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Abstract
The precise prediction of protein intrinsically disordered regions, which play a crucial role in

biological procedures, is a necessary prerequisite to further the understanding of the princi-

ples and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS,

which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS

bases on an original multi-class conservative score (MCS) obtained by sequence-order/dis-

order alignment. Initially, near-disorder regions are defined on fragments located at both the

terminus of an ordered region connecting a disordered region. Then the multi-class conser-

vative score is generated by sequence alignment against a known structure database and

represented as order, near-disorder and disorder conservative scores. The MCS of each

amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS

is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a

non-redundant data set as the training set, MCS and predicted secondary structure as fea-

tures, and a conditional random field as the classification algorithm. In predicted near-disor-

der regions a residue is determined as an order or a disorder according to the optimized

decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction,

independent tests and CASP (Critical Assessment of Techniques for Protein Structure Pre-

diction) tests. All results confirmed that DisoMCS was very competitive in terms of accuracy

of prediction when compared with well-established publicly available disordered region pre-

dictors. It also indicated our approach was more accurate when a query has higher homolo-

gous with the knowledge database.

Availability

The DisoMCS is available at http://cal.tongji.edu.cn/disorder/.

Introduction
The intrinsically unstructured/disordered proteins (IUPs/IDPs) or intrinsically unstructured/
disordered regions (IURs/IDRs) that do not possess stable secondary or tertiary structures play
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a crucial role in transcriptional regulation, translation and cellular signal transduction [1].
Even though these proteins lack intrinsic structure, they are able to bind to many different
macromolecular partners when functioning in protein synthesis and protein interactions.
Their prevalence is also associated with a number of human diseases [2], including cancer [3],
cardiovascular disease [4], neurodegenerative diseases [5], genetic diseases [6], and amyloidosis
[7, 8]. Therefore accurate prediction of disordered regions from a protein sequence is a key for
the elaboration of the structural and functional hierarchy of proteins.

Predictions of disorder has a major role in directing laboratory experiments that are leading
to the discovery of disordered proteins, and thereby leading to a positive feedback loop in the
investigation of proteins. Importantly, the annotations of the IDPs are collected at a rather
slow pace compared with the growing number of known, non-redundant protein sequences
[9]. In recent decades, prediction of IDPs has attracted the attention of many researchers, and a
number of prediction methods have been developed, and numerous characteristics of disor-
dered regions are derived from protein sequences, such as low complexity [10], high net charge
[11], and low content of hydrophobic amino acids [12]. At the same time, these motivate the
development of computational models for the prediction of the disordered regions and have
led to a growth in the number of IDR predictors.

The development of the widely adopted statistics and machine-learning methods of predict-
ing IDPs and IDRs have been based on historical data for the last 30 years. The pioneer predic-
tion for IDPs [13] was proposed by Williams in 1979 based on amino acid sequence. While a
formal predictor was published by Obradovic and coworkers, they used three different algo-
rithms, logistic regression, discriminant analysis, and an artificial neural network (ANN),
named PONDR VL-XT to predict the disordered structures of proteins [14]. A slightly higher
accuracy was given by ANN.

In the first decade of this century, many state-of-the-art predictors have been developed. A
tool to identify regions of globularity and disorder within protein sequences, GlobPlot [15],
was proposed. The regional order neural network (RONN) software [16] was published in
2005. Coeytaux presented the prediction of unfolded segments in a protein sequence based on
amino acid composition [17]. Jaime P et al. presented a simple and versatile tool, Foldindex,
for predicting intrinsically unfolded [18]. Tosatto’s group constructed Spritz for a disordered
region [19] by support vector matching (SVM). A two-level SVM prediction system, POO-
DLE-L, appeared in 2007 [20] for reliably predicting long disordered regions. DisPSSM [21]
employed position-specific scoring matrices (PSSMP) with respect to physicochemical proper-
ties to identify the disordered regions of a query protein. DISOclust [22] predicted intrinsic
disorder prediction from the analysis of multiple protein fold recognition models. A META-
Disorder prediction method [23] molded various sources of information predominantly
obtained from orthogonal prediction methods. CDF-all [24] based on various cumulative dis-
tribution functions to give a consensus prediction of intrinsically disordered proteins. During
this period, there were numerous web servers available for users [18, 25–30] to predict IURs
using their query sequences.

In modeling methodology, ANNs and SVMs were widely utilized techniques in the predic-
tions of IDPs. Other predictions were exploited in this field, such as Spectral Graph Transduc-
ers (SGTs) [31], Bayesian methods [32], and Conditional Random Fields (CRFs) [29]. SGTs
used the information from structure-unknown proteins in order to avoid training data sparse-
ness. It predicted disordered structures with training on a huge amount of structure-unknown
sequences as well as structure-known sequences [31]. The Bayesian classifier method [32] had
been applied in the structure predictions of IDPs. Wang et al. [29] used CRFs to predict the
intrinsic disorder in proteins. Compared to ANNs and SVMs, CRFs were able to take into
account the interrelated information between two labels of neighboring residues. Recently, a
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number of IUR predictors have emerged, which usually had characteristics of large-scale pre-
diction, higher accuracy prediction and unique model coverage of short and long disordered
regions. PreDisorder [33] was proposed as an ab initio sequence-based predictor of protein dis-
ordered regions. MFDp [34]used two-layered architecture to predict IURs. MetaDisorder [35]
was a meta-server for the prediction of IUPs. Tosatto’s group presented two new predictors,
CSpritz [36] and ESpritz [37]. Zhou’s group demonstrated SPINE-D [38], which utilized new
features and accurately predicted large-scale IUPs and IURs. Chen’s group presented DNdisor-
der [39] which used boosting and deep networks. These excellent predictors performed better
in CASP (Critical Assessment of techniques for protein Structure Prediction) comparing with
previous methods. Becker et al. also presented a predictor [40], which was competitive in terms
of accuracy with respect to the state-of-the-art.

Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein
intrinsically disordered regions. The DisoMCS bases on a new defined near-disorder region
and an original multi-class conservative score (MCS) obtained by sequence-based structural
similarity. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted
secondary structure as features and conditional random field as the classification algorithm. In
predicted near-disorder regions a residue is determined as order or disorder according to the
optimized decision threshold. DisoMCS was used in cross-validation, large-scale prediction,
independent tests and CASP tests.

Materials and Methods

Datasets
All data used in our approach were created from sequences and structures deposited at the
PDB [41]. All the sequences comprising NMR structures and the X-ray crystallographic struc-
tures until December 31, 2011(containing 72,254 entries), with a length greater than 60 amino
acids, were first collected. Disordered residues were defined as those missing backbone C-alpha
atoms according to the definition of CASP [42]. Other definitions of disorder, such as order
transform to disorder, population propensities [43], are hard to be used for performance com-
parison and are not adopted in this study. A database (referred as MCSbase) was obtained by
using PISCES [44] with a sequence identity cut-off value of 99%. This returned 32,427 entries
and their disorder/order structure elements were composed together. These sequences and
structure elements were saved as a single file using FASTA format. Then a program (‘make-
blastdb’ in BLAST+ toolkit) was carried out, and MCSbase was obtained. MCSbase is a knowl-
edge database for multiple sequence analysis and BLAST-compatible database. Then, the
similarity of pairwise sequences was cutoff at 25% sequence identity using PISCES. In total,
this left 4,803 non-redundant protein chains (referred as DS4803). We randomly selected 3,803
chains (referred to as DS3803) from the DS4803 dataset as the training set to perform a cross
validation test. DS3803 consisted of 925,291 residues, of which 43,837 (about 4.74%) were
annotated as disordered residues. The remaining 1000 chains (referred to as DS1000) were
used as an independent test set, in which there were 243,229 residues, 11,506 residues (about
4.73%) were disordered.

A benchmark dataset, widely used in the literature was defined as DS723 in this study.
DS723 was compiled by Baldi and colleagues [45], and contained 723 entries, with 215,612 resi-
dues, of which 13,909 (about 6.50%) were defined as disordered. These protein sequences were
also extracted from the PDB, with the following constraints: crystal structures with resolutions
higher than 2.5 Å, greater than 30 amino acids in length, disordered regions of at least three
residues in length and a sequence identity lower than 30%.
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In addition, to examine the performance of our approach, another independent test dataset,
named DS495, was constructed. The selection process of DS495 was similar to DS4803. First,
all sequences released by the PDB between January 1, 2012 and June 30, 2012 were collected.
Sequences greater than 60 amino acids in length were selected (containing 1,799 entries).
These entries were combined with DS4803, and the similarity of pairwise sequences was cutoff
at 25% sequence identity using PISCES. The test set contained 495 proteins with 132,062 resi-
dues, of which 7,889 (about 5.97%) were disordered residues. Moreover DS495 was divided
into four regions according to their sequence identities to MCSbase for detail analysis.

The CASP10 data set was used to compare with several other methods. It was downloaded
from the official website (URL: http://predictioncenter.org/casp10/). The most sequences of
CASP10 targets have lower than 30% sequence identities with what have been stored in PDB
before 2012.

Another independent testing set was DisProt. The DisProt was collected from DisProt data-
base [46] (URL: http://www.disprot.org/). In order to avoid sequence similarity with MCSbase
we selected the sequences that were in version 6.02 (Released at 2013-05-24) and not in version
6.01 (Released at 2012-10-15). There were ten sequences left. After removing three all disorder/
order entries we reserved seven sequences, in which there were 12,029 residues, and 2645 resi-
dues were disordered (21.99%).

Definitions of near-disorder region
Recently, there has been a tendency to transform binary classification into a three-class prob-
lem. Zhou [38] defined ordered residues and disordered residues in short and long disordered
regions in his predictor and reduced them into a two-state classification after prediction.
Cheng [47] defined false boundary, near boundary and away boundary and constructed two
predictors to identify protein domain boundaries. In this study, we define a near-disorder
region in the start and the end terminus of an ordered region (Fig 1). A near-disorder contains
K residues, which are the boundary regions of an ordered region. There are three benefits to
the additional near-disorder region: (i) improvement of the imbalance between the positive
and negative without pruning; (ii) analysis of prediction errors that often take place in these
regions; and (iii) adjusting decision thresholds in these regions to improve performances.

Multi-class Conservative Score
The innovative technology in this study is the multi-class conservative score approach. The
MCS is generated by sequence-based structural similarity. For a query, sequence alignment is
first performed against the MCSbase using PSI-BLAST [48] (with six iterations and 500 maxi-
mum sequences, other parameters are set as the default) to find homologous sequences relative
to the query sequence. The matched piece-wise local sequences are then selected according to

Fig 1. The top line represents a protein sequence (from PDB, ID:1CMV:A). The second line is the real definitions of ordered regions (green), disorder
regions (red) and near-disorder regions (yellow, K = 5). The third line is the prediction result of our approach.

doi:10.1371/journal.pone.0128334.g001
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the e-values that are below a given threshold (for example 10). All the selected sequences are
ranked according to their e-values in ascending order, and the top S (default is 10) of these
sorted sequences that are considered as containing rich homologous information are reserved
(if the number of the selected sequences were less than S, all the selected sequences would be
retained). There are three elements for each amino acid position in the query sequences. For
the matched sequences the order, near-disorder and disorder elements are counted in three
boxes. These boxes then constitute an order/disorder profile of the original sequence. The pro-
file is a probability and is defined as:

MSCp
s ¼

P
LAðp; sÞ=

P
S

P
LAðp; sÞ ð1Þ

Where L is the number of matched sequences. p is the position of the amino acid in the query
sequence and s is one of three elements: order, disorder and near-disorder. A(p,s) is a binary (0,
1) value. When the state of the p amino acid in the matched sequences is s A(p,s) is 1, otherwise
0. In the denominator, the summation is carried out for these three states.

Finally, the MCS is exploited as a feature to identify the disordered region in the sequence.
The MCS is a distinctive PSSM-like profile composed after alignments and has rich informa-
tion about order, near-disorder and disorder.

DisoMCS architecture
The architecture of DisoMCS is shown in Fig 2.

Only sequence is needed for prediction of IDRs. A query sequence is used to generate two
kinds of features: MCSs and predicted secondary structures, giving a total of 12 features. There
were three features of MCSs which were the profiles for order, near-disorder and disorder
respectively. The MCS features are obtained by BLAST alignment against MCSbase, and are
containing the homologous information of order, near-disorder and disorder regions. A MCS
element is calculated according to the formula (1). There were nine features represented pre-
dicted secondary structures with orthogonal coding. The predicted secondary structure was
obtained by using SPSSM8 [49] which could predict eight-state secondary structure of amino
acids for a query sequence. The core of the SPSSM8 was a large database which contained 9
million sequences derived from the NR database (NCBI; as of 2009, 9,069,431 proteins were
included) and putative structural information. There are nine elements of SPSSM8 output
(eight-state secondary structure and a “-”). In total the 12 features were used as input features
to CRF. When the queries are training sequences a CRF modelling routine is carried out to
construct a model. When the queries are testing sequences we use a prediction routine to pre-
dict IDRs based on the obtained model.

Conditional random fields are powerful probabilistic frameworks to label and segment
sequential data. As a discriminative model, CRFs do not need to model the visible observation
sequence, and they directly model the conditional distribution, which results in the relaxation
of strong independence assumptions over the observation sequence. Therefore, CRFs can
achieve improved labeling and prediction performance. Moreover, CRFs are superior to many
other machine learning methods in terms of speed without a slide window. In our approach,
CRFs were utilized for modeling and prediction. We used the Unigram template for CRFs, the
template that we generated considered four upward variables and four downward variables in a
row, and then, all the variables in the column were traversed. We set all the parameters for
modeling by default. We applied the CRF++0.54 [50], developed by TakuKudo, which is a sim-
ple, customizable, and open source implementation. The benefit of using CRF++0.54 is that it
enables us to redefine the feature sets and specify the feature templates in a flexible way
(CRF++0.54 is available at: http://crfpp.sourceforge.net/).
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Measuring performance
The performance of our predictions was assessed by multiple measures. For the binary predic-
tions, we calculated sensitivity [Sn = TP/ (TP+FN)], specificity [Sp = TN/ (TN+FP)], accuracy
[ACC = (Sens + Specificity)/ 2] and the Mathews correlation coefficient (MCC).

MCC ¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp ð2Þ

We also use the weighted score Sw,

Sw ¼ Wd � TP �Wo� FP þWo� TN �Wd � FN
Wd � Nd þWo� No

ð3Þ

We observed there was a linear relationship between the weighted score and sensitivity and
specificity (Sw = Sens +Spec–1) [51]. TP, TN, FN and FP are the number of true positives, true
negatives, false negatives and false positives, respectively (positive is disorder, negative is
order). No and Nd are the total numbers of ordered and disordered residues, respectively; Wo

Fig 2. The flowchart of the DisoMCS. The DisoMCS used two kinds of features: MCSs and predicted secondary structures, giving a total of twelve features,
and a conditional random field as the classification algorithm.

doi:10.1371/journal.pone.0128334.g002

DisoMCS Predicting Protein Disordered Regions

PLOS ONE | DOI:10.1371/journal.pone.0128334 June 19, 2015 6 / 16



andWd are the total percentages of disordered and ordered residues, respectively. In addition,
we used the receiver operating characteristic (ROC) curve and area under the ROC curve
(AUC), as a measure of the quality of the probabilities. The statistical significance of the evalua-
tion scores was determined by bootstrapping: 80% of the targets were randomly selected 1000
times, and the standard error of the scores was calculated.

Results and Discussion

Validation of features
In order to validate features and select an optimal combination of features, 5-fold cross valida-
tion tests were performed on the DS723. The length of defined near-disorder was adopted as
five (k = 5). The feature selection and combination were attempted, including the MCS, the
position-specific scoring matrix (PSSM) using PSI-BLAST against NCBI non-redundant (nr)
amino acid sequence databases [48] and predicted secondary structures (SS) by SPSSM8 [49].
We made different combinations of the variable to examine the joint effect. The assessment of
the features and their combinations are summarized in Table 1. Note that because the MCS fea-
ture was derived fromMCSbase, when the features were generated using BLAST against the
MCSbase, any sequence which has an exact match in the DS723 was discarded from the
MCSbase for fairness. The residue in the predicted near-disorder region was determined as
order or disorder according to the decision threshold (see next section).

PSSM is a widely used feature for prediction the protein intrinsically disordered region.
However, it did not perform well in our experiments: Sw was only 23.88%. SS feature per-
formed better. Sw achieved 49.50%. When MCS was used as a feature, Sw achieved 55.63%. It
was obvious that MCS was the extraordinary useful feature for IDR prediction. When MCS
and SS were used as features, Sn and Sp was 65.11% and 98.86% respectively, and Sw achieved
63.98%. The improvement of the corresponding areas under the curve (AUC) highlighted the
effect of MCS. The AUC value, after using MCS and SS was 0.9432 (S1 Table). When the PSSM
was added again, the performance was almost the same. So we used MCS and SS as features in
nest studies.

Adjusting the decision threshold
DS723 was used to demonstrate the behavior of the new defined near-disorder region. First,
due to the definition of the near-disorder region, the imbalance problem was improved, the
ratio of the number of the ordered residues to the number of disorder residues is changed from
14.5:1 to 6.9:1:0.6, which is the ratio of residue numbers (order: near-disorder: disorder). Thus
the two-class problem is transformed to three-class problem.

Table 1. Prediction results using different variables on DS723.

Variables Sens Spec MCC ACC Sw AUC

Value ±SE Value ±SE Value ±SE Value ±SE Value ±SE Value ±SE

PSSM 24.61 0.51 99.28 0.02 0.3945 0.0054 61.93 0.24 23.88 0.51 0.8220 0.0039

MCS 56.60 0.98 99.03 0.04 0.6554 0.0075 77.83 0.48 55.63 0.98 0.9339 0.0030

SS 51.09 0.83 98.41 0.12 0.5698 0.0103 74.77 0.42 49.50 0.85 0.8806 0.0040

PSSM+SS 51.87 0.82 98.47 0.10 0.5799 0.0092 75.12 0.43 50.34 0.82 0.8917 0.0034

MCS+PSSM 60.85 0.85 98.76 0.04 0.6666 0.0067 79.80 0.41 59.61 0.86 0.9353 0.0029

MCS+SS 65.11 0.82 98.86 0.04 0.7039 0.0063 81.97 0.45 63.98 0.82 0.9432 0.0026

MCS+PSSM +SS 65.18 0.82 98.80 0.04 0.6996 0.0062 82.01 0.43 63.97 0.82 0.9466 0.0028

doi:10.1371/journal.pone.0128334.t001
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Second, it is well-known that the predicted errors often take place in the terminus of pre-
dicted ordered regions, in which a residue is a disorder residue but is predicted as an order resi-
due. The addition of near-disorder regions cover these regions (Fig 1) and reduce mistakes. We
determine the residues in the predicted near-disorder regions to be either order or disorder
according to a decision threshold. If the near-disorder probability of a residue is greater than a
given threshold when this residue is not determined as a disorder residue, the residue would be
determined as disorder, otherwise the residue would belong to order. The performances of
adjusting the decision thresholds are shown in Fig 3. When the decision threshold is 0.4, we
achieve the maximum 70.33% of Sw, which is used as the criterion of optimization of the deci-
sion threshold. The decision threshold of the near-disorder region of 0.4 is referred to as
scheme I in the following text. In Fig 3, we also show the effects of the decision threshold when
it is not dominant, indicating the adjustment of the decision threshold could greatly change the
sensitivity and specificity.

Fig 3. Adjusting the decision threshold of predicted near-disorder regions. The Sw achieves maximum 70.33%when the decision threshold is 0.4.

doi:10.1371/journal.pone.0128334.g003
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Third, another feasible adjustment of the decision threshold is focused on the disordered
regions. It is also possible to adjust the decision threshold of the disorder probability to balance
the sensitivity and specificity (Fig 4) as previously performed [37, 38]. If the probability of a
residue is greater than a given threshold, the residue would be determined as a disorder, other-
wise the residue would belong to an order. The Sw score achieves maximum 76.55% when the
decision threshold is 0.03, and this is called scheme II in the following text.

When the decision threshold is 0.4 according scheme I Sw achieves 70.33%, and Sn and Sp
is 76.47% and 93.86% respectively (Table 2). When the decision threshold is 0.03 according
scheme II Sw achieves 76.55%, and Sn and Sp is 89.55% and 87.00% respectively. According to
our experiments scheme I could not have a great effect on Sw, however, it does not decrease Sp
evidently. Scheme II has the ability to greatly improve Sn. When the testing is similar with the
training, Sw will achieve or approximate to the maximum (S2 Table).

In summarizing the multi-class conservative score approach proposed in this study there
are three issues of the approach: (i) definition; (ii) MCS feature; and (iii) adjusting the decision
threshold. The multi-class conservative score approach has been confirmed to benefit the

Fig 4. Adjusting the decision threshold of predicted disorder. The Sw achieves maximum 76.55%when the decision threshold is 0.03.

doi:10.1371/journal.pone.0128334.g004

Table 2. The performances comparison with various adjustments on the DS723 dataset.

Sens Spec Sw

Value ±SE Value ±SE Value ±SE

Scheme I 76.47 0.82 93.86 0.04 70.33 0.82

Scheme II 89.55 0.55 87.00 0.32 76.55 0.61

doi:10.1371/journal.pone.0128334.t002
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identification of protein disordered regions. Similar to other alignment-based methods the per-
formance of MCS would lose its effect if there is no homology information obtained when the
alignment is carried out. Therefore, we believe as more structures of proteins are determined it
will be easier to obtain information of homological alignment.

Ensemble of protein disorder prediction
We utilized our approach on ensemble of protein disorder, to allow for large-scale prediction.
We first performed 5-fold cross validation on DS3803. We then trained using DS3803 and pre-
dicted the independent test set of DS1000. The used features were MCS and SS, and the deci-
sion threshold was 0.4 according to scheme I or 0.03 according to scheme II, which were
obtained by optimizing based on DS723. When we used BLAST against MCSbase, any
sequence which had an exact match in the DS3803 and DS1000 was discarded from the
MCSbase. The 5-fold cross-validation is a relatively strict cross-validation method used to esti-
mate how accurately a predictive model will perform in practice, and is important in guarding
against testing hypotheses suggested by the data.

The accurate performances confirmed using our predictor was good even in the case of
large-scale validation. For DS1000, when we adjusted the threshold using scheme I (0.4), the Sn
was 82.60%, and Sw was 74.40%. When we adjusted the threshold with scheme II (0.03), we
achieved a Sn of 90.20% and a Sw of 78.64%. However for Sp we achieved 91.80% and 88.52%
with scheme I and scheme II respectively. It was obvious that the adjusted threshold with
scheme II was the extraordinary useful feature for IDR prediction. Table 3 also shows that the
AUC value achieved 0.9534 of DS3803 and 0.9577 of DS1000. These demonstrated our
approach had strong ability of predicting protein intrinsically disordered regions (S3 Table).

Independent test and comparison to other methods
To examine the performance of our approach we trained on the DS4803 and predicted the
independent test set of DS495. The used features were MCS and SS, and the decision threshold
was 0.03 according to scheme II. We designed DS495 as a set of proteins with low similarity to
proteins in the DS4803 set to evaluate the approach. Combining DS495 with DS4803, the simi-
larity of pairs of sequences was cutoff at 25% sequence identity. Moreover DS495 was divided
into four regions according to their sequence identities to MCSbase. Table 4 shows that the per-
formances of the proposed method and other methods (Disopred [30], ESpritz [36] and
IUPred [25]) in different regions. Except [0,15] region, we achieved the maximum values on
Sn, Sw and ACC. Even for very low sequence identity region (<15%), the Sn was 76.03%,
which was better than others. The Sp was 81.88%. This result indicates that the proposed pre-
diction model has greater discrimination for disordered regions (S4 Table). It also indicates

Table 3. Prediction results of 5-fold cross-validation and independent test sets.

Sens Spec MCC ACC Sw AUC

Value ±SE Value ±SE Value ±SE Value ±SE Value ±SE Value ±SE

DS3803a 84.97 0.40 88.26 0.02 0.4396 0.0044 86.62 0.06 73.24 0.40 0.9524 0.0012

DS1000a 82.45 0.82 88.34 0.04 0.4336 0.0062 85.40 0.09 70.79 0.92 0.9577 0.0023

DS3803b 89.06 0.27 88.33 0.12 0.4562 0.0027 88.69 0.14 77.39 0.29 0.9524 0.0012

Dd1000b 90.20 0.52 88.44 0.23 0.4638 0.0056 89.31 0.30 78.64 0.59 0.9577 0.0023

a: scheme I (0.4).

b: scheme II (0.03).

doi:10.1371/journal.pone.0128334.t003
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our approach is more appropriate for queries that could find homologous in the knowledge
database.

The sequences in DisProt set are rich disordered sequences. The decision threshold was 0.03
according to scheme II. The ACC was 74.18%. The Sw achieved 48.36%, and Sn and Sp was
64.84% and 83.53% respectively. In DisProt there was a query whose sequence identity with
MCSbase was very low. It indicates that if very low sequence identity entry is concerned ab ini-
tio is especially required in disorder prediction because highly disordered sequences and disor-
dered proteins should be absent from the PDB. In that case, machine learning approach would
not be competitiveness with ab initio.

Comparison on CASP10 data
In order to compare our approach to the state-of-the-art methods, we used the data from the
recent CASP10 experiment [42]. Table 5 shows the results for 94 CASP10 queries. CASP10 was
a difficult blind test, as no previous information was available. We used DS4803 as a training
set, with MCS and predicted secondary structure as an input, and the scheme II (0.03) to adjust
the threshold in the predicted near-disorder. When we used BLAST against MCSbase, we
couldn’t find any sequence which had an exact match in the CASP10. The performances of our
approach and recently reported state-of-art approaches [39] are listed in Table 5 (S5 Table).
Comparing with other methods, our approach achieved the maximum of ACC and Sw. Dis-
oMCS was more accurate than all the reported approaches. We achieved an ACC of 77.83%, a
Sw of 55.66%. The Roc of CASP10 is showed in Fig 5.

In order to detail comparison, the performances of DisoMCS, Disopred [30], ESpritz [36]
and IUPred [25] on different regions (FM (11 entries, other (4 entries), TBM (73 entries) and
TBM-hard (6 entries)) of CASP10 are given in Table 6. For Sn, Sw and ACC measurements
our approach is the best on all regions. These demonstrate that our approach is competitive-
ness with the state-of-art approaches.

Table 4. Performance comparison with variousmethods on the independent dataset.

Identity* Sens Spec Sw ACC MCC

DisoMCS

[0,15]% 76.03 81.88 57.91 78.96 0.3611

[15,30]% 78.89 90.32 69.21 84.60 0.4424

[30,60]% 81.42 91.91 73.33 86.66 0.4987

[60,90]% 87.63 89.43 77.06 88.53 0.5146

Disopred

[0,15]% 63.36 98.15 61.51 80.75 0.6566

[15,30]% 56.24 99.12 55.36 77.68 0.6422

[30,60]% 54.83 99.07 53.90 76.95 0.6297

[60,90]% 73.49 99.06 72.55 86.27 0.7712

ESpritz

[0,15]% 74.96 86.16 61.12 80.56 0.4106

[15,30]% 72.87 90.00 62.87 81.43 0.4016

[30,60]% 75.99 89.68 65.66 82.83 0.4197

[60,90]% 88.12 87.73 75.85 87.92 0.4864

IUPred

[0,15]% 46.10 90.55 36.66 68.33 0.2917

[15,30]% 32.37 95.34 27.71 63.86 0.2510

[30,60]% 40.59 95.32 35.92 67.96 0.3198

[60,90]% 53.33 90.68 44.01 72.01 0.3254

*: sequence identity hit to MCSbase

doi:10.1371/journal.pone.0128334.t004
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An example is a susd homolog (BACOVA_04803) from Bacteroides ovatus ATCC 8483
(CASP10 target T0664, PDB ID 4f53). It has 540 residues and 42 disordered residues (7.78%).

Table 5. Performance on the CASP10 dataset.

Predictor ACC Sensitivity Specificity Sw AUC

Value ±SE Value ±SE Value ±SE Value ±SE Value ±SE

DisoMCS 77.83 0.81 72.66 1.5 83.00 0.95 55.66 1.7 0.8526 0.008

metaprdos2 77.06 0.92 64.73 1.4 89.40 0.98 54.12 1.8 0.8727 0.006

PreDisorder 76.86 0.67 67.19 1.7 86.34 0.94 53.73 1.3 0.8394 0.006

POODLE 76.84 0.78 62.74 1.6 90.94 0.26 53.68 1.6 0.8663 0.006

PreDNdisorder 76.55 0.75 61.74 1.8 91.36 0.61 53.10 1.5 0.8642 0.006

ZHOU-SPARKS-X 75.68 0.76 64.81 1.4 86.55 0.96 51.36 1.5 0.8588 0.006

Dndisorder 75.19 0.71 61.92 1.4 88.46 0.29 50.39 1.4 0.8480 0.006

Cspritz 75.13 1.40 66.31 1.3 83.94 2.40 50.25 2.9 0.8215 0.007

Espritz 73.16 1.60 59.24 1.4 87.08 2.60 46.31 3.2 0.8457 0.006

espritz_nopsi_X 71.98 0.97 53.10 1.5 90.87 0.77 43.97 2.0 0.8145 0.007

PrDOS-CNF 70.35 0.88 41.95 1.8 98.74 0.14 40.70 1.8 0.8956 0.005

biomine_dr_mixed 69.17 0.68 39.95 1.4 98.40 0.11 38.34 1.4 0.8844 0.006

biomine_dr_pdb_c 67.81 1.20 36.88 2.6 98.74 0.15 35.62 2.5 0.8815 0.006

iupred_short 63.26 0.70 30.68 1.5 95.84 0.25 26.52 1.4 0.6642 0.007

Note: the performances of the state-of-art were reported on [39]

doi:10.1371/journal.pone.0128334.t005

Fig 5. ROC plot of CASP10.

doi:10.1371/journal.pone.0128334.g005
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We achieved a Sn of 100%, and a Sp of 94.8%. The false positive predictions were four short
fragments (Fig 6). The Sn and Sp was 28.6% and 86.3% respectively for Dndisorder [38].

Web servers
The DisoMCS server is available at http://cal.tongji.edu.cn/disorder/ for users to predict pro-
tein intrinsically disordered regions for query sequence(s). Users can press the "bookmark this
page" add the URL link to their favorites through the browser menu, and they can use this link
to retrieve the results at a later time.

Conclusions
In this work, we have proposed DisoMCS for accurately predicting the disordered regions in
proteins. It based on a multi-class conservative score strategy which was sequence-based struc-
tural similarity. DisoMCS was performed using a 5-fold cross-validation, large-scale prediction,

Table 6. Performances comparison with variousmethods on different CASP10 regions.

Sens Spec Sw ACC MCC

DisoMCS

FM 70.20 70.66 40.86 70.43 0.1933

other 97.73 78.35 76.07 88.04 0.2931

TBM 72.37 87.27 59.64 79.82 0.4140

TBM-hard 70.83 69.64 40.48 70.24 0.1792

Disopred

FM 32.83 98.05 30.88 65.44 0.3682

other 47.73 95.09 42.81 71.41 0.2934

TBM 40.52 96.55 37.07 68.54 0.4026

TBM-hard 37.50 95.44 32.94 66.47 0.2861

ESpritz

FM 33.33 93.25 26.58 63.29 0.2138

other 84.09 90.69 74.78 87.39 0.3862

TBM 56.30 88.40 44.70 72.35 0.3283

TBM-hard 48.61 88.79 37.41 68.70 0.2310

IUPred

FM 0.00 94.24 - 47.12 -

other 47.73 95.80 43.53 71.76 0.3156

TBM 17.70 95.77 13.47 56.74 0.1583

TBM-hard 25.00 99.93 24.93 62.47 0.4772

doi:10.1371/journal.pone.0128334.t006

Fig 6. An example of CASP10.

doi:10.1371/journal.pone.0128334.g006
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independent test and CASP10 tests. The results demonstrated that DisoMCS was very competi-
tive in terms of accuracy to well-established publicly available disordered region predictors.
The core technology is an original multi-class conservative score which is based on a new
defined near-disorder region, an effective MCS feature and adjustment of the decision thresh-
old. The most distinct character of DisoMCS is that only two kinds of features are utilized dur-
ing modeling and prediction. A small number of features and high accuracy allow our
approach to compete with the state-of-the-art predictors of disorder regions. DisoMCS is more
accurate when a query has high homologous with MCSbase. We believe that DisoMCS offers
an accurate and efficient way to address many biologically relevant problems encountered with
disordered proteins.
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