﬁlzﬁm(sl —nu (S, —noy) )

Y1+ M
where 0 <v; < 5,,0< 0, < 8,.

4. Minimizing the effective reproduction number

Because (3) provides a closed-form expression for R,, we can find
the optimal solution numerically.

We can also solve the problem analytically for a certain range of N.
For notational simplicity, we let N’ = %,Sl = 5,(0), and S, = S,(0).
We want to allocate all available vaccines, so we have v; = N’ — v,.
Defining

B So(yy + up) + (N = Sy + 1p)

P(N') = . 6)
NBn(ri + 1) + Br1(ra + o)l
we can write R,(v) as a univariate function:
R, (], 05) = R(N' = v, 0,)
B2 (Sr—nv7) — 7 _
Ttm T VB12821 (S — nN" + nvy)( Sy — nvy).
v, S P(N')
= S;—nN’
PG 4 3/ BraBon (S1 = nNT+ n03)(S5 = o).
vy > G(N)
(6)

with 0 < v, < min(N’, S,).

Proposition 1. v — R,(N’ — v,v) is a piecewise concave function, and
therefore the minimum is at an extreme point: vs € {0, (N "), min(N’, S,)}.
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Proof. We calculate the first derivative

_ b + VBi2hai

n(Sy+nN'—S, ~2nv)

<
R N
b T2 N M > o(N)
In both cases
R;’(N’—u,u)z-\/ﬂl;_ﬁ21 2 2
V(S) =N+ qu)(S; — nv)
_ VBiaba , (S +nN' =5 —2nv)? (8)
> 2((S) = nN' + no)(S, — o))

<0

Therefore, the function is piecewise concave: the minimum is global
and will be at an extreme point: v} € {0, ¢(N'),min(N’, S,)}. O

We can further refine the solution when ¢(N') < 0 or ¢(N') > 1. In
that case, vs € {0, min(N’, S,)}, since 0 < vy <L When ¢(N') <0 < vy,
we can establish two additional results.

Proposition 2. If N’ < S, and N’ > %(51 — S)(; + up)? or if

11

2
N’ N’>l[ _ _( A ) S ] 0.
> S, and N’ > p S| =8, +1S, i) o | then v =0

Proof. When ¢(N’) < 0, since v, > 0, we have ¢(N’) < v, for all
feasible v,, and from Proposition 1, the optimal solution v can only
be 0 or min(N’, S,). From (6), we have
P11(Sy —nN' + nv,)

Vit u
+ VBB (S = 1N +1ny)(S, — nvy)

We first consider the case where N’ < S,. We calculate

R,(N' = v,,0,) =

R,(N',0)— R,(0,N")
_ “PunN’ ol —
Y +\/ﬂ12ﬂ21(\/5152 nN'S, — /5,5, '1N51)
—pynN’
S#+\/ﬁ12ﬂ21|\/S152_’7N,52_\/SISZ_”NIS1|
—BunN"
< —-+ N'(S. S
P VBB VINN' (S, = S))l
—Bvn
=\/'1N’< y”+;4 +Vﬁ12ﬂ21\/51 Sz)

where we used |\/_ - \/El < 4/la—b| in the second inequality. Addi-
tionally, we have

1VnN’
7+Z +VP12Br VS — S <0 = N'> M(H_ D2
11

Therefore
ﬂlzﬂzl
n 1 1

—S$)(1 + H)? = R(N',0)=R,(0,N")<0

and it is optimal to vaccinate group 1.
We now consider the case S, < N’ < S;. We have

R,(N',0) = R,(N' = S,,5,)
_ ~PunsS;
1+ H
+ VPB12B2 (S) = NS, = (S = nN' +18,)(S, = 15,)
—pnsS
<=2y VP28 155185 — 1Sy — ) +nN|
1+ u
Since N’ < S|, we have .S, — 1S, = S| + 4N’ < S, —nS, — S| + 1S, =
(1 =n)(S, — S)) <0. Therefore
—p1nS.
RN, 0)=R,(N'=S3,8,) < —=24\/f12,,15,(S =N’ = S, +nS,)

Y1+ M
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Additionally
1 b 2 1S,
N>=|8-8+nS—(——— ) ——
'I[ e 2 (71+M1> B2
= R,(N',0)—R,(N' -5,,5,)<0

and it is optimal to vaccinate group 1. []

Let R} be the optimal effective reproduction number. We establish
conditions under which R} < 1.

Proposition 3. () If N’ < S, and v; = min(N’, S;) =
i1 )2
1-
if and only if N’ > %(Sz - %)
191
() I N >S,and v} = mm(N; S)) = S, then R: < 1if and only if N’ >

2
;’(S]+;1S2—<—W> ) where 4, = By Sy(1—n)+4-Li

N’, then R <1

2811 /(r1+m1) W+ﬂ

* <1 IR _( _(—\/ﬂ12ﬂ2152+ ) )

(iit) If v5 = 0, then R} < lﬂlfand only if N' > p M T
— 11
where Ay = 1,6, S, + 4y1+/41'
Proof. (i) vj = N’: We have Ri(N) = R(O.N) = Z 4
1 1
VP12 51(S, —nN'). After algebraic manipulation, we find that
(1 _ busi )2
V1tH

R <1 e N’zl(SQ—
¢ n

B12Ba1 S| )
(ii) v} = S,: We have RI(N') = R,(N' = 5,,5,) = W 4

VP12 (S| —nN" +1.5))S,(1 — ). Let x = 4/S| — N’ — 1.S,. Substitut-
ing N’ by (S} +#S, — x?)/ yields

sz + V ﬂlZﬂZISZ(l - 1’])X -1 S 0
it

Solving this quadratic inequality, we have 4; = f,6,;5,( — n) +
_ =V Si=m-V4,

4-Bu 5 0. The two roots are ro=

Ri(x) <1 <=

<0andr, =

V1M 2611 /(ri+m1)
PP S5 (= Ay
% > 0. Since x > 0, we have Ri(x) <1 < 0<x<r,.
11 1 1
Flnalf

—VPi12hrS2(1 =) + \/4_1)2>

1
REN) <1 e N' > (S5, +48, -
¢ A 2 281/ Cry + my)

s _ . PN _ ' B11(S1=nN")
(iii) vy = 0: We have RX(N') = R,(N',0) R

\V/B12621(S; —nN")S,. The proof is similar to (ii). Defining x =
1/S; —nN’, we have

Br1x2
yll_:_—” + VBB Srx -1 <0.

Let Ay = 155,15, +4 ﬂ - > 0. The two roots of this quadratic equation

Rl <

are r, = —YPluSvh <0andr = YPuhi5iiva o g Therefore
U7 28 [ +m) 2811/ (ri+p1)
2
—4/ S, +4/4
R:(N’)$1<:>N'Zl S - M . O
n 2601/ + my)

5. Example: Minimizing R, for COVID-19

Similar to Rao and Brandeau [12], we consider the case of COVID-
19 spreading in two interacting populations, and use data reflective
of the initial COVID-19 outbreak in New York. Group 1 (84% of the
population) comprises individuals younger than age 65, and group 2
(16% of the population) comprises individuals age 65 and older. We
assume that S| = 80.9%,S, = 16.0%,y, = 0.079,y, = 0.064,;, =
0.00012, 41, = 0.00460,4,, = 0.403,8,, = 0071, = 0.154,5y =
0.613,7 = 0.9 [12]. With these parameter values, the reproduction
number with no intervention is 4.31, which is consistent with other
studies that aim to estimate R, in an initial outbreak while taking into
account transmission from unconfirmed cases [17-20].
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Fig. 2. R, as a function of vaccination level for different amounts of vaccine available (N /P, colored lines) and different allocations between groups 1 and 2 (% — Uy, 0).
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Fig. 3. R, as a function of constant daily vaccination at different levels (4, colored lines) and different allocations between groups 1 and 2 (a4, (1 — a)A).

The optimal allocation can be determined numerically from (6).
Plugging in the parameter values, we find that for N/P < 0.59 we have
¢(N/P) <0, and thus

B11(Sy —nvy)
R,(v) = =L+ /B2, (Sy = n0p)(S; — 10,).
71t
Evaluating the conditions from Proposition 2, for N/P < S,, we find
ﬂ”—li”(sl — 8,)(y; + up)* =0.0003 < N/P,
Py

and for S, < N/P <0.59, we find

b )2 nS,
n+u/ Piabu

Thus, from the analytical conditions we find that all vaccine should
be allocated to individuals in group 1 for 0.0003 < N/P < 0.59. From
Proposition 3, we find that R} < 1 if and only if N/P > 0.85. Therefore,
for N/P <0.59, R, cannot be less than 1.

We can show numerically that for any amount of vaccine up to
N/P < 0.59 (including 0 < N/P < 0.0003), it is optimal to vaccinate
group 1 only (Fig. 2). For N/P > 0.59, allocating a portion of the
vaccines to individuals in group 2 is optimal: for example, (v],v;) =
(0.65,0.03) for N/P = 0.68 and (v’l“, U;) =(0.69,0.09) for N/P =0.78. In
these cases, we find that u’g = ¢(N/P).

We compare the values of the effective reproduction number under

optimal allocation, R?, and equal allocation, Ry’ = Re(% ﬁ(?(o)’
1 2
N 5,(0)

—_—2 1 * 3 0, eq
P S0, (0)) (Table 1). We find that Re'ls u'p to 23% lower' than R,%.
ur analysis assumes that all vaccination occurs at time 0, but
in practice vaccination campaigns take place over time. We perform
numerical simulations in which vaccination occurs over 10 days, with

[sl—szw,sz—( ] =384 < N/P.

1
n

Table 1

R, R:, and percentage decrease for different amounts of vaccine available (N /P).
N/P RY R Ri;,“?
0.02 4.12 4.10 0.3%
0.11 3.75 3.66 2.2%
0.21 3.38 3.22 4.6%
0.30 3.01 2.78 7.5%
0.40 2.64 2.34 11.2%
0.49 2.27 1.90 16.2%
0.59 1.90 1.46 23.2%
0.68 1.53 1.18 23.1%
0.78 1.16 0.89 23.2%
0.87 0.79 0.61 22.9%

4 = 0.5% to 1.4% of the population being vaccinated each day (thus,
N /P <0.14), and calculate R, after 10 days. We find that it is optimal
to vaccinate only younger individuals (Fig. 3), which is consistent with
our analytical findings for a one-time vaccine allocation.

6. Conclusion

The analytical conditions we develop provide a simple means of
determining the optimal allocation of vaccine between two population
groups to minimize R,. Our analysis shows that the optimal vaccination
strategy depends on the number of vaccines available: an all-or-nothing
approach is only optimal when vaccine supplies are limited. Therefore,
before determining the vaccine allocation, policy makers must first
estimate the proportion of the population that can be vaccinated, taking
into account not only vaccine supply but also other limiting factors such
as operational constraints and vaccine hesitancy. For instance, recent
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polls suggest that approximately 30% of the U.S. population is hesitant
about COVID-19 vaccination, suggesting that N /P < .70 for COVID-19
vaccination [21,22].

We assumed that N/P < .5,(0) in order to simplify calculations. It is
straightforward to extend the analysis to the case N/P < 5,(0) +.5,(0),
a less limited vaccine supply. To do so, one must separately consider
the case N/P > 5,(0), and add the constraint v, > N’ — 5,(0) to
the univariate problem (6); otherwise R,(N’ — v,,v,) would not be
well defined. The minimum will again be at an extreme point: v} €
{N' = 5,(0), p(N"), S,(0)}.

Our analysis is based on a relatively simple SIR model. We illustrate
the model with an example of COVID-19. Although COVID-19 may be
more accurately modeled with an SEIR model, several studies have
used an SIR model for COVID-19 and have obtained a good fit to
the data [12,23-25]. Further work is needed to extend our analytical
approach to more complex compartmental models that can capture
more details of disease transmission and progression.

Finally, we consider a static policy with a single allocation of
vaccine at time 0. In numerical simulations, we consider a constant
daily vaccination rate and find that the same solution as for one-time
allocation is still optimal. In practice, because vaccination efforts will
occur over time, the vaccination policy can evolve. A heuristic dynamic
solution would be to recalculate R, at certain points in time and then
adjust the vaccine allocation using the optimization criteria we provide.
Further work is needed to extend our analysis to a multi-period setting.
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