
Articles
eClinicalMedicine
2023;65: 102270

Published Online 24

October 2023

https://doi.org/10.
1016/j.eclinm.2023.
102270
Intelligent prognosis evaluation system for stage I-III resected
non-small-cell lung cancer patients on CT images: a
multi-center study
Siqi Zhang,a,f Xiaohong Liu,b,f Lixin Zhou,c,f Kai Wang,d,f Jun Shao,e Jianyu Shi,a Xuan Wang,c Jiaxing Mu,c Tianrun Gao,a Zeyu Jiang,a

Kezhong Chen,c,∗∗ Chengdi Wang,e,∗∗∗ and Guangyu Wanga,∗

aState Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876,
China
bUCL Cancer Institute, University College London, London, WC1E 6DD, UK
cThoracic Oncology Institute and Department of Thoracic Surgery, Peking University People’s Hospital, Beijing, 100044, China
dCollege of Future Technology, Peking University and Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China
eState Key Laboratory of Respiratory Health and Multimorbidity, Department of Pulmonary and Critical Care Medicine, Frontiers Science
Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China

Summary
Background Prognosis is crucial for personalized treatment and surveillance suggestion of the resected non-small-cell
lung cancer (NSCLC) patients in stage I-III. Although the tumor-node-metastasis (TNM) staging system is a powerful
predictor, it is not perfect enough to accurately distinguish all the patients, especially within the same TNM stage. In
this study, we developed an intelligent prognosis evaluation system (IPES) using pre-therapy CT images to assist the
traditional TNM staging system for more accurate prognosis prediction of resected NSCLC patients.

Methods 20,333 CT images of 6371 patients from June 12, 2009 to March 24, 2022 in West China Hospital of Sichuan
University, Mianzhu People’s Hospital, Peking University People’s Hospital, Chengdu Shangjin Nanfu Hospital and
Guangan Peoples’ Hospital were included in this retrospective study. We developed the IPES based on self-
supervised pre-training and multi-task learning, which aimed to predict an overall survival (OS) risk for each
patient. We further evaluated the prognostic accuracy of the IPES and its ability to stratify NSCLC patients with
the same TNM stage and with the same EGFR genotype.

Findings The IPES was able to predict OS risk for stage I-III resected NSCLC patients in the training set (C-index
0.806; 95% CI: 0.744–0.846), internal validation set (0.783; 95% CI: 0.744–0.825) and external validation set (0.817;
95% CI: 0.786–0.849). In addition, IPES performed well in early-stage (stage I) and EGFR genotype prediction.
Furthermore, by adopting IPES-based survival score (IPES-score), resected NSCLC patients in the same stage or
with the same EGFR genotype could be divided into low- and high-risk subgroups with good and poor prognosis,
respectively (p < 0.05 for all).

Interpretation The IPES provided a non-invasive way to obtain prognosis-related information from patients. The
identification of IPES for resected NSCLC patients with low and high prognostic risk in the same TNM stage or
with the same EGFR genotype suggests that IPES have potential to offer more personalized treatment and
surveillance suggestion for NSCLC patients.
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Research in context

Evidence before this study
We searched PubMed up to July 7, 2023, for research articles
containing the terms “(deep learning or convolutional neural
network or artificial intelligence)” AND “(CT or MRI or PET)”
AND “(prognosis or overall survival)” AND “NSCLC”, without
date or language restrictions. Several studies have developed
deep learning-based models to predict prognosis of NSCLC
patients from CT images. However, most of these studies
focused on evaluating prognosis of NSCLC patients in
advanced stage. We further replaced the term “NSCLC” with
“resected NSCLC in stage I-III”. We found no research been
conducted to develop an AI-based model using CT images to
evaluate prognosis for resected NSCLC patients in the same
TNM stage, especially for the patients in stage I.

Added value of this study
To the best of our knowledge, this is the first AI-based study
for predicting prognosis of stage I-III resected NSCLC patients
as a complement of TNM staging system for more
personalized prognosis evaluation in clinical practice. In this
study, we developed an AI-based system to predict OS risk for

resected NSCLC patients using self-supervised pre-training
and multi-task learning, which could non-invasively obtain
prognosis-related information from different patients before
surgery. The IPES showed promising performance on OS risk
prediction in multi-center cohorts. By adopting the IPES, the
resected NSCLC patients in both stage I and stage II-III could
be further stratified into low- and high-risk subgroups with
significant difference. Furthermore, the IPES was able to
significantly separate the resected EGFR mutant patients in
stage I and II-III into low- and high-risk subgroups,
respectively. Similar results were also achieved in resected
EGFR wild-type patients in stage I and II-III.

Implications of all the available evidence
IPES provided a non-invasive way to obtain prognosis-related
information from patients. The refined stratification of OS for
resected NSCLC patients in stage I-III suggested that IPES
could be helpful to identify patients who are most likely to
derive benefit from corresponding treatment decision and
surveillance suggestion, which showed potential to
complement TNM stage in clinical practice.
Introduction
Non-small-cell lung cancer (NSCLC) is the prominent
cause of cancer-related deaths worldwide. The tumor-
node-metastasis (TNM) staging system for NSCLC is a
vital predictor for determining treatment and prog-
nosis.1 Pulmonary resection offers the potentially cura-
tive treatment and adjuvant therapy after complete
resection is recommended in stage II-III but not stage I.
However, the standard adjuvant cisplatin-based che-
motherapy improves only 5.4% of 5-year overall survival
(OS), according to the Lung Adjuvant Cisplatin Evalua-
tion (LACE).2 Patients with exon 19 deletions and L858R
point mutations in exon 21 are sensitive to epidermal
growth factor receptor tyrosine kinase inhibitors (EGFR-
TKIs), but few EGFR-TKI adjuvant therapy clinical trials
have shown improvement in OS.3 In addition, about
30% stage I patients experience tumor recurrence after
tumor surgery while in patients with stage II-III, a
portion of them free from recurrence even without
adjuvant treatment.4 Therefore, it is challenging to
accurately predict whether a patient will experience
relapse based on clinical TNM stage alone.

Traditional statistical methods have been studied for
prognosis analysis in the past, such as the Cox
proportional-hazards model based on clinical and path-
ological characteristics.5–8 However, patients with
similar clinical-pathological features still exhibit varied
prognosis. With the development and improvement of
molecular biological techniques, many genome-based
prognostic signatures including biomarkers such as
favorable prognostic factors EGFR, BCL-2 and adverse
prognostic factors KRAS, Ki67, HER2, and p53,9–11 have
been developed for NSCLC.12–22 Recent studies have
identified genomic factors and some other factors as
potential biomarkers of OS in patients with resected
NSCLC, including driver gene mutations, mRNA,
miRNA, methylation in cell-free DNA, Tumor lympho-
cytic infiltration, PD-L1, minimal residue disease
(MRD), circulating tumor cells (CTCs) and multi-
omics.10,19,22–27 However, these methods require gene
sequencing of biopsied tumor tissues, leading to chal-
lenges such as a lack of overlap and repeatability, high
costs, and a lack of standardized detection methods.
Therefore, few of them has been widely used into real
clinical utility.

Computed tomography (CT) has emerged as a non-
invasive tool in cancer diagnosis and prognosis evalua-
tion of NSCLC,28–34 due to its ability to provide scope and
location information of lung lesions and morphological
manifestation to guide the treatment decision.35 Related
studies, including quantitative radiomic-based
methods,33,34 and deep learning-based methods,28–32,36

have shown promising potential in extracting informa-
tion from CT images. However, radiomic methods are
composed of two complex steps including hand-crafted
image features extraction and machine learning model
training using the selected features. In contrast, deep
learning-based methods can integrate feature extraction
www.thelancet.com Vol 65 November, 2023
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and training process into a unified step. Recently, deep
learning has achieved tremendous success in CT-based
medical image analysis of prognosis evaluation, patient
stratification and therapeutic decision.28–30,32,37 However,
previous studies exploit deep neural networks without
pre-training or pre-trained on large amounts of natural
images. How to make full use of the large unlabeled CT
data remains challenging. In recent study, self-
supervised learning-based pre-training has shown the
potential to learn general representations for disease
diagnosis by utilizing unlabeled data,38 which inspired
us self-supervised pre-training may also have the ability
to provide medical knowledge for prognosis prediction.
In addition, prognosis prediction was traditionally
treated as a single-task problem in medical analysis.39

However, some medical tasks, such as EGFR genotype
prediction or cancer stage prediction, also have been
proven to be correlated with prognosis.29 Thus, inte-
grating prognosis-related tasks in a unified multi-task
learning model may improve the prognostic prediction
performance as the medical knowledge from different
tasks can be shared.

In this study, we developed an intelligent prognosis
evaluation system (IPES) for resected NSCLC patients
in stage I-III. Our approach involved introducing a
CT-based Contrastive Learning of Representations
(CTCLR) framework based on self-supervised learning,
which can generate a pre-trained visual encoder using
large amounts of unlabeled CTs from physical exami-
nation, thereby learning rich medical knowledge from
CT imaging. To the best of our knowledge, we are the
first to develop a self-supervised pre-training frame-
work for prognosis prediction. By adopting the
pre-trained visual encoder from CTCLR, we then
developed a multi-task learning-based network,
combining prognosis prediction with other related
tasks, to predict a multi-task learning-based survival
risk (MTL-score) and combined it with clinical char-
acteristics to generate a final survival risk, called IPES-
score. Finally, we validated the prognosis prediction
performance in both internal and external datasets and
explored whether CTCLR and multi-task learning
could improve the accuracy of prognosis prediction.
We also validated whether patients in the same cancer
stage could be further stratified into low- and high-risk
subgroups with significant difference by adopting
IPES-score.

Methods
Ethics statement
The study complies with the declaration of Helsinki and
Chinese laws and regulations. Approval was granted by
the institutional ethics committees with the approve
number of 2020 (232). The study will respect the rights
of participants, and written informed consent was ob-
tained from all participants.
www.thelancet.com Vol 65 November, 2023
Study design and patients
In this study, we incorporated 20,333 CT scans of 6371
patients from five independent institutions, including
West China Hospital of Sichuan University, Mianzhu
People’s Hospital, Peking University People’s Hospital,
Chengdu Shangjin Nanfu Hospital, and Guangan Peo-
ple’s Hospital between June 12, 2009 and March 24,
2022. The detailed inclusion and exclusion criterion are
presented in the appendix (see the Inclusion and
exclusion criteria in the appendix and Supplementary
Figure S2).

Fig. 1 displays the study design. Firstly, we incor-
porated patients with 17,977 CT images underwent
physical examination at West China Hospital of Sichuan
University and Mianzhu People’s Hospital, to develop
the CTCLR pre-training framework aiming at learning
general visual representations from a large number of
CT images without follow-up data. Then, we developed a
multi-task learning network exploiting the pre-trained
visual encoder from CTCLR and performed validation,
using 2356 NSCLC patients with follow-up data and
underwent CT examination before initial treatment. In
this study, cisplatin-based chemotherapy is the main
adjuvant therapy for all 2356 patients. For some patients
with EGFR mutation, they also received first-generation
EGFR-TKI targeted as adjuvant therapy in addition to
cisplatin-based chemotherapy. The patients from Peking
University People’s Hospital and Chengdu Shangjin
Nanfu Hospital were collected to generate the training
(n = 1177) and internal validation (n = 711) sets by
dividing the non-overlapping participants. Furthermore,
468 NSCLC patients from the Guangan People’s Hos-
pital were employed for the external validation set. The
pre-trained multi-task learning network was fine-tuned
on the training set and validated on the internal and
external validation sets. To increase the model’s gener-
alizability, we incorporated all stage I-IV patients during
the model development phase. For validation, we
incorporated only data from stage I-III resected NSCLC
patients in the internal and external sets for prognosis
prediction validation. Table 1 includes detailed charac-
teristics of the 2356 patients in the training, internal
validation, and external validation sets. Of 1441 stage I-
III patients underwent curative-intent surgery, with
881 at stage I and 560 at stage II-III. Of the 881 patients
at stage I, 641 had EGFR mutation genotype, whereas
240 had EGFR wild-type status. Of those at stage II-III,
287 had EGFR mutation genotype and 273 had EGFR
wild-type status. The detailed characteristics of the stage
I-III resected NSCLC patients are further listed in the
appendix (Supplementary Table S1).

CT image preprocessing
In clinical practice, CT scanning protocols varies among
different hospitals, thereby leading to the highly variable
CT slice thickness, which has the large effect on deep
3
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Fig. 1: Study design for the development and validation of the IPES. IPES consists of self-supervised pre-training, multi-task learning-based
finetuning, and internal and external validation.
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learning-based methods.40 Besides, a CT image contains
not only the lung parenchyma but also other distractors,
which may hinder the attention of convolution neural
network to the lesions. Thus, we preprocessed the CT
images to reduce the search space from the whole CT
scans to the region of interest (ROI) which are most
likely to have lesions.

Our image pre-processing procedure is illustrated in
Supplementary Figure S3, which consists of five major
steps including lung mask extraction, Hounsfield
www.thelancet.com Vol 65 November, 2023
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Training set
(n = 1177)

Internal validation
set (n = 711)

External validation
set (n = 468)

p-value

Complete resection 0.18

Yes 757 (64.3%) 474 (66.6%) 321 (68.5%)

No 420 (35.7%) 237 (33.4%) 147 (31.5%)

Sex 0.26

Male 565 (48.0%) 368 (51.7%) 217 (46.3%)

Female 612 (52.0%) 343 (48.3%) 251 (53.7%)

Age, years 58 (48–69) 59 (49–69) 58 (48–67) 0.085

Smoking status 0.96

Former 428 (36.3%) 281 (39.5%) 177 (37.8%)

Never 749 (63.7%) 430 (60.5%) 291 (62.2%)

Cancer family history 0.81

Yes 66 (5.6%) 51 (7.1%) 31 (6.6%)

No 1111 (94.4%) 660 (92.9%) 437 (93.4%)

Tumor family history 0.65

Yes 135 (11.4%) 79 (11.1%) 49 (10.4%)

No 1042 (88.6%) 632 (88.9%) 419 (89.6%)

Histology 0.53

Adenocarcinoma 1026 (87.1%) 617 (86.7%) 413 (88.2%)

Others 151 (12.9%) 94 (13.3%) 55 (11.8%)

Stage 0.15

I 447 (37.9%) 270 (37.9%) 195 (41.6%)

II-III 353 (30.0%) 205 (28.8%) 142 (30.3%)

IV 377 (32.0%) 236 (33.1%) 131 (27.9%)

EGFR genotype 0.57

Mutant 730 (62.0%) 453 (63.7%) 286 (61.1%)

Wild-type 447 (38.0%) 258 (36.3%) 182 (38.9%)

Death status 0.65

Dead 358 (30.4%) 205 (28.8%) 134 (28.6%)

Censored 819 (69.6%) 506 (71.2%) 334 (71.4%)

Data are n (%) or mean (SD). EGFR = epidermal growth factor receptor. Cancer family history = family history of
lung cancer. Tumor family history = family history of other cancers (excluding lung cancer). The adjusted p-value
was provided in the last column, which is used to indicate the difference between the external validation set
with the combined training and internal validation sets.

Table 1: Patient characteristics in the training, internal validation and external validation sets.

Articles
Unit (HU) conversion, image resampling, intensity
normalization and ROI generation. Firstly, we fol-
lowed,41 to extract the left and right lung masks from the
CT scan slice by slice, using ResUNet.42 Secondly, the
raw CT matrix is clipped into HU with the range of
[−1,000, 400]. HU is a measure of radiodensity. The
same tissue of different people has the same HU range.
Thirdly, all the CT images and their lung masks are
resampled with the pixel spacing of [1, 1, 1], which
resamples the patients’ pixels to an isomorphic resolu-
tion. Then, we linearly transformed the CT matrix from
[−1,000, 400] to [0, 1] to prepare the data for our IPES.
Finally, we cropped the CT along the bounding box of
the lung according to the generated lung mask to obtain
the ROI and resized it with the size of 64 × 256 × 256.

Development of the AI system
As Fig. 1 shown, we developed the IPES for predicting
the prognosis of stage I-III resected NSCLC patients,
which consisted of three steps, including self-supervised
pre-training, multi-task learning-based finetuning, and
internal and external validation.

In the first step, we developed CTCLR, a
self-supervised pre-training framework based on
contrastive learning, which learned general visual rep-
resentations from large amounts of unlabeled 3D CT
scans by distinguishing positive CT pairs against nega-
tive ones. Specifically, given a 3D CT image from a
minibatch of N samples, the image is firstly trans-
formed into two correlated views by using the 3D image
augmentation strategies, thereby resulting in 2N
augmented data points. The augmented views from the
same CT image are denoted as a positive pair, whereas
those from different CTs are denoted as negative pairs.
Thus, we obtained one positive pair and 2(N − 1) nega-
tive examples from 2N augmented samples. Second, a
state-of-the-art architecture, 3D ResNet,43 was employed
as the feature extractor to extract feature representations
from augmented CT images. Third, non-linear projec-
tion was conducted to project feature representations
into the latent space by using the multi-layer perceptron
(MLP). Finally, we exploited the normalized
temperature-scaled cross entropy loss (NT-Xent),44 as the
contrastive loss and applied it into 2N augmented data
points to maximize the similarity of positive pairs and
minimize the similarity of negative pairs. Through
CTCLR, we obtained a pre-trained 3D ResNet with rich
knowledge in CT imaging, which may be useful in
prognosis prediction. A more detailed summary of the
implementations of CTCLR is provided in the appendix
(see the CT-based self-supervised pre-training frame-
work using contrastive learning in the appendix).

In the second step, we developed a multi-task deep
learning network and employed the pre-trained 3D
ResNet,43 from CTCLR, as the backbone to predict
patients’ OS risk. The multi-task learning network
consisted of three branches: two for auxiliary tasks
www.thelancet.com Vol 65 November, 2023
(early-stage (stage I) and EGFR genotype prediction),
and one for the primary task of predicting a survival risk
score called MTL-score, where higher scores indicated
increased risk of cancer progression and shorter OS.
Each branch is a pre-trained 3D ResNet transferred
from CTCLR. Specifically, given a 3D CT image, our
multi-task learning network generated three predicted
value, including MTL-score, the probability of EGFR
mutation and the probability of early stage. Given the
association between EGFR genotype, cancer stage, and
prognosis, we hypothesized that combining the tasks
and sharing feature representations could enhance the
primary survival task’s accuracy. Therefore, we designed
a fusion layer to share features from different branches
at multi-scale levels. In each fusion layer, we concate-
nated the feature maps from three branches as a 3D
tensor and input it into two convolution layers. By
adopting fusion layer at each scale, feature representa-
tions from different tasks were shared and fused, which
5
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might provide primary task with more useful prognostic
knowledge. More detailed description of the proposed
multi-task learning network is provided in the appendix
(see the Multi-task learning network in the appendix).

To achieve a more accurate prognostic stratification
and assist the traditional TNM staging system, we
combined MTL-score with TNM stage using the Cox
proportional hazards model to produce a final survival
risk score, called IPES-score. This risk score allowed
patients at the same stage to be divided into low- and
high-risk subgroups, thus offering more personalized
treatment and surveillance suggestion for patients.

In the third step, we evaluated the performance of
our IPES on internal and external validation sets. Be-
sides, to identify the key areas in CT images that IPES
focused on for survival prediction, we employed
gradient-weighted class activation mapping (Grad-CAM)
algorithm,45 to visualize the model’s detected
characteristics.

Performance evaluation of IPES on primary task of
prognosis prediction
We assessed the accuracy of IPES for predicting OS risk
for stage I-III resected NSCLC patients using the
Concordance index (C-index). OS was calculated from
the date of intervention to the date of death. Addition-
ally, the significance of MTL-score predicted by multi-
task learning network was also validated using
univariable and multivariable survival analysis with the
Cox proportional hazard model to be compared with
other clinical metadata. Prognostic stratification perfor-
mance was assessed in the training, internal validation,
and external validation sets. The cutoff IPES-score was
selected in the training set by using X-tile software
(Version 3.6.1), to stratify patients into low- and high-
risk subgroups. The same cutoff value was used in the
validation sets. Kaplan–Meier analysis and log-rank test
was applied to evaluate the difference significance be-
tween the predicted low- and high-risk subgroups. We
also compared the prognostic performance of TNM
staging system with the IPES. Furthermore, we evalu-
ated the accuracy improvement of IPES brought by self-
supervised pre-training and multi-task learning.

Performance evaluation of IPES on auxiliary tasks
We evaluated the IPES performance on auxiliary tasks
(early-stage and EGFR genotype prediction) by using the
receiver operating characteristic (ROC) analysis. Evalu-
ation metrics, including the area under the ROC curve
(AUC), accuracy, sensitivity and specificity were
computed. We compared IPES with clinical metadata-
based model using random forest classifier. The
metadata-based model used clinical factors, including
age, sex, TNM stage, smoking status, histology, cancer
family history and tumor family history. For early-stage
prediction task, the same clinical metadata was incor-
porated, but TNM stage was excluded. To further
validate the accuracy improvement by IPES, we com-
bined clinical metadata with the corresponding deep
learning score of IPES, using random forest classifier.

Statistical analysis
To evaluate the performance of IPES for auxiliary tasks,
ROC curves were plotted. The evaluation metrics
including AUC, accuracy, sensitivity, specificity with
95% CI were all computed. To evaluate the performance
of IPES on primary task for prognosis prediction, C-
index was computed. Kaplan–Meier analysis and log-
rank test were employed to evaluate whether OS of the
low- and high-risk subgroups identified by IPES had
significant difference. The statistical results were
considered significant when p-value was less than 0.05.
Besides, the hazard ratio (HR) with the corresponding
95% confidence interval (95% CI) was computed. Uni-
variate and multivariate survival analysis were also
conducted using Cox proportional hazard model. In the
multivariate survival analysis, all clinicopathological
variables were used. Furthermore, the Cox proportional
hazard assumptions were also evaluated. Sample size
evaluation was performed using statesmodel (Version:
0.14.0) on Python (Version: 3.9.1).

Role of the funding source
The funders of the study had no role in the study design,
data collection, data analysis, data interpretation, or
writing of the report. The corresponding authors had
full access to the data in the study and had final re-
sponsibility for the decision to submit the paper for
publication.
Results
A summary of the demographic variables and clinical
characteristics of the training, internal validation and
external validation sets is provided in Table 1. There
were no statistically significant differences in these
variables and characteristics between the datasets
(p > 0.05).

As NSCLC tumors exhibit heterogeneous biological
behavior wherein some patients experience long-term
survival after surgical resection, while others exhibit
early disease progression, it is crucial to design a prog-
nostic tool for more precise, individualized survival es-
timates. In this study, we developed the IPES to
investigate its performance in predicting OS risk of
patients using self-supervised pre-training and multi-
task learning.

Fig. 2 displays the Kaplan–Meier survival curves that
are used to stratify the NSCLC patients according to the
IPES-score. Significant separation was achieved between
the low- and high-risk subgroups for stage I-III resected
NSCLC patients in both the internal and external vali-
dation sets (all p < 0.0001, Fig. 2(a) and (b)). The C-index
of the IPES on predicting OS risk for stage I-III resected
www.thelancet.com Vol 65 November, 2023
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Fig. 2: IPES performance on predicting OS risk of stage I-III resected NSCLC patients. (a) and (b) Kaplan–Meier curves of the low- and high-risk
subgroups predicted by IPES for stage I-III resected NSCLC patients in the (a) internal validation set and (b) external validation set. (c) and (d) Kaplan–
Meier curves of the low- and high-risk subgroups predicted by IPES for resected NSCLC patients in (c) stage I and (d) stage II-III in the internal
validation set. In the Kaplan–Meier curves, the horizontal axis represents survival time (months) and the vertical axis represents survival probability.

Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

MTL-score 2.42 (1.78–3.29) <0.0001 1.86 (1.33–2.59) 0.00028

TNM stage 2.04 (1.53–2.72) <0.0001 2.01 (1.49–2.71) <0.0001

Age 1.06 (1.03–1.09) <0.0001 1.05 (1.02–1.08) 0.00038

Sex 1.55 (0.93–2.57) 0.090 1.40 (0.68–2.90) 0.36

Smoking status 1.12 (0.68–1.83) 0.67 0.62 (0.30–1.29) 0.20

Cancer family history 0.71 (0.26–1.95) 0.50 1.17 (0.41–3.31) 0.77

Tumor family history 1.46 (0.74–2.87) 0.28 1.51 (0.75–3.05) 0.25

Histology 1.34 (1.08–1.66) 0.0085 1.26 (0.95–1.68) 0.11

MTL-score = multi-task learning-based survival score. TNM = tumor-node-metastasis. CI = confidence interval.

Table 2: Univariate and multivariate survival analysis for OS using Cox proportional hazards
methods in the internal validation set.

Articles
NSCLC patients was 0.806 (95% CI: 0.744–0.846) in the
training set, 0.783 (95% CI: 0.744–0.825) in the internal
set and 0.817 (95% CI: 0.786–0.849) in the external set
(Supplementary Table S2). Furthermore, we validated
the prognostic value of MTL-score predicted by IPES.
Univariable and multivariable survival analysis using
Cox proportional hazard model were conducted to
demonstrate the significance of MTL-score compared
with other clinical metadata. We found that MTL-score
remained a significant prognostic predictor for OS risk
prediction in patients after complete resection in stage I-
III (p < 0.05; Table 2). When we combined the MTL-
score with TNM stage using Cox proportional hazard
model, IPES improved the C-index value from 0.733
www.thelancet.com Vol 65 November, 2023 7
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(95% CI: 0.684–0.788) to 0.783 (95% CI: 0.744–0.825;
Supplementary Table S3), which validated the prog-
nostic value of MTL-score predicted by IPES using CT
images. The Cox proportional hazard assumption eval-
uation indicated that IPES-score did not violate the
proportional hazard assumption (p = 0.64 for training
set, p = 0.40 for internal set, and p = 0.59 for external
set). Furthermore, MTL-score and TNM stage demon-
strated substantial statistical significance in both uni-
variate and multivariate analyses, implying association
with survival outcomes.

Furthermore, we hypothesized that incorporating
self-supervised pre-training and multi-task learning
could improve the prognosis prediction performance.
We compared the IPES with two baselines: (1) a multi-
task learning network without self-supervised pre-
training, (2) a single task learning network without
self-supervised pre-training, both with the same back-
bone as IPES. Compared with the single-task learning
network, multi-task learning improved the accuracy of
C-index from 0.741 (95% CI: 0.695–0.798) to 0.765 (95%
CI: 0.720–0.816). When we transferred the network
weights from CTCLR into the down-stream multi-task
learning network and fine-tuned it on the training set,
the value of C-index was improved to 0.783 (95% CI:
0.744–0.825; Supplementary Table S4).

According to the guideline, postoperative treatment
recommendations are different between stage I and
stage II + resected patients. Extensive results showed
that our IPES had good performance for the auxiliary
task of predicting early-stage, which achieved AUC
values of 0.804 (95% CI: 0.767–0.831) in the internal
validation set and 0.837 (95% CI: 0.816–0.863) in the
external validation set (Supplementary Figure S4 and
Supplementary Table S5). When we combined the
clinical metadata with the deep learning score predicted
by IPES, the AUC values of metadata-based model could
be further improved in both the internal and the
external validation sets. Therefore, we further utilized
IPES for prognostic prediction on stage I and II-III
resected NSCLC patients respectively. For patients af-
ter complete resection in stage I, IPES was able to
stratify them into two significantly different groups
(p < 0.0001, HR = 0.10, 95% CI: 0.04–0.26; Fig. 2(c)),
with the high-risk group showing a higher 5-year death
rate of 32.1%, whereas the low-risk subgroup showed a
lower 5-year death rate of 3.5% (Supplementary
Table S6). The similar performance was also achieved
for the patients after curative-intent surgery in stage II-
III: the low- and high-risk subgroups stratified by IPES
achieved significantly difference in their OS (p = 0.0093,
HR = 0.44, 95% CI: 0.24–0.83; Fig. 2(d)).

Presently, the administration of EGFR-targeted ther-
apy is determined by EGFR genotype, which indicates
the importance of EGFR genotype detection. Beyond
primary task on prognosis prediction, IPES also achieved
good performance on auxiliary task for EGFR genotype
prediction. For predicting EGFR genotype, IPES ob-
tained AUC values of 0.819 (95% CI: 0.793–0.840) on
internal validation set and 0.791 (95% CI: 0.761–0.825)
on external validation set, respectively (Fig. 3(a) and (b),
Supplementary Table S7). When we combined the clin-
ical metadata with the deep learning score predicted by
IPES, the AUC values for predicting EGFR genotype
could be further improved to 0.851 (95% CI:
0.823–0.874) on internal validation set and 0.824 (95%
CI: 0.799–0.844) on external validation set, which proved
the accuracy improvement brought by the image-based
model IPES. When validated the prognosis perfor-
mance of IPES in EGFR mutant and wild-type patients
separately according to the IPES-score, we found that
IPES achieved a significant difference in OS when
comparing EGFR mutant and wild-type patients with
low-versus high-risk subgroups in internal and external
validation sets (Fig. 3(c) and (d) and Supplementary
Figure S5). The C-index of the IPES on predicting OS
risk for stage I-III resected NSCLC patients with EGFR
mutation was 0.824 (95%CI: 0.777–0.868) in the training
set, 0.778 (95% CI: 0.723–0.824) in the internal set and
0.803 (95% CI: 0.774–0.837) in the external set. For the
stage I-III resected NSCLC patients with EGFR wild-type
status, IPES achieved C-index value of 0.760 (95% CI:
0.714–0.809) in the training set, 0.762 (95% CI:
0.726–0.802) in the internal validation cohort and 0.793
(95%CI: 0.768–0.827) in the external set (Supplementary
Table S8).

Although EGFR genotype is crucial for treatment
decision of lung cancer patients, few EGFR-TKI adju-
vant therapy clinical trials have shown improvement in
OS. Thus, it is important to further stratify resected
patients in the same stage and with the same EGFR
genotype into low and high-risk subgroups to help in
making accurate therapeutic decision. To further
examine the prognostic stratification ability of IPES, we
employed internal validation set to stratify the prognosis
of the following four groups of patients according to the
predicted IPES-score: (1) resected EGFR mutant pa-
tients in stage I; (2) resected EGFR mutant patients in
stage II-III; (3) resected EGFR wild-type patients in stage
I; (4) resected EGFR wild-type patients in stage II-III.
For resected EGFR mutant patients in stage I, IPES
stratified them into two significantly different groups
(p < 0.0001, HR = 0.09, 95% CI: 0.03–0.30; Fig. 4(a)),
with the high-risk subgroup showing a higher 5-year
death rate of 35.7% and the low-risk subgroup
showing a lower 5-year death rate of 2.7%
(Supplementary Table S9). Similarly, the predicted low-
and high-risk subgroups showed significant difference
(p = 0.0022, HR = 0.26, 95% CI: 0.10–0.67; Fig. 4(b)) in
resected EGFR mutant patients in stage II-III. For
resected EGFR wild-type patients in stage I, all the pa-
tients were stratified into two significantly different
subgroups (p = 0.00087, HR = 0.13, 95% CI: 0.03–0.53;
Fig. 4(c)), with the high-risk group showing a higher 5-
www.thelancet.com Vol 65 November, 2023
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Fig. 3: IPES performance on EGFR genotype prediction and prognosis analysis of stage I-III resected NSCLC patients with EGFRmutation or
EGFR wild-type status. (a) and (b) ROC curves represent the EGFR genotype detection performance of IPES, metadata-based model and the
combined model in the (a) internal validation set and (b) external validation set. (c) and (d) Kaplan–Meier curves of the low- and high-risk
subgroups predicted by IPES for stage I-III resected NSCLC patients with (c) EGFR mutation and (d) EGFR wild-type status in the internal valida-
tion set. In the Kaplan–Meier curves, the horizontal axis represents survival time (months) and the vertical axis represents survival probability.

Articles
year death rate of 40.0% and the low-risk group showing
a lower 5-year death rate of 5.9% (Supplementary
Table S10). Similarly, the predicted low- and high-risk
subgroups showed significant difference (p = 0.00020,
HR = 0.23, 95% CI: 0.09–0.58; Fig. 4(d)) in resected
EGFR wild-type patients in stage II-III. The results
indicated that the IPES may be reliable for providing
NSCLC patients with more individual therapeutic
suggestion.

To gain further insights of which areas were mainly
focused by IPES and which features contributed to the
network’s output, we visualized the primary branch’s
response in the last neural layer on the OS risk predic-
tion task in the multi-task network. Fig. 5 shows several
www.thelancet.com Vol 65 November, 2023
representative examples of original CT images and their
corresponding saliency maps. We noted that features
focused more on morphological features of the tumor
areas, such as its boundary, shape and texture, which
have been commonly used by clinicians for diagnosis
and treatment decision. This finding indicated that the
IPES was able to capture clinically relevant features.
Moreover, in most of the cases, IPES focused more on
the interaction between the tumor and its surrounding
tissues, suggesting that some microenvironment
changes in non-tumor tissues could also be correlated
with the prognosis of patients. This attention to the non-
tumor areas within the lungs could offer clinicians
valuable prognostic information.
9
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Fig. 4: IPES performance on predicting OS risk of stage I and II-III resected NSCLC patients with EGFRmutation or EGFR wild-type status.
(a) and (b) Kaplan–Meier curves of the low- and high-risk subgroups predicted by IPES for resected NSCLC patients with EGFR mutation in (a)
stage I and (b) stage II-III in the internal validation set. (c) and (d) Kaplan–Meier curves of the low- and high-risk subgroups predicted by IPES for
resected NSCLC patients with EGFR wild-type status in (c) stage I and (d) stage II-III in the internal validation set. In the Kaplan–Meier curves, the
horizontal axis represents survival time (months) and the vertical axis represents survival probability.
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Discussion
Recently, related studies on prognosis evaluation for
NSCLC patients in advanced stage have been extensively
investigated.29,30,34 However, the prognosis of resected
NSCLC patients in stage I-III is rarely discussed, espe-
cially for the NSCLC patients in stage I. Although the
TNM staging system is a powerful predictor of prog-
nosis in NSCLC, it is not perfect enough to accurately
distinguish all the patients, especially within the same
TNM stage. We still need a better prognostic system to
help in making therapeutic decisions. If we can divide
patients of the same stage into low-risk and high-risk,
we can give them a more personalized treatment and
surveillance suggestion, to improve OS for patients with
resected NSCLC. In this retrospective multi-institution
study, we developed and validated the IPES which al-
lows accurate prediction of OS risk for resected NSCLC
patients in stage I-III based on CT images. Our findings
suggested that the proposed IPES could non-invasively
obtain prognosis related information from patients
before surgery and identify patients into the low- and
high-risk subgroups with good and poor prognosis
respectively. The performance of IPES suggested that
information obtained from CT images by IPES could
complement TNM stage in clinical practice.

We previously built a multi-omics model for resected
stage I NSCLC patients and found that increased
genomic instability is significantly associated with poor
www.thelancet.com Vol 65 November, 2023
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Fig. 5: Network visualization and interpretation. Visual explanations of the areas in the CT images identified by IPES. The first column in
subfigure is the original CT image, the second column in subfigure is the saliency map overlaying the original CT image. In each original CT
image of (a–f), the lung tumor has been marked with a red bounding box.
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prognosis.46 But such multi-omics detections are costive
and need tumor samples after surgery which limited
their clinical utility. In this study, we developed the IPES
using CT images, which is a non-invasive and highly
repeatable way to easily and economically obtain infor-
mation from NSCLC patients. More importantly, IPES
performed well in predicting OS risk for patients after
complete resection in stage I and stage II-III, respec-
tively. The resected NSCLC patients, whether in stage I
or stage II-III, can be further stratified into low- and
high-risk subgroups with significantly difference, which
offers the potential to identify high-risk patients in the
early-stage and low-risk patients in the locally advanced
stage.

Recent study has shown that not all EGFR mutation
patients can benefit from EGFR-TKI treatment after
surgery.47 Patients with some molecular feature may be
more sensitive to chemotherapy than EGFR-TKI even
with EGFR mutations. In our study, IPES was able to
www.thelancet.com Vol 65 November, 2023
significantly separate the resected EGFR mutant pa-
tients with stage I into low- and high-risk subgroups.
Additionally, the similar results were also achieved in
resected EGFR mutant patients with stage II-III, resec-
ted EGFR wild-type patients with stage I, and resected
EGFR wild-type patients with stage II-III, which indi-
cated that we may pick up the resected EGFR mutant
patients who are not fitted for EGFR-TKI treatment by
CT scan, so as to select more accurate individual treat-
ment for such patients.

Lung cancer patients are not uniform in their bio-
logic or genetic make-up.48 Previous research using
radiomic-based methods has suggested that radiomic
features of primary lung tumors can capture biological
heterogeneity and exhibit variance across cancer stage.49

In this study, we developed a deep learning-based sys-
tem, IPES, to extract CT features for survival risk pre-
diction, which achieved a good performance in
identifying patients with good and poor prognosis. The
11
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results demonstrated that features extrcted by IPES may
also be helpful in capturing biological heterogeneity of
primary lung tumors. Additionally, our visualization
interpretability showed that IPES could capture
morphological features of the primary tumors (Fig. 5),
which suggested that our proposed system could obtain
subtle features from CT images that are difficult for
humans to interpret and may be relevant to prognosis.

Compared with the previous artificial intelligence-
based studies, IPES predicted OS risk based on self-
supervised pre-training and multi-task learning, and it
achieved better performance than both the commonly
used single-task model and the multi-task model trained
from scratch on prognostic prediction. To the best of
our knowledge, this is the first study to evaluate prog-
nosis of NSCLC patients using self-supervised pre-
training and multi-task learning. Unlike the most of
studies that focused on supervised learning using large
scaled labeled data, IPES learned general representa-
tions from 3D unlabeled medical images using
self-supervised learning for downstream prognosis
evaluation. Through contrastive learning, the proposed
pre-training framework CTCLR could learn visual rep-
resentations from different patients.

Furthermore, unlike current lung cancer prognosis-
related tasks that rely on single-task models, we inte-
grated prognosis-related auxiliary tasks with the primary
survival prediction task in a unified multi-task learning
network by sharing feature representations at multi-
scale levels, which improved the generalization and ac-
curacy performance of model. IPES demonstrated good
performance for the primary task for OS risk prediction
and auxiliary tasks for early-stage and EGFR genotype
detection. When we combined the clinical metadata
with the deep learning score predicted by IPES, the
AUC values of metadata-based model could be further
improved. In summary, IPES was able to predict OS
risk, early-stage and EGFR genotype of NSCLC patients
simultaneously, which is a great supplement to clinical
practice, and the performance of IPES for survival pre-
diction showed remarkable potential in CT-based prog-
nostic analysis.

Several limitations exist in this study. First, although
our study achieved good performance on prognosis
prediction, we focused on the whole lung areas in CT
images instead of the tumor regions. A simultaneous
inclusion of tumor areas and whole lung regions might
achieve better performance. Second, our data were
collected from Asian population only. The clinicopath-
ological characteristics might be different in different
ethnicities. Third, in this study, we focused OS only, and
other oncological endpoint such as disease-free survival
is also critical for resected NSCLC patients in stage I-III.
Fourth, other morbidities and factors, including the
severity of coronary artery calcification, emphysema,
muscle mass, and fat attenuation, have been established
as correlated with prognosis.50–52 Integrating these
factors with clinicalpathological characteristics and
MTL-score may provide a more comprehensive under-
standing of the prognostic value of IPES. In conclusion,
we developed the IPES using self-supervised pre-
training and multi-task learning based on CT images,
which allows refined stratification of OS for resected
NSCLC patients in stage I-III. The proposed IPES could
be used to help identify resected lung cancer patients in
the same stage or with the same EGFR genotype who
are most likely to derive benefit from corresponding
treatment decision and surveillance suggestion.
Compared with the traditional TNM staging system,
IPES achieved better performance on distinguishing
patients with good and poor prognosis, which indicates
that image-based survival risk score can additionally
increase the predicting accuracy of prognosis in NSCLC
patients after complete surgical resection.
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