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Purpose: To compare the value of contrast-enhanced CT (CECT) and

non-contrast-enhanced CT (NCECT) radiomics models in di�erentiating

tuberculosis (TB) from non-tuberculous infectious lesions (NTIL) presenting

as solid pulmonary nodules or masses, and develop a combine radiomics

model (RM).

Materials and methods: This study was a retrospective analysis of 101 lesions

in 95 patients, including 49 lesions (from 45 patients) in the TB group and

52 lesions (from 50 patients) in the NTIL group. Lesions were randomly

divided into training and test sets in the ratio of 7:3. Conventional imaging

features were used to construct a conventional imagingmodel (IM). Radiomics

features screening and NCECT or CECT RM construction were carried out

by correlation analysis and gradient boosting decision tree, and logistic

regression. Finally, conventional IM, NCECT RM, and CECT RM were used

for combine RM construction. Additionally, we recruited three radiologists

for independent diagnosis. The di�erential diagnostic performance of each

model was assessed using the areas under the receiver operating characteristic

curve (AUCs).

Results: TheCECT RM (training AUC, 0.874; test AUC, 0.796) outperformed the

conventional IM (training AUC, 0.792; test AUC, 0.708), the NCECT RM (training

AUC, 0.835; test AUC, 0.704), and three radiologists. The diagnostic e�cacy of

the combine RM (training AUC, 0.922; test AUC, 0.833) was best in the training

and test sets.

Conclusions: The diagnostic e�cacy of the CECT RM was superior to that

of the NCECT RM in identifying TB from NTIL presenting as solid pulmonary
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nodules or masses. The combine RM had the best performance and may

outperform expert radiologists.

KEYWORDS

pulmonary tuberculosis, solid pulmonary nodules, radiomics, contrast-enhanced,

computed tomography

Introduction

In 2020, approximately 9.9 million people worldwide fell

ill with tuberculosis (TB), equivalent to 127 cases per 100,000

population. The majority of these patients are located in the

WHO regions of South-East Asia (43%), Africa (25%) and the

Western Pacific (18%) (1). TB has become a major cause of

death from infectious diseases (2), most commonly in the lungs.

Moreover, as the stigma is often distressing, TB takes a serious

toll on the mental health of patients (3). The elimination of

TB has become a global goal, and the key to achieving it is

accurate diagnosis and effective treatment (4). However, the

non-specific imaging presentation of TB imposes a significant

clinical burden, with TB presenting as solid pulmonary nodules

or masses in approximately 6–9% of patients (5, 6). Non-

tuberculous infectious lesions (NTIL) in the lungs also have

solid pulmonary nodules or masses as their manifestation, such

as fungal infection and organized pneumonia. It is hard for

radiologists to distinguish between TB and NTIL presenting as

solid pulmonary nodules ormasses by naked eye and experience.

But their treatments are very different. NTIL patients are often

treated with antimicrobials, hormones, or surgical resection,

whereas TB patients require antituberculous drugs (7, 8). Once

TB patients are misdiagnosed, they cannot receive timely and

effective treatment, and the more serious consequence is the

spread of TB.

Mycobacterium culture is the gold standard for the

detection of Mycobacterium TB in clinical samples, but this

method is time-consuming (9). Among the sample collection

Abbreviations: TB, tuberculosis; NTIL, non-tuberculous infectious lesions;

NCECT, non-contrast-enhanced CT; CECT, contrast-enhanced CT; S1,

apical segment of upper lobe; S2, posterior segment of upper lobe;

S6, superior segment of lower lobe; IM, imaging model; RM, radiomics

model; GBDT, gradient boosting decision tree; AMD, axis position

maximum diameter; WBC, white blood cell; NEUT, neutrophil; LYMPH,

lymphocyte; MONO, monocyte; Glu, glucose; ICC, inter- and intra-class

correlation coe�cients; ROC, receiver operating characteristic; AUC, area

under the receiver operator characteristic curve; CI, confidence interval;

H-L, Hosmer-Lemeshow; DCA, decision curve analysis; GLCM, gray-level

co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM,

gray-level run lengthmatrix; GLSZM, gray-level size zonematrix; NGTDM,

neighborhood gray-tone di�erence matrix.

methods, spontaneous sputum is often unsatisfactory, and

sputum induction, alveolar lavage, and bronchial washing are

harmful to the patients (10, 11). CT-guided lung aspiration

biopsy in combination with Xpert MTB/RIF Ultra had high

sensitivity for the differential diagnosis of pulmonary TB,

lung cancer, and chronic infections (12). However, this

method is highly invasive to patients and the procedure is

tedious. Compared with these methods, CT imaging diagnosis

has the superiority of convenience, rapidness, and non-

invasiveness. However, a stable and reliable method is needed

to help radiologists improve the diagnostic performance of

distinguishing TB from NTIL presenting as solid pulmonary

nodules or masses.

The concept of radiomics was first introduced by the

Dutch scholar Philippe Lambin in 2012, which refers to the

automatic high-throughput extraction of a large number

of quantitative features from images (13). Currently, the

development of radiomics research has advanced rapidly, and

its value in guiding clinical decision-making is increasingly

appreciated (14, 15). The majority of studies are based on

non-contrast-enhanced CT (NCECT) images. However, some

researchers have begun to explore the value of contrast-

enhanced CT (CECT) images. CECT images often reflect

the blood supply to the lesion, and enhancement attenuation

helped distinguish between benign and malignant pulmonary

nodules (16, 17). In terms of radiomics, CECT combined

with texture analysis had a good diagnostic value for

distinguishing pulmonary sclerosing pneumocytoma and

atypical peripheral lung cancer, with a sensitivity and specificity

of 0.82 and 0.87, respectively (18). The study of Liu et al.

(19) showed that texture analysis of CECT could be used

to evaluate the pathological grade of lung adenocarcinoma.

Additionally, Gao et al. (20) proposed that CECT was more

useful than NCECT in the radiomics differentiation of lung

preinvasive lesions, minimally invasive adenocarcinomas, and

invasive adenocarcinomas.

Previous studies have shown the advantages of CECT-

based radiomics for the differential diagnosis of certain chest

images. Therefore, the main purpose of this study was to

investigate whether CECT radiomics had additional value

in differentiating between TB and NTIL presenting as solid

pulmonary nodules or masses and to establish the combine

radiomics model (RM).
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Materials and methods

Patients

This study was approved and exempted the informed

consent of patients by the ethics committees of the

three hospitals.

Inclusion criteria: (1) TB was confirmed by sputum

testing or pathology combined with DNA testing, clinical

symptoms, medical history, and tuberculin testing, and NTIL

was confirmed by pathology or effective anti-inflammatory

therapy; (2) lesions located in the peri-pulmonary field; (3)

CECT images with layer thickness ≤ 2.5mm on initial

examination; (4) lesions presenting as solid nodules or masses

without internal calcification; (5) patients with no history of

lung surgery, radiotherapy or chemotherapy. According to the

inclusion criteria, 73 patients from the First Affiliated Hospital

of Dalian Medical University (Center 1) from January 2010 to

February 2022, 25 patients from the Second Affiliated Hospital

of Dalian Medical University (Center 2) from April 2019 to

February 2022, and 15 patients from Dalian Public Health

Clinical Center (Center 3) from December 2017 to July 2021

were collected retrospectively. The exclusion criteria were as

follows: (1) Artifacts in CT images had an impact on evaluation.

(2) Patients did not have NCECT images with slice thickness

≤ 2.5mm. Eighteen patients were excluded according to the

exclusion criteria.

The patient selection process is shown in Figure 1. Finally,

95 patients with a total of 101 lesions were included. Among

TB patients, 11 cases were confirmed by sputum examination,

and 34 cases were confirmed by pathology combined with

DNA testing, clinical symptoms, medical history, and tuberculin

testing. All of the NTIL patients were pathologically confirmed,

except for five pulmonary inflammation patients who were

confirmed by effective anti-inflammatory therapy. Details on

the selection of lesions for each patient are provided in

Supplementary Figure S1. All of the lesions were randomly

divided into the training and test sets according to the ratio

of 7:3.

Clinical data

Two demographic characteristics (gender and age), two

clinical characteristics (smoking status and clinical symptoms),

and five hematological examination indices (white blood

cells, neutrophils, lymphocytes, monocytes, and glucose) were

recorded at the time of patient admission.

CT examination acquisition

Chest CT scans were performed using multi-slice spiral

CT (16 or more) from three companies (General Electric,

American; Siemens, Germany; Philips, Netherlands). The

patient was routinely scanned from the tip of the lung

to the base under inspiration. Scanning parameters: tube

voltage, 120–140 kVp; tube current, 140–630mA or automatic

adjustment; matrix, 512 × 512; reconstruction thickness,

1–2.5mm; reconstruction interval, 1–2.5mm. CECT scans were

performed using a non-iodine ion contrast agent, with an

injection rate of 2.5–3.0 mL/s, and scanned at 55–60 s after

contrast injection.

Image analysis

CT imaging analysis was done jointly by two thoracic

diagnostic radiologists (A and B) without knowing the type

of lesions, and different opinions were discussed and agreed

upon. Each lesion was observed in the lung window (window

level, −700 HU; window width, 1400 HU), mediastinal window

(window level, 40 HU; window width, 400 HU), axial, sagittal,

and coronal views. The conventional imaging features of each

lesion were analyzed, including (1) semantic features: lobulation,

spiculation, cavity, pleural traction, and location; and (2)

quantitative features: axial position maximum diameter. The

apical and posterior segments of the upper lobe (S1 and S2),

as well as the superior segment of the lower lobe (S6),

are TB predilection sites (21). Therefore, the location was

dichotomized, with one category being located in S1 or S2 or

S6, and the other category being other locations. Figure 2 shows

TB and NTIL lesions.

Image segmentation and feature
extraction

The original images were imported into the open source

software 3D slicer (version 4.11.20200930, http://slicer.org/) by

radiologist A. The regions of interest (ROIs) were outlined

layer by layer on the entire lesion from NCECT and CECT

images respectively under amediastinal window (windowwidth,

400 HU; window level, 40 HU) and the cavity areas were

removed. Radiologist A blinded the pathological diagnosis of

the lesions.

Adjusting the voxel size to 1mm × 1mm × 1mm, the

original images were resampled to automatically extract

respective radiomics features in the NCECT and CECT,

including first-order statistics, shape-based, gray-level

co-occurrence matrix (GLCM), gray-level dependence matrix

(GLDM), gray-level run length matrix (GLRLM), gray-level size

zone matrix (GLSZM), and neighborhood gray-tone difference

matrix (NGTDM).
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FIGURE 1

Flowchart of study population. TB, tuberculosis; NTIL, non-tuberculous infectious lesions; NCECT, non-contrast enhanced CT;

CECT, contrast-enhanced CT.

Consistency assessment

Assessment of intra- and inter-group agreement was

performed by randomly selecting 32 lesions from 101 lesions,

and independent measurements were completed by radiologist

A and radiologist B with unknown final pathological results.

And independent measurements of data were completed again

by radiologist A 1 month after the first measurement. Inter- and

intra- class correlation coefficients (ICCs) were used to assess

the inter- and intra- observer agreement of feature extraction,

with ICC > 0.75 indicating good to excellent agreement (Values

<0.5 are indicative of poor reliability, values between 0.5 and

0.75 indicate moderate reliability, values between 0.75 and 0.9

indicate good reliability, and values >0.90 indicate excellent

reliability) (22).

Feature selection and modeling

Firstly, the radiomics feature data of the training and test sets

were normalized respectively. Secondly, the radiomics features

were screened in the training set using correlation analysis

(If the average correlation coefficient of a feature with other

features exceeds 0.9, this feature will be rejected.) and gradient
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FIGURE 2

(A) (NCECT, lung window), (B) (NCECT, mediastinal window), and (C) (CECT, mediastinal window) are thoracic CT images of a 53-year-old male

patient with pathologically confirmed TB. (D) (NCECT, lung window), (E) (NCECT, mediastinal window), and (F) (CECT, mediastinal window) are

thoracic CT images of a 41-year-old male patient with pathologically confirmed organized pneumonia. TB, tuberculosis; NCECT, non-contrast

enhanced CT; CECT, contrast-enhanced CT.

boosting decision tree (GBDT). Differences in conventional

imaging characteristics of TB and NTIL groups were compared

by univariate analysis. Finally, logistic regression was used to

establish four models, i.e., conventional imaging model (IM),

NCECT RM, CECT RM, and combine RM. The combine RM

was formed by the combination of conventional IM, NCECT

RM, andCECTRM. The radscore was calculated for each patient

via a linear combination of selected features that were weighted

by their respective coefficients.

Model evaluation and comparison

The receiver operating characteristic (ROC) curves were

performed to evaluate the discriminative performance of the

models. The areas under the ROC curves (AUCs), sensitivities,

specificities, and accuracies were calculated. The calibration

curves were plotted, and the fits of the models were estimated

by the Hosmer-Lemeshow (H-L) test. The decision curve

analysis (DCA) was performed to estimate the clinical utility of

the models.

We invited a senior radiologist C (with 25 years of

diagnostic chest imaging experience), a Mid-level radiologist

D (with 12 years of diagnostic chest imaging experience),

and a junior radiologist E (with 4 years of diagnostic chest

imaging experience) to diagnose all lesions independently. Their

diagnostic ability in identifying TB from NTIL presenting as

solid pulmonary nodules or masses was assessed. The value of

RMs was further clarified by comparison with radiologists.

Statistical analysis

All statistical analyses of the data were performed using

R (version 4.1.1). Categorical variables were expressed as the

“number of cases (percentage)” and the chi-square test or

Fisher’s exact test was used to evaluate differences between the

TB and NTIL groups. When continuous variables conformed

to the normal distribution, they were expressed as mean

± standard deviation and t-test was used; when they did

not conform to the normal distribution, they were expressed

as median (first quartile, third quartile) and Mann-Whitney

U test was used. A two-tailed p-value < 0.05 indicated

statistical significance.

Results

Analysis of clinical data and conventional
imaging features

There were 45 patients (49 lesions) in the TB group

(29 males and 16 females; mean age 50.96 ± 10.94 years), and
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TABLE 1 Clinical information of the patients.

Variables Training set Test set

TB NTIL P-value TB NTIL P-value

No. of patients 32 35 13 15

Age(y) 53.00 (43.50, 59.00) 58.00 (50.00, 66.00) 0.055 50.54± 7.86 53.20± 9.73 0.438

Gender 0.813 0.778

Men 21 (65.63%) 22 (62.86%) 8 (61.54%) 10 (66.67%)

Women 11 (34.37%) 13 (37.14%) 5 (38.46%) 5 (33.33%)

Smoking status 0.122 0.025

Never smoked 17 (53.13%) 25 (71.43%) 5 (38.46%) 12 (80.00%)

Ex- or current smoker 15 (46.87%) 10 (28.57%) 8 (61.54%) 3 (20.00%)

Clinical symptoms 0.853 0.978

No 13 (40.63%) 15 (42.86%) 7 (53.85%) 8 (53.33%)

Yes 19 (59.37%) 20 (57.14%) 6 (46.15%) 7 (46.67%)

WBC 5.56 (4.52, 6.61) 5.95 (4.65, 7.39) 0.173 5.98 (5.43, 7.31) 5.95 (4.77, 7.73) 0.945

NEUT 3.24 (2.46, 4.07) 3.20 (2.74, 4.49) 0.581 3.79 (3.14, 4.03) 3.61 (2.64, 5.11) 0.945

LYMPH 1,63 (1.28, 1.92) 1.83 (1.51, 2.13) 0.107 1.97± 0.45 1.93± 0.77 0.890

MONO 0.40± 0.14 0.44± 0.18 0.425 0.45± 0.16 0.44± 0.19 0.917

Glu 6.34 (5.10, 8.71) 5.32 (4.91, 5.99) 0.059 5.35 (4.65, 6.20) 5.68 (4.97, 6.21) 0.519

TB, tuberculosis; NTIL, non-tuberculous infectious lesions; WBC, white blood cell; NEUT, neutrophil; LYMPH, lymphocyte; MONO, monocyte; Glu, glucose.

50 patients (52 lesions) in the NTIL group (32 males and 18

females; mean age 55.38± 10.59 years). The patients in the NTIL

group included 7 cases of pulmonary fungal infection, 11 cases of

organized pneumonia, 9 cases of inflammatory granuloma, and

23 cases of pulmonary inflammation.

The clinical data of patients in the training and test sets

are shown in Table 1. In the training set, the differences in all

indicators were not significant (P > 0.05). In the test set, more

patients in the TB group had a history of smoking than in the

NTIL group (P = 0.025).

The comparison of conventional imaging features between

two groups in the training and test sets is shown in Table 2.

After univariate analysis, the difference in cavity between the two

groups was statistically significant in the training set (P= 0.001).

In the test set, the differences in all features were not significant

(P > 0.05).

Radiomics feature screening

The radiomics feature selection processes were the same for

both the NCECT and CECT RMs. A total of 107 radiomics

features were extracted. First, 17 features with ICC < 0.75 were

excluded. The consistency assessment showed the ranges of

the inter- and intra-class correlation coefficient values for the

remaining 90 radiomics features were 0.765–0.994 and 0.853–

1.000, respectively. This indicated good to excellent inter- and

intra-observer agreement for the 90 radiomics features. Then,

after filtering by correlation analysis, 28 NCECT radiomics

features and 29 CECT radiomics features were retained.

Finally, the GBDT algorithm selected 11 NCECT radiomics

features and 10 CECT radiomics features from them as the

best features.

Model construction and comparison

All conventional imaging features were used to establish

the conventional IM. The modeling formulas of the NCECT

and CECT RMs are shown in Supplementary Figure S2.

Conventional IM, NCECT RM, and CECT RM were used for

combine RM construction.

In the training set, the AUCs of NCECT RM and CECT RM

were higher than that of the conventional IM (Table 3; Figure 3).

Compared with NCECT RM, the AUCs and accuracies of CECT

RM were further improved in the training and test sets (Table 3;

Figure 3).

In this study, the best performance was achieved with

the combine RM in the training and test sets, with AUCs of

0.922 (95% CI: 0.861, 0.982) and 0.833 (95% CI: 0.672, 0.995),

accuracies of 0.829 and 0.774 (Table 3; Figure 3).

In the training set, the H-L test showed no significant

difference between the four models and the ideal model (all

P > 0.05, Figure 4).

In the training set and the test set, the AUCs and accuracy of

the CECT RM and the combine RM were higher than those of

the senior, mid-level, and junior radiologists (Table 3).
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TABLE 2 The comparison of conventional imaging features between two groups.

Features Training set Test set

TB NTIL P-value TB NTIL P-value

No. of lesions 34 36 15 16

AMD (cm) 2.45± 0.88 2.27± 0.93 0.415 2.41± 1.41 2.45± 1.30 0.926

Lobulation 0.858 0.685

No 6 (17.65%) 8 (22.22%) 4 (26.67%) 3 (18.75%)

Yes 28 (82.35%) 28 (77.78%) 11 (73.33%) 13 (81.25%)

Spiculation 1.000 1.000

No 9 (26.47%) 10 (27.78%) 4 (26.67%) 5 (31.25%)

Yes 25 (73.53%) 26 (72.22%) 11 (73.33%) 11 (68.75%)

Cavity 0.001 0.172

No 23 (67.65%) 36 (100.00%) 11 (73.33%) 15 (93.75%)

Yes 11 (32.35%) 0 (0.00%) 4 (26.67%) 1 (6.25%)

Pleural traction 0.676 0.333

No 8 (23.53%) 6 (16.67%) 3 (20.00%) 1 (6.25%)

Yes 26 (76.47%) 30 (83.33%) 12 (80.00%) 15 (93.75%)

Location 0.193 0.113

S1/S2/S6 24 (70.59%) 20 (55.56%) 13 (86.67%) 9 (56.25%)

Other 10 (29.41%) 16 (44.44%) 2 (13.33%) 7 (43.75%)

TB, tuberculosis; NTIL, non-tuberculous infectious lesions; AMD, Axis position maximum diameter; S1, apical segment of upper lobe; S2, posterior segment of upper lobe; S6, superior

segment of lower lobe.

TABLE 3 Diagnostic e�ciency of four models and three radiologists.

Training set Test set

AUC (95% CI) Sensitivity Specificity Accuracy AUC (95% CI) Sensitivity Specificity Accuracy

Conventional IM 0.792 (0.688, 0.896) 0.529 0.833 0.686 0.708 (0.522, 0.895) 0.533 0.750 0.645

NCECT RM 0.835 (0.742, 0.928) 0.853 0.694 0.771 0.704 (0.496, 0.912) 0.600 0.750 0.677

CECT RM 0.874 (0.793, 0.955) 0.765 0.833 0.800 0.796 (0.627, 0.964) 0.800 0.688 0.742

Combine RM 0.922 (0.861, 0.982) 0.824 0.833 0.829 0.833 (0.672, 0.995) 0.733 0.812 0.774

Senior radiologist 0.708 (0.584, 0.833) 0.559 0.806 0.686 0.738 (0.555, 0.920) 0.600 0.875 0.742

Mid-level radiologist 0.627 (0.495, 0.759) 0.588 0.667 0.629 0.417 (0.213, 0.620) 0.333 0.500 0.419

Junior radiologist 0.772 (0.658, 0.887) 0.765 0.778 0.814 0.579 (0.375, 0.783) 0.533 0.625 0.581

AUC, area under the curve; CI, confidence interval; CECT, contrast-enhanced CT; NCECT, non-contrast-enhanced CT; IM, imaging model; RM, radiomics model.

Clinical usefulness

The decision curves for each model in the training set and

test set are shown in Figure 5. CECT RMhad a higher net benefit

than NCECT RM over most probability threshold ranges. The

combine RM had the highest overall net benefit.

Discussion

In this study, we used RMs to identify TB and NTIL

presenting as solid pulmonary nodules or masses and compared

the value of CECT and NCECT. The diagnostic efficacy of RMs

based on either NCECT or CECT was improved compared

with the conventional IM, more so in the CECT RM. And

the combine RM we finally built had the highest differential

diagnostic value (training AUC, 0.922; test AUC, 0.833).

Our results showed that cavity was the only conventional

imaging feature that differed significantly between the two

groups in the training set, and it was more common

in TB lesions, accounting for 32.35%. An analysis of the

imaging presentation of pulmonary granulomatous lesions also

mentioned that cavity was highly suggestive of Mycobacterium

tuberculosis infection (23). The proportion of the cavity in

their TB lesions was higher than in this study, reaching

57.1%. Moreover, the presence of the cavity may indicate a
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FIGURE 3

The ROC curves for four models in the training set (A) and the test set (B). The AUC of the CECT RM was greater than that of the NCECT RM and

the conventional IM. The combine RM achieved the best performance, with AUC of 0.922 and 0.833. ROC, receiver operating characteristic;

AUC, area under the ROC curve; NCECT, non-contrast enhanced CT; CECT, contrast-enhanced CT; RM, radiomics model; IM, imaging model.

FIGURE 4

The calibration curves for four models in the training set (A) and the test set (B). The gray line represents the ideal prediction e�ect, and The

colored lines represent the prediction e�ect of each model. The closer the colored line is to the gray line indicates a better fit of the model.

higher risk of acid-fast bacilli positivity as well as being highly

infectious (24).

Given that there was only cavity with the discrepancy, we

decided to use all conventional imaging features for modeling

to avoid missing important information. However, even though

conventional IM integrated all conventional imaging features,

its diagnostic power is unsatisfactory (training AUC, 0.792; test

AUC, 0.708).

Essentially, CT images providemuchmore information than

the macroscopic appearances we can see with the naked eye.
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FIGURE 5

The decision curves for four models in the training set (A) and

the test set (B). The vertical coordinate represents the net

benefit and the horizontal coordinate represents the probability

thresholds. None means that all patients were diagnosed with

NTIL, no intervention was performed, and the net benefit was 0.

All means that all patients were diagnosed with TB, and all

patients received intervention, and the net benefit is a backslash

with a negative slope. The farther the model curve is from these

two extreme curves, the more valuable the model is. TB,

tuberculosis; NTIL, non-tuberculous infectious lesions; RM,

radiomics model.

Radiomics then provides us with a large number of quantitative

features that reflect the microstructure of the lesion, mainly

including intensity histogram, shape-based features, and texture

features, and the extraction process of these features is automatic

(13, 25). The first-order features reduce the 3D data of the lesion

to a single histogram, reflecting the intensity distribution within

the ROI. Shape-based features are mainly used to describe the

geometry of the lesion. In general, texture features can indirectly

reflect the heterogeneity of the tumor (13, 26). In this study,

the images are resampled to achieve voxel isotropy, and voxel

size resampling can greatly improve the proportion of robust

features (27).

Wang et al.’s RM based on NCECT to identify TB and

community-acquired pneumonia in children was also quite

effective, the AUC reached 0.837 (28). In addition, the radiomics

signature established by Feng B et al. (29) based on NCECT

could discriminate between TB and adenocarcinoma presenting

as solid pulmonary nodules, with good performance in the

internal validation set (AUC, 0.890) and external validation set

(AUC, 0.874). The aforementioned studies have shown that

NCECT-based radiomics can help in the differential diagnosis

of TB. And the result of this study was similar. Our NCECT

RM (AUC, 0.835) performed well in differentiating between TB

and NTIL presenting as solid pulmonary nodules or masses and

showed an improvement compared with the conventional IM.

CECT scan is a commonly used auxiliary examination

method in clinical diagnosis and treatment. The results of several

studies have shown that the radiomics characteristics of tumors

are altered after the uptake of contrast agents, particularly first-

order histogram features and textural features (30–32). Several

studies compared CECT-based radiomics with NCECT-based

radiomics and came to different conclusions. Texture analysis of

iodine-enhanced images (90 s after contrast injection) produced

by dual-energy CT improved the AUC from 0.888 to 0.959 in

distinguishing invasive adenocarcinoma from non-invasive or

minimally invasive adenocarcinoma compared with virtual non-

contrast imaging (33). E et al. (34) compared the value of three

CT scan phase RMs in differentiating lung adenocarcinoma and

squamous cell carcinoma. The results indicated that there was no

significant difference among non-enhanced, arterial, and venous

phases. The radiomics signature based on CECT established

by He et al. (31) is inferior to NCECT in the identification

of benign and malignant solid pulmonary nodules. They chose

CECT images with a 25 s delayed scan after contrast injection.

In this study, the diagnostic efficacy of the CECT RM (training

AUC, 0.874; test AUC, 0.796) was superior to that of the NCECT

RM (training AUC, 0.835; test AUC, 0.704). Compared with

NCECT radiomics, whether CECT radiomics can bring more

value may be related to the types of classification tasks, the

pathological structure of lesions, and the scanning phase. This

deserves further study.

The AUC (training 0.922; test 0.833) and accuracy (training

0.829; test 0.774) of the combine RM were the highest among all

models, and all indicators were relatively balanced in the training

and test sets. This study also found that radiologists were not

able to distinguish well between TB andNTIL presenting as solid

pulmonary nodules or masses, even for experienced radiologists

(training AUC, 0.708; test AUC, 0.738).Moreover, there is a great

deal of subjectivity and fortuity in the diagnosis of radiologists

with different qualifications. Computer-aided diagnosis has

become an irreversible trend in clinical work, and artificial

intelligence has great prospects in the field of thoracic radiology

(35). The combine RM established in this study is of great

significance for the diagnosis of TB, especially in areas of high TB

prevalence such as the WHO regions of South-East Asia, Africa,

and the Western Pacific. First, when doctors encounter solid

nodules or masses that are difficult to diagnose in clinical work,

they should actively recommend patients undergo enhanced CT

examinations. The combine RM can then serve as a reliable

reference tool to assist radiologists in differentiating between TB
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and NTIL if the patient has symptoms of fever and cough, or has

a history of exposure to Mycobacterium tuberculosis, or has a

long course of disease. However, before the combine RM can be

used effectively in clinical practice, it still needs to go through a

significant number of clinical trials.

There are some limitations to our study. Firstly, this is a

retrospective study with unavoidable selection bias. Secondly,

after strict inclusion and exclusion criteria, our sample size was

small, so a larger sample is needed to validate this study in

the future. Thirdly, the NTIL group in this study has a large

variety of diseases, and the value of using radiomics to help

differential diagnosis of one of these diseases with TB will be

discussed in the future. Fourthly, only CECT images scanned

55–60 s after contrast agent injection were selected in this study,

the influence of different delayed scanning times on CECT’s

differential diagnostic ability can be further studied in the future.

Fifthly, the use of multiple CT scanners in this study affected

the reproducibility of the radiomics data. Although we used

resampling for correction, we still need to use batch correction

to minimize acquisition-related radiomics variability and verify

the generality of the final model by stress testing in future

studies. Finally, we used the rather time-consuming manual

method of outlining ROIs. Compared with it, semi-automatic

measurements are not only convenient and fast but also may

have a better inter-observer agreement (36).

Conclusions

In conclusion, radiomics helped to differentiate TB from

NTIL presenting as solid pulmonary nodules or masses,

and CECT may be a better choice. Combine RM we built

obtained the best diagnostic efficacy and may outperform

expert radiologists.
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