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Abstract
Background: The Galliformes is a well-known and widely distributed Order in Aves. The phylogenetic relationships of 
galliform birds, especially the turkeys, grouse, chickens, quails, and pheasants, have been studied intensively, likely 
because of their close association with humans. Despite extensive studies, convergent morphological evolution and 
rapid radiation have resulted in conflicting hypotheses of phylogenetic relationships. Many internal nodes have 
remained ambiguous.

Results: We analyzed the complete mitochondrial (mt) genomes from 34 galliform species, including 14 new mt 
genomes and 20 published mt genomes, and obtained a single, robust tree. Most of the internal branches were 
relatively short and the terminal branches long suggesting an ancient, rapid radiation. The Megapodiidae formed the 
sister group to all other galliforms, followed in sequence by the Cracidae, Odontophoridae and Numididae. The 
remaining clade included the Phasianidae, Tetraonidae and Meleagrididae. The genus Arborophila was the sister group 
of the remaining taxa followed by Polyplectron. This was followed by two major clades: ((((Gallus, Bambusicola) 
Francolinus) (Coturnix, Alectoris)) Pavo) and (((((((Chrysolophus, Phasianus) Lophura) Syrmaticus) Perdix) Pucrasia) 
(Meleagris, Bonasa)) ((Lophophorus, Tetraophasis) Tragopan))).

Conclusions: The traditional hypothesis of monophyletic lineages of pheasants, partridges, peafowls and tragopans 
was not supported in this study. Mitogenomic analyses recovered robust phylogenetic relationships and suggested 
that the Galliformes formed a model group for the study of morphological and behavioral evolution.

Background
The Galliformes, a well-known and widely distributed
Order in Aves, contains about 70 genera and more than
250 species including the domestic chicken (Gallus gal-
lus), green peacock (Pavo muticus) and turkey (Meleagris
gallopavo), among others. Many galliforms have beautiful
ornamentations and they play an important role in hunt-
ing and entertainment. Regardless, these birds are best
known for their importance in agriculture and as model
organisms in scientific studies [1-6].

The phylogenetic relationships of galliforms have long
been the focus of research [7-21]. Traditionally, the Galli-
formes contained seven families: Megapodiidae (scrub-

fowl and brush-turkeys), Cracidae (curassows and guans),
Tetraonidae (grouse), Meleagrididae (turkey), Numididae
(guineafowls), Odontophoridae (New World quails) and
Phasianidae (pheasants and Old World quails). Phasian-
ids formed the most diverse and complex group, includ-
ing two lineages: the pheasants and Old World partridges
(OW quails). The pheasants were further divided into
four lineages: peafowls, gallopheasants, junglefowls and
tragopans [22] (Fig. 1a). However, this taxonomy was not
supported by recent molecular and morphological analy-
ses (Fig. 1b, c, d), which failed to obtain a consistent result
and added more fuel to an already heated debate.

Mitochondrial DNA analyses revealed that Gallus
(Tribe Phasianini), Francolinus (Tribe Perdicini) and
Bambusicola (Tribe Perdicni) clustered together, suggest-
ing that pheasants and partridges were not monophyletic
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groups [9,12]. Subsequently, these findings were sup-
ported by the analyses of nuclear gene sequences [11],
combined mt genes and nuclear gene sequences (Fig. 1c)
[17,20] and sequences from retrotransposable elements
(Fig. 1d) [19]. However, one morphological study [15]
conflicted with these assessments (Fig. 1b). The phyloge-
netic relationships within the Galliformes, and especially
the unsolved branching order in the Phasianidae, limited
interpretations of their morphological and ecological
convergent evolution. The absence of a phylogeny also
impacted on conservation initiatives.

Internal nodes resolved by previous studies were gener-
ally very short. Further, bootstrap support values were
very low and many species had unresolved relationships,
suggesting a rapid radiation of the Phasianidae [8,9].
Although the resolution of branching orders during a
rapid radiation has proven to be challenging, large DNA
sequence datasets have a much higher probability of
recovering a robust tree [23-27].

Recently, mt genomes have been widely used to recon-
struct intractable phylogenies [28-33]. In general,
mtDNA accumulates mutations at a relatively faster rate
than nuclear DNA, thus making it particularly useful for
revealing closely spaced branching events. Considering
that previous phylogenetic studies based on a single gene
or a few genes failed to resolve the internal branching
orders within the Galliformes, we sequenced the com-
plete mt genomes of 14 galliform birds, and obtained
other mt genomes from GenBank (Additional file 1).
Consequently, we used extensive mt genomes from major
groups of galliform birds to infer their phylogenetic rela-
tionships.

Results
Characteristics of the mitochondrial genome
The general characteristics of mt genomes of 34 galli-
forms and six anserforms are summarized in Additional
file 1. The lengths of the complete mt genomes range

Figure 1 Phylogenetic hypotheses from various molecular, morphological and behavioral analyses of gamebirds. (a) The traditional classifi-
cation from Johnsgard (1986); (b) morphological and behavioral data (Dyke et al., 2003); (c) combined data including two mitochondrial genes (CytB, 
ND2) and four nuclear introns (BFib7, DCoH3, OvoG, and Rhod1) (Kimball and Braun 2008); (d) insertion events of CR1 retrotransposable elements (Kaiser 
et al., 2007).

d

a Phasianus
Syrmaticus
Catreus
Chrysolophus
Lophura
Crossoptilon
peafowls
junglefowls
Tragopan
Ithaginis
Pucrasia
Lophophorus
Arborophila
Coturnix
Bambusicola
Perdix
Francolinus
Alectoris
Odontophoridae
Numididae
Tetraonidae
Meleagrididae
Cracidae
Megapodiidae

G
allopheasants

tragopans
O

W
 quails

Phasianidae

b
Coturnix
Ammoperdix
Margaroperdis
Rouloulus
Odontophoridae
Excalfactoris
Perdicula
Arborophila
Tetraogallus
Alectoris
Haematortyx
Perdix
Rhizothera
Francolins
Galloperdix
Ithagins
Rheinardia
Argusianus
Afropavo
Pavo
Bambusicola
Gallus
Tragopan
Meleagrididae
Polyplectron
Syrmaticus
Crossoptilon
Catreus
Chrysolophus
Lophura
Phasianus
Pucrasia
Tetraonidae
Numididae
Cracidae
Megapodiidae

O
W

 quails
O

W
 quails

OW quails

tragopans

G
allopheasants

peafow
ls

peafowls

tragopans

c
Bonasa

Centrocercus

Tetrao

Lagopus
Meleagris

Phasianus

Tragopan

Alectoris

Coturnix

Pavo

Polyplectron

Francolinus

Bambusicola

Gallus

Rollulus

Numida

Acryllium

Colinus

Callipepla
Crax

Alectura

Anser
Megapodiidae

Odontophoridae

OW quails

Catreus
Crossoptilon
Lophura
Phasianus
Chrysolophus
Syrmaticus
Perdix
Pucrasia
Falcipennis
Tympanchus
Meleagris
Tragopan
Lophophorus
Afropavo
Pavo
Bambusicola
Gallus
Polyplectron
Alectoris
Coturnix
Colinus
Oreortyx
Cyrtonyx
Numida
Guttera
ortalis
Crax
Alectura
Leipoa
Megapodius

G
allopheasants

tragopans

peafowls

Cracidae

OW quails

OW quails
tragopans

junglefowls
peafowls

Numididae

Tetraoninae

tragopans

junglefowls

Tetraoninae

Meleagridinae

Cracidae

Odontophoridae

Numididae

Megapodiidae

OW quails

OW quails

OW quails

Gallopheasants

peafowls

junglefowls

tragopans



Shen et al. BMC Evolutionary Biology 2010, 10:132
http://www.biomedcentral.com/1471-2148/10/132

Page 3 of 10
from 16,604 to 16,870 bp. Length differences are mainly
due to variation in the Control Region (CR). The overall
average nucleotide composition was A = 29.3%, C =
30.65%, G = 14.51% and T = 25.45%. All mitochondrial
gene organizations conformed to the standard avian gene
order (chicken) [31,34].

Phylogenetic relationships
Tests for stationarity of base composition among the taxa
for each mt gene revealed that the Galliformes did not
differ significantly in their base content (P > 0.05). Only
Alectoris chukar for CoxI and ND5, Alectoris lathami for
ND5, and Bonasa bonasia for CoxII, ND2 and ND4 dif-
fered marginally significantly. However, all five outgroup
taxa failed the stationarity tests for some data partitions
as follows: Anas platyrhynchos for CoxI, CR, ND2 and
ND5; Anser albifrons for CR, ND2 and ND5; Anseranas
semipalmata for CR; Aythya americana for CoxI, CR,
ND2 and ND5; Branta canadensis for CoxI, CR and ND5;
and Cygnus columbianus for CR (Additional file 2). In
summary, CR had the greatest number of cases (in all five
outgroups) that deviated from stationarity, and Anas
platyrhynchos and Aythya americana deviated from sta-
tionarity most frequently (four times).

Because we mainly used the combined sequences to
reconstruct the tree, we also calculated base composition
for the 12 protein-coding gene set (Additional file 3). We
found that base composition was not significantly differ-
ent in codon positions 1 and 2 among Galliformes, while
for codon position 3, some species departed from the
average composition.

The combined dataset of 12 protein-coding genes
(10,886 aligned sites) revealed a single, robust tree using
MP and ML, and BI produced a summary of numerous
trees (Additional file 4) for the Galliformes. The Megapo-
diidae was the sister group of the remaining taxa, fol-
lowed by the Numididae. The remaining clade formed a
complex mixture involving the families Tetraonidae,
Meleagrididae and Phasianidae. The Phasianidae con-
tained seven lineages, each with very high BSPs as fol-
lows: Group 1 contained Arborophila; Group 2 included
Tragopan, Lophophorus and Tetraophasis; Group 3 was
composed of Chrysolophus, Phasianus, Lophura, and Syr-
maticus; Group 4 contained Perdix; Group 5 had Pucra-
sia; Group 6 held Gallus, Bambusicola and Francolinus;
and Group 7 contained Coturnix and Alectoris. A clade
containing families Tetraonidae and Meleagrididae
branched off from within the Phasianidae. Only the phy-
logenetic relationships of Pavo and Polyplectron
remained unresolved (Additional file 4).

In order to investigate the possibility of a bias owing to
substitution saturation, we plotted transitions and trans-
versions against pairwise sequence divergence using 12
mt protein-coding genes (Additional file 5). Codon posi-

tions 1 and 2 were not saturated. Codon position 3 was
saturated for transitions in the comparison between the
Galliformes and outgroups. In addition, some species
departed from the average base composition in codon
position 3 (Additional file 3). In order to reduce the possi-
ble influence of these two biases on codon position 3, we
implemented P12 and RY-coding methods. The resulting
tree topologies were identical to those of the unweighted
schemes. As expected, relatively lower bootstraps values
were obtained (Additional file 6). Better resolution and
higher BSPs were obtained from DNA datasets that
included all substitutions, as opposed to those subjected
to weighting.

Both of the combined RNA datasets (tRNAs and
rRNAs) obtained less resolution compared to protein-
coding genes (Additional file 7 and Additional file 8). The
aligned rRNA sequences (combined 12S and 16S rRNA
genes) were 2,744 aligned sites in length. The tRNA data-
set (combined 22 tRNA genes) contained 1,612 bp of
aligned sites. The individual partitions (13 protein-coding
genes, 12S rRNA, 16S rRNA and CR) showed very limited
power for phylogenetic inference, leaving many unre-
solved nodes (Additional file 9).

To maximize the amount of phylogenetic information,
we pooled all mt genes (protein-coding, RNA and CR) to
form a single dataset with a length of 16,508 aligned sites
for a genomic-level phylogeny [33]. The BI analysis
yielded a topology identical to that produced by the com-
bined 12 protein-coding genes, except for the phyloge-
netic position of Polyplectron, which did not cluster with
the peafowl, but rooted at the base of the Phasianidae,
implying non-monophyly of peafowl (Fig. 2).

Regarding the phylogenetic positions of the Cracidae
and Odontophoridae, the BI trees based on 10,502 nucle-
otide positions (Additional file 10) and 3,262 positions
(Additional file 10) were very similar to those attained
from complete mt genomes (Fig. 2). As expected, some
nodes received relatively low statistical support.

Assessing the performance of individual genes
PBS analyses were performed to better understand the
contribution of different parts of the mt genome on the
genome phylogeny. Among the 16 partitions examined,
ND5 provided the greatest contribution to tree resolu-
tion, followed by CR, while ATP8 contributed the least
(Fig. 3A). In the analyses of PBS values per nucleotide
base pair, CR performed the best and ATP8 was the worst
(Fig. 3B).

Discussion
The rapid radiation and convergent morphological evolu-
tion has confounded the resolution of relationships for
many pheasants and partridges. Most previous molecular
studies analyzed either one or a few mt genes [9,12,13,18]
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Figure 2 Phylogenetic tree based on the complete mitochondrial genomes of galliform birds. Bayesian posterior probabilities >70%, and max-
imum likelihood bootstrap proportions >50% are indicated on the branches. Species belonging to the Tribe Phasianini are marked in purple, and to 
Tribe Perdicini in green.
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Figure 3 Results of partitioned Bremer support (PBS) analyses with respect to each node on the mitochondrial genome tree.
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only or a single nuclear gene [11,35]. The paucity of data
rendered the sequence of cladogenic events, especially
within the family Phasianidae, unsolved. In this study, we
showed that the number of genes, and thus the quantity
of data, proved critical to resolving relationships. Individ-
ual genes had limited power to resolve the phylogeny of
this group (Additional file 9). In contrast, the complete
mt genomes clearly resolved most of the branching order
within the pheasants and partridges, with strong nodal
support.

At the base of the tree, Alectura lathami was the sister
taxon of all other galliforms, followed in sequence by the
cracids, new world quails and guineafowls, and then a
clade including the Phasianidae, the Tetraonidae and the
Meleagrididae (Additional file 10). This branching order
was the same as obtained by some studies [9,12,18], yet
other studies switched the positions of new world quails
and guineafowl [13,17,20,36]. Unlike most previous stud-
ies based on morphology [15], a single nuclear gene [11],
single mitochondrial gene [9], or retrotransposable ele-
ments [19], we obtained clear branching orders within
the Phasianidae. Arborophila was the sister group to all
other phasianids plus the Meleagrididae and Tetraonidae.
Whereas the evolutionary relationships of Perdix
remained unresolved in previous studies, in our study it
clustered with the gallopheasants, and with strong nodal
support (Fig. 2; 100% BSP and 1.00 BPP). Tetraophasis
clustered independently with Lophophorus and their sis-
ter group was Tragopan; this association also enjoyed
very high nodal support. And Arborophila did not cluster
with other partridges. Therefore, the non-monophyly of
the pheasants and partridges was more common than
not, including the strongly supported association of Gal-
lus, Bambusicola and Francolinus. Polyplectron did not
cluster with Pavo, and Pucrasia did not cluster with other
tragopans. These associations revealed that the peafowl
and tragopan lineages were not monophyletic.

Our study and that of Kimball and Braun 2008 (Fig. 1c),
based on combined data including two mt genes (CytB,
ND2) and four nuclear introns (BFib7, DCoH3, OvoG,
and Rhod1), were similar in some respects, but have many
differences. For example, within Gallus, they resolved the
species relationships as (((G. lafayetti, G. varius) G. gal-
lus) G. sonneratti) and our ML and BI analyses resolved
them as ((G. gallus, G. varius) (G. lafayetti, G. sonner-
atti)). Whereas no nodal support was obtained in the for-
mer set of relationships, our ML and BI trees were
strongly supported at each node (Fig. 2; 100% BSP and
1.00 BPP). Kimball and Braun placed Polyplectron as the
sister group to Gallus and Bambusicola but with less than
50% support values, yet all of our analyses located Poly-
plectron near the base of the clade for the Phasianidae
(Fig. 2; 100% BSP and 1.00 BPP). Other discrepancies also

occurred, such as the position of Pavo, Perdix and Pucra-
sia, and all of these differences received high support in
our study.

Our study resolved many differences compared to trees
based on retrotransposable elements (Fig. 1d) [19,36].
These studies placed Gallus near the base of the clade for
the Phasianidae, followed by Pavo, and the remaining
taxa split into two groups: (1) Coturnix and (2) gal-
lopheasants, tragopans, turkey and grouse. In contrast,
our analyses did not place Gallus near the base of the
Phasianidae, but rather clustered it with Coturnix. This
pair then clustered with Pavo, which then became the sis-
ter group of gallopheasants, tragopans, turkey and grouse
(Fig. 2). Although Kriegs et al. (2007) did not resolve the
position of the tragopans, we found them to be the sister
group of the gallopheasants, and with very high support
(Fig. 2; 100% BSP and 1.00 BPP). Studies of retrotranspos-
able elements resolved the branching orders of seven
families of Galliformes, however, many unsolved parallel
relationships remained in the Phasianidae (Fig. 1d). Thus,
retrotransposable elements were good markers to resolve
relationships at the hierarchical levels of family, but
seemed to be less powerful at resolving detailed relation-
ships at the hierarchical levels of genus and species. In
contrast, mt genomes were very informative at the level
of genus/species, due to their relatively rapid rate of
mutation.

Relative branch lengths suggest this group has under-
gone ancient, rapid radiations. Branching order is diffi-
cult to resolve during rapid radiations because of
insufficient time for numerous genetic and morphologi-
cal changes to accumulate [9]. Clearly, our combined mt
genomes provide a greater abundance of information and
thus may have a greater likelihood of fully resolving a tree
than individual protein-coding genes and other subsets of
mt genes (tRNA, and rRNA).

Because sequencing the complete mt genomes is
expensive in both time and resources, the relative perfor-
mance of individual genes is of great interest. Ranking
individual genes by their respective contribution to the
total PBS values--a rough indicator of phylogenetic util-
ity--reveals that some genes, such as ND5, CR, ND4, CoxI
and 16S, are better indicators of galliform evolution than
others (Fig. 3A). Longer genes tend to have more infor-
mative sites, and thus a larger total PBS. PBS value per
nucleotide base pair can be used to maximize tree-acqui-
sition efficiency. For galliform birds, ND3, ND1, ND2,
ND5, ATP6, and ND4 are more informative than other mt
genes (Fig. 3B). PBS values can be used with gene length,
ease of amplification and sequencing to select a suite of
genes for phylogenetic inference, especially given that dif-
ferent suites of genes may provide more information as a
function of the tempo of evolution.
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Conclusions
Our robust mitogenomic tree indicates that galliform
relationships are very complex. The traditional hypothe-
sis of monophyletic lineages of pheasants, partridges,
peafowls and tragopans is not supported in this study.
Mitogenomics is a powerful tool for resolving the phylo-
genetic relationships of the Galliformes. Individual mito-
chondrial genes and nuclear genes seem to be less
powerful in resolving phylogenetic relationships within
the Galliformes, especially the Phasianidae. Clearly, com-
plete mt genomes can provide more information, and
thus are more powerful arbitrators of ambiguous phylo-
genetic relationships than partial genomes. Therefore,
this strategy should serve to further resolve the phylogeny
of the Galliformes as more mt genomes are obtained.
Given the diversity of species in the Galliformes, and
these birds' great complexity in morphological and
behavior characters, such as flight, polygamy and sexual
dimorphism, this Order can serve as an ideal model for a
detailed study of character evolution. Thus, our study not
only hypothesizes an evolutionary history of the Galli-
formes, it also provides primary genetic data for future
studies. A caveat of this study is that, our tree tells us a
part of story due to the only matrilineal heredity of
mtDNA. In particular, our topology conflicts with that
derived from nuclear DNA (nuDNA) retrotransposable
elements [19,36]. These conflicts may be due to the dif-
ferent modes of heredity, and different tempos of evolu-
tion of mtDNA and nuDNA. Further study is required to
resolve the current conflicts.

Methods
Specimens sampling
Muscle or feather tissue was obtained from 14 species.
Further, 26 additional complete mt genomes were
obtained from GenBank for the Galliformes and Anser-
formes (Additional file 1). No complete mt genomes were
available for representatives of the Cracidae and Odonto-
phoridae. Consequently, we mined GenBank and created
a dataset with as many mitochondrial genes as possible
for these taxa (Additional file 11).

DNA extraction, PCR amplification, and sequencing
Total genomic DNA was extracted using standard 3-step
phenol/chloroform extraction methods [37]. LA-PCR
primer sets and segmental amplification primer sets were
described previously [38]. An additional 96 species-spe-
cific primers were designed (Additional file 12).

LA-PCR amplifications were conducted using the fol-
lowing parameters: initial denaturation at 95°C 4 min, fol-
lowed by 30 cycles of denaturation at 94°C for 30 sec,
58°C annealing extension for 16 min, and with a final
extension at 72°C for 5 min. Subsequently, the LA-PCR
products were used for segmental PCR amplification.

PCR amplifications were conducted in a 50 μl volume
containing 5 μl of 10 × reaction buffer, 0.2 mM dNTPs,
0.2 μM each primer, 1.5 U Taq DNA polymerase (TaKaRa
Biosystems), and approximately 10 ng LA-PCR products.
PCR amplifications were carried out using the following
parameters: 95°C 4 min, 20 cycles of denaturation at 94°C
for 1 min, annealing at 60-50°C (1 min; 0.5°C/cycle),
extension at 72°C for 1 min, and finally 15 cycles of 94°C 1
min, 50°C 1 min, 72°C 1 min. PCR products were cleaned
using Watson RCR Purification Kits (Watson BioTech-
nologies, Shanghai).

PCR products were sequenced at least three times in
both directions on an ABI 3730 Sequencer (Applied Bio-
systems, Foster, CA, USA) using the ABI PRISM BigDye
Terminator v3.0 sequencing kit. DNA sequences were
edited using DNAstar Seqman software (DNASTAR Inc.,
Madison, WI, USA). The newly determined genomes
were deposited in GenBank (GenBank accession num-
bers: FJ752423-FJ752436).

Phylogenetic reconstruction
The sequence data were initially aligned using ClustalX
1.81 [39] with default parameters. Subsequently, the
alignment was adjusted manually.

Because compositional bias among species can inter-
fere with tree topology [40-42], prior to phylogenetic
reconstruction, we performed tests of stationarity of base
composition in TREEPUZZLE 5.2 [43]. Each gene and
gene set was tested separately.

The combined sequence datasets of all 12 light-strand-
encoded protein coding genes, two rRNA genes and 22
tRNA genes were analyzed separately using maximum
likelihood and maximum parsimony (MP) implemented
in PAUP* 4.0b10 [44]. MP heuristic searches used tree
bisection reconnection (TBR) branch swapping executed
for 10000 replicates. Modeltest 3.7 [45] was used to select
the preferred models of evolution for ML, under the
Akaike Information Criterion [46]. The GTR+I+G model
was selected for the 12 coding genes and 22 tRNAs, and
the GTR+G model had the best fit for the two rRNA
genes. ML heuristic searches used TBR branch swapping
executed in 10 replicates with the selected models.
Because heuristic searches in PAUP* are very slow, we
used two additional fast ML-based inference packages
using 1 000 replicates each: RAxML [47] and PHYML
[48]. Because their topologies are the same, and only a
few bootstrap values are slightly different, we only pres-
ent trees with bootstrap values from PAUP*.

Bayesian inference (BI) was performed using MrBayes
3.1.2 [49]. The Bayesian posterior probabilities (BPP)
used models estimated with Modeltest 3.7 under AIC.
Two separate runs were performed with four Markov
chains. Each run was conducted with 5 × 106 generations
and sampled every 100 generations. When the log-likeli-

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FJ752423
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hood scores were found to stabilize, a consensus tree was
calculated after omitting the first 25% trees as burn-in.

In order to detect the possible bias of substitution satu-
ration, we plotted transitions and transversions against
the pairwise sequence divergence using 12 mitochondrial
protein-coding genes in DAMBE [50].

Two additional weighting strategies were applied in the
analysis of combined 12 protein-coding genes to avoid
possible bias of nucleotide composition and saturation:
(1) excluding the 3rd codon positions, and (2) recoding
the 3rd codon position nucleotides to two-state catego-
ries, R (purine) and Y (pyrimidine), i.e., RY-coding. RY-
coding can greatly improve consistency in phylogenetic
resolution by reducing bias from differences in nucleotide
composition [51,52].

To examine the performance of individual genes, a par-
titioned Bremer support (PBS) analyses [53] were per-
formed. The 13 protein-coding genes, 12S rRNA, 16S
rRNA and control region (CR) partitions were each used
to reconstruct the phylogeny using BI.

To maximize the amount of phylogenetic information,
the entire mt genome (13 protein-coding genes, two
rRNA genes, 22 tRNA genes and CR) was also used to
reconstruct the phylogeny using BI, ML and BP methods.

Complete mt genomes were not available for represen-
tatives of the Cracidae and Odontophoridae. Thus, we
mined GenBank to attain as many mt genes as possible
for 11 species in the Cracidae and four in the Odonto-
phoridae (Additional file 11). We combined these data
with those from the complete mt genomes. Given the
tradeoff between alignment length and taxonomic cover-
age, we compiled a dataset of 10502 nucleotide sites for
11 species in the Cracidae and 40 in the Galloanserae that
have complete mt genomes. In addition, a dataset of 3262
bp was compiled for 11 representatives of the Cracidae,
four Odontophoridae, and 40 Galloanserae. In these two
datasets, substitution models were estimated with Mod-
eltest 3.7 under AIC, and then BI was carried out.

Additional file 13 gives the evolutionary models, log-
likelihood values (-ln L) and settings identified by Mod-
eltest for the different datasets. In PAUP*, all six repre-
sentatives of the Anseriformes were used as outgroup
taxa when calculating the ML and MP trees. Only one
taxon can be set as the outgroup in MrBayes. Therefore,
we chose Anseranas semipalmata, and subsequently re-
rooted the trees to make Anseriformes and Galliformes
reciprocally monophyletic sister groups.

Additional material

Additional file 1 Source of sequence data. Source of sequence data for 
mitochondrial genomes and general characteristics of 40 species in the 
Galloanserae.

Additional file 2 Test of stationarity of base composition. Test of sta-
tionarity of base composition in TREEPUZZLE 5.0. The chi-square test com-
pares the nucleotide composition of each sequence to the frequency 
distribution assumed in the maximum likelihood model.
Additional file 3 Base composition for the 12 protein-coding gene 
set. (A) All codon sites; (B) 1st codon position; (C) 2nd codon position; (D) 3rd 

codon position.
Additional file 4 Bayesian tree based on 12 mitochondrial protein-
coding genes. In order to emphasize the topology of Galliformes, we did 
not include the outgroup on the tree. Numbers are maximum likelihood 
bootstrap support and Bayesian posterior probabilities. Branches are drawn 
proportionally to the average number of expected DNA substitutions per 
site among all trees sampled after a burn-in period, as indicated by the 
scale at the bottom left. Species belonging to the Tribe Phasianini are 
marked in purple, and to Tribe Perdicini in green.
Additional file 5 Substitution saturation of 12 mitochondrial protein-
coding genes. Transitions and transversions plotted against the pairwise 
sequence divergence for 12 mitochondrial protein-coding genes. (A) 1st 

codon position; (B) 2nd codon position; (C) 3rd codon position; (D) all codon 
sites.
Additional file 6 Bayesian phylogenetic analyses of RY-coding and 
exclusion the 3rd codon position. Bayesian phylogenetic analyses of two 
weighting strategies in the combined 12 protein-coding gene sets. Bayes-
ian posterior probabilities >70% are indicated on the branches. (A) Recod-
ing the 3rd codon position nucleotides as to two-state categories, R (purine) 
and Y (pyrimidine), (RY-coding); (B) Excluding the 3rd codon position.
Additional file 7 Bayesian tree for 22 tRNA genes. Bayesian inference 
consensus tree for the Galliformes based on combined data from mito-
chondrial 22 tRNA genes. Anseriformes forms the outgroup. Bayesian pos-
terior probabilities >70%, and maximum likelihood bootstrap proportions 
>50% are indicated on the branches.
Additional file 8 Bayesian tree based on combined data from 12S 
rRNA and 16S rRNA genes. Bayesian inference consensus tree for Galli-
formes based on combined data from mitochondrial 12S rRNA and 16S 
rRNA genes. Anseriformes forms the outgroup. The Bayesian posterior 
probabilities >70%, and maximum likelihood bootstrap proportions >50% 
are indicated on the branches.
Additional file 9 Bayesian analyses of individual mt genes. Bayesian 
inference analyses of individual mt genes and control region (CR). Each run 
was conducted with 5,000,000 generations and sampled every 100 genera-
tions. Bayesian Posterior Probabilities >70% are indicated on the branches. 
(A) ND1, 972 aligned sites; (B) ND2, 1,038 aligned sites; (C) ND3, 348 aligned 
sites; (D) ND4L, 291 aligned sites; (E) ND4, 1,377 aligned sites; (F) ND5, 1,818 
aligned sites; (G) ND6, 519 aligned sites; (H) CoxI, 1,548 aligned sites; (I) CoxII, 
681 aligned sites; (J) CoxIII, 783 aligned sites; (K) ATP6, 681 aligned sites; (L) 
ATP8, 165 aligned sites; (M) CytB, 1,137 aligned sites; (N) CR, 1,294 aligned 
sites; (O) 12S, 1,047 aligned sites; (P) 16S, 1,695 aligned sites.

Additional file 10 Bayesian trees based on combined datasets of the 
Cracidae and Odontophoridae. Bayesian inference (BI) consensus trees 
based on combined datasets of the Cracidae and Odontophoridae. Anseri-
formes forms the outgroup. Bayesian posterior probabilities > 70% are indi-
cated on the branches. (A) The BI tree for the dataset of 10,502 nucleotide 
positions for 11 species in the Cracidae (marked in red) and 40 galliform/
anseriform birds that have complete mt genomes; (B) The BI tree for the 
dataset of 3,262 aligned nucleotide positions for 11 species in the Cracidae 
(marked in red), four in the Odontophoridae (marked in blue) and 40 galli-
form/anseriform birds.
Additional file 11 Source of sequence data for the Cracidae and 
Odontophoridae. No complete mitochondrial genomes were available for 
the Cracidae and Odontophoridae in GenBank. Thus, we mined GenBank 
and created a dataset with as many genes as possible for them.
Additional file 12 Primers for amplifying the complete mitogenomes. 
List of primers used in this mitogenomic study of the Galliformes.
Additional file 13 Parameters of evolutionary models. Evolutionary 
models, log-likelihood values (-ln L), and settings identified by Modeltest for 
different DNA sequence datasets from the Galiformes.
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