
RESEARCH PAPER

Dynamics of methylated cell-free DNA in the urine of non-small cell lung cancer 
patients
Sander Bach a,*, Birgit M.M. Wever b,*, Mark A. van de Wiel c, Joris D. Veltmand, Sayed M.S. Hashemid, 
Geert Kazemiera, Idris Bahced, and Renske D.M. Steenbergen b

aAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Cancer Center Amsterdam, Amsterdam, The Netherlands; 
bAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, Amsterdam, The Netherlands; 
cAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Research 
Institute, Amsterdam, The Netherlands; dAmsterdam UMC, Vrije Universiteit Amsterdam, Department of Pulmonology, Cancer Center 
Amsterdam, Amsterdam, The Netherlands

ABSTRACT
High levels of methylated DNA in urine represent an emerging biomarker for non-small cell lung 
cancer (NSCLC) detection and are the subject of ongoing research. This study aimed to investigate 
the circadian variation of urinary cell-free DNA (cfDNA) abundance and methylation levels of 
cancer-associated genes in NSCLC patients. In this prospective study of 23 metastatic NSCLC 
patients with active disease, patients were asked to collect six urine samples during the morning, 
afternoon, and evening of two subsequent days. Urinary cfDNA concentrations and methylation 
levels of CDO1, SOX17, and TAC1 were measured at each time point. Circadian variation and 
between- and within-subject variability were assessed using linear mixed models. Variability was 
estimated using the Intraclass Correlation Coefficient (ICC), representing reproducibility. No clear 
circadian patterns could be recognized for cfDNA concentrations or methylation levels across the 
different sampling time points. Significantly lower cfDNA concentrations were found in males 
(p=0.034). For cfDNA levels, the between- and within-subject variability were comparable, render
ing an ICC of 0.49. For the methylation markers, ICCs varied considerably, ranging from 0.14 to 
0.74. Test reproducibility could be improved by collecting multiple samples per patient. In 
conclusion, there is no preferred collection time for NSCLC detection in urine using methylation 
markers, but single measurements should be interpreted carefully, and serial sampling may 
increase test performance. This study contributes to the limited understanding of cfDNA dynamics 
in urine and the continued interest in urine-based liquid biopsies for cancer diagnostics.
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Introduction

Lung cancer remains the leading cause of cancer- 
related deaths worldwide [1]. Screening pro
grammes have shown that cancer-related mortality 
could be reduced by using low-dose computed 
tomography (LDCT) screening in selected high- 
risk patients [2–4]. Combining this approach 
with molecular marker testing in liquid biopsies 
could further improve the screening selection and 
management of positive LDCT screening tests.

The analysis of methylated cell-free DNA 
(cfDNA) in liquid biopsies is a promising, safe, 
and easily applicable tool that is now being inves
tigated for the detection of lung cancer. 

Methylation, an epigenetic DNA modification 
that regulates gene expression, is known as 
a critical process, involved in early lung cancer 
development and progression [5]. Amongst liquid 
biopsies, blood and sputum are the most com
monly reported sources of cfDNA for methylation 
analyses [6–14]. On the other hand, urine is an 
upcoming means for liquid biopsy analyses in lung 
cancer diagnostics [10,15,16]. Urine-based liquid 
biopsies are of particular interest, as the collection 
is completely non-invasive and can be performed 
at home. Moreover, large volumes can be collected 
regularly, which allows for repetitive sampling at 
frequent intervals.
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Despite encouraging developments of urine- 
based liquid biopsies for lung cancer detection, 
this technique is not yet ready for implementation 
into clinical practice. Over the past years, consid
erable improvements have been achieved by opti
misation and standardisation of pre-analytical 
conditions [17–20]. However, one of the major 
remaining questions regarding the yield of 
cfDNA is the uncertainty on whether the circadian 
rhythm leads to variations in the amounts of 
methylated DNA in urine. There is also a limited 
understanding of the range of biological variation 
of methylated cfDNA in the urine of lung cancer 
patients. Biological variability refers to the random 
fluctuation of analyte concentrations around 
a homeostatic set point (within-subject variability), 
which varies per individual (between-subject varia
bility) [21]. Previous studies have focused exclu
sively on the abundance of cfDNA in plasma of 
healthy controls and lung cancer patients, which 
appeared to vary greatly within [22] and between 
individuals [23], and during the day [24].

The aim of this study, therefore, was to investi
gate the dynamics of methylated cfDNA in the 
urine of lung cancer patients to estimate both 
between- and within-subject variability, and to 
evaluate whether a preferred urine collection time 
and sampling frequency exist.

Methods

Study population

In this prospective cohort study, patients with 
histologically confirmed NSCLC were consecu
tively recruited between November 2019 and 
January 2020 at the outpatient clinic of the 
Department of Pulmonology of the Amsterdam 
University Medical Center, location VUmc, 
Amsterdam. Inclusion criteria of NSCLC patients 
involved being diagnosed with active disease (i.e., 
before anti-cancer therapy or at disease progres
sion after therapy) without the presence or history 
of any other primary malignancies. The revised 
eighth edition of the American Joint Committee 
on Cancer/Union for International Cancer 
Control Tumor-Node-Metastasis (TNM) Staging 
was used to determine tumor stage [25]. Other 
relevant patient characteristics that were 

documented included sex, age, weight, tobacco 
use, therapy during study, survival, and histologi
cal subtype.

As controls, urine samples from healthy volun
teers were collected through the Urine Controls 
(URIC) Biobank. Inclusion criteria of controls 
involved not having any cancer diagnosis in the 
past 15 years. Sex and age were registered from 
each participant.

Informed consent was acquired from each par
ticipating individual before urine collection. 
Ethical approval was obtained by the Medical 
Ethical Committee of the VU University Medical 
Center for both the DAYTIME study 
(No. 2017.333 and 2017.545) and the use of the 
URIC biobank (No. 2017.112).

Urine sample collection and processing

Each patient was carefully instructed to collect 
30 mL of urine at three different time points for 
two subsequent days, adding up to a total of six 
samples per patient. To this end, special collec
tion kits were designed, containing clear illu
strated instructions, collection tubes, and postal 
envelopes. The three time points comprised 
morning (6:00 AM – 11:00 AM), afternoon 
(12:00 noon – 5:00 PM), and evening (6:00 
PM – 12:00 midnight). Patients registered the 
time of urine collection and shipped their urine 
samples to the Pathology department of 
Amsterdam UMC, location VUmc, by regular 
mail. To ensure the preservation of genetic mate
rial in the urine, collection tubes contained 2 mL 
0.6 M ethylenediaminetetraacetic acid (EDTA) as 
a preservative agent (final concentration 40 mM), 
and sample processing was performed within 72 h 
after collection. Urine samples of healthy volun
teers were retrieved from the URIC biobank, 
which were collected once at a random time 
point of the day, according to the same collection 
protocol.

Urine samples of patients and controls were 
processed similarly. Up to 30 mL (patients) or 
40 mL (controls) full void urine was centrifuged 
at 3000 × g for 15 min to obtain the urine super
natant fraction, which was stored at −20°C. This 
collection and storage procedure has been 
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validated for reliable DNA methylation detection 
in urine [18].

Cell-free DNA extraction and bisulfite conversion

The urinary cfDNA was extracted from 20 mL 
(patients) or 40 mL (controls) urine supernatant 
using the Quick DNA urine kit (Zymo Research, 
Irvine, CA, US). Previous research showed that 
differences in urine collection volume in a similar 
range (4–20 mL) have limited effects on DNA 
yield, eliminating this potential bias [26]. DNA 
concentration was measured using the Qubit™ 
dsDNA HS Assay (Invitrogen, Carlsbad, CA, US). 
Depending on the yield, up to 250 ng purified 
DNA was subjected to bisulfite conversion using 
the EZ DNA Methylation Kit (Zymo Research). 
All procedures were carried out according to the 
manufacturer’s instructions.

DNA methylation analysis by quantitative 
methylation-specific PCR (qMSP)

Promoter hypermethylation detection of the 
CDO1, SOX17, and TAC1 genes was carried out 
by qMSP using a ViiA7 real-time PCR system 
(Applied Biosystems, Foster City, CA, USA). For 
each reaction, up to 50 ng modified DNA was 
mixed with the EpiTect MethyLite Master Mix 
(Qiagen), and 2.5–5.0 µM of each primer and 
5.0–10.0 µM of each probe in a total volume of 
12.5 µl. Primer and probe sequences used for 
CDO1 and TAC1 were kindly provided by 
Dr. A. Hulbert (University of Illinois at Chicago, 
Chicago, IL, US) and listed in [10]. Primer and 
probe sequences of SOX17 were redesigned within 
the same genomic region as reported before [10], 
using a locked nucleic acid probe to enhance spe
cificity (Supplementary Table 1). The qMSP reac
tions were multiplexed as described previously 
[27] to assess the methylation levels of all genes 
within the same reaction. ACTB was also included 
in the multiplex and used as a reference gene for 
normalisation and quality assessment. Sample ser
ies from each patient were processed in the 
same run.

Double-stranded gBlocks™ Gene Fragments 
(Integrated DNA Technologies) containing the 
amplicon sequences of all targets and ACTB were 

used as technical quality control and H2O was 
taken along as negative control during each 
qMSP run. Cycle threshold (Ct) values were mea
sured at a fixed threshold. Sample quality and 
sufficient input were ensured by excluding samples 
with a ACTB Ct value exceeding 32 from methyla
tion analysis. The discriminatory power of the 
qMSP was verified by testing 11 pairs of tumors 
and adjacent normal tissues from NSCLC patients 
of a previously published cohort [28,29].

Statistical analyses

The cfDNA concentration was expressed in ng/mL 
urine and transformed using an inverse hyperbolic 
sine function to enhance normality of the data. 
The methylation levels of the target genes were 
normalised according to the Ct value of the refer
ence gene ACTB (2− ΔCt × 100) to obtain Ct 
ratios, and square root transformed. Linear mixed- 
effects models were fitted separately for the 
repeated measurements of cfDNA concentration 
and methylation levels of each marker. Linear 
mixed-effects models contain both fixed (i.e., con
stant across the population) and random (i.e., 
varying per individual) effects, enabling estimation 
of both between- and within-subject variation 
[30]. Models incorporated a random intercept for 
each patient to account for within-patient correla
tion and included explanatory variables day 
(i.e., day 1 and day 2) and part of the day (i.e., 
morning, afternoon, and evening) as fixed effects.

Models were estimated using restricted maxi
mum likelihood (REML). Additional patient char
acteristics (i.e., sex, age, weight, therapy during 
study, survival, and histological subtype) were 
considered for inclusion as fixed effects by back
ward stepwise selection (p≥ 0.05 for removal). 
Tobacco use could not be included as fixed effect 
due to missing data. Final models are available in 
the Supplementary material. The assumptions of 
linearity, normality of the residuals and random 
effects, and homoscedasticity (i.e., constant var
iance of the residuals) were checked visually 
using diagnostic plots [31].

Differences in cfDNA concentration and methy
lation levels during the day and between the two 
days were evaluated by Type II Wald Chi-square 
tests. Model estimates and corresponding 95%- 
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confidence intervals (CI), between-subject var
iances (σ2), within-subject variances (τ00 subject), 
and intraclass correlation coefficients (ICC) were 
tabulated for both the cfDNA concentration and 
methylation levels of CDO1, SOX17, and TAC1. 
The ICC indicates the resemblance of repeated 
measurements and describes the proportion of 
between-subject variability with respect to the 
total variability (between plus within). The ICC 
can range from zero to one, with zero indicating 
a poor reproducibility and one indicating a perfect 
reproducibility [32].

Differences in time were displayed in boxplots, 
demonstrating the cfDNA concentrations and 
methylation marker levels measured between the 
different days and time points at a group level. 
Between- and within-subject differences were 
visualised by conditional scatterplots, showing the 
cfDNA concentrations and methylation marker 
levels measured at each time point for each patient 
individually, stratified for sex.

The added value of collecting multiple urine 
samples was determined by (1) comparing the 
methylation levels measured in the urine of 
patients (n=23) and controls (n=60), by includ
ing all available patient samples (n=138), and (2) 
random sampling to compute the statistical dif
ference between methylation levels of cases and 
controls when only one urine sample would have 
been collected. Linear mixed-effects models were 
fitted as described above with subject as 
a random effect to account for repeated mea
sures in the patient group. Likewise, differences 
in methylation levels between patients and con
trols were tested as described above. Final mod
els are available in the Supplementary material. 
Random sampling was conducted according to 
[33]. Briefly, only one urine sample of each 
patient was randomly selected from the six avail
able samples to compare the methylation levels 
of each marker between patients and controls, 
which was repeated 100 times in total. A median 
p-value was computed to summarise the out
come of 100 rounds of random sampling.

Statistical analyses were performed in R (v.3.6.1) 
and Rstudio (v.1.1.463). For statistical tests, 
p-values <0.05 were considered statistically 
significant.

R packages
Linear mixed models were computed using the 
‘lme4’ package [30], combined with the 
Companion to Applied Regression ‘car’ package 
[34] for statistical testing. Normalisation of the 
cfDNA concentration data was performed accord
ing to the ‘bestNormalize’ package [35]. The 
‘sjPlot’ package [36] was used to test model 
assumptions and extract model summaries. 
Boxplots and conditional scatterplots were com
puted using the ‘ggplot2’ package [37] and ‘lattice’ 
package [38], respectively.

Results

Patient characteristics

A total of 23 patients with NSCLC were included, 
of which relevant clinical and pathological features 
are presented in Table 1. The median age at diag
nosis was 69 (range 65–75) and nine patients were 
female. The patient cohort covered the major his
tological subtypes of NSCLC, with TNM stages 
ranging from IIb to IVb. The majority of patients 
were current or former smokers.

Variation in cfDNA concentration

Variation during the day and between days
Total cfDNA concentrations of all urine samples 
(n=138) were quantified by Qubit and compared 
Table 1. Baseline characteristics of the 23 NSCLC patients.

Age
Median (IQR) 69 (65–75)

Sex n %
Female 9 39.1
Male 14 60.9

Histology n %
Adenocarcinoma 15 65.2
Squamous cell carcinoma 5 21.7
Carcinoma NOS 3 13.0

TNM Stage* n %
IIb 1 4.3
IIIa 3 13.0
IIIb 3 13.0
IVa 10 43.5
IVb 6 26.1

Smoking status n %
Current 4 17.4
Former 13 56.5
Never 1 4.3
Unknown 5 21.7

*Staging was conform the revised 8th edition of tumor-node- 
metastasis (TNM) criteria. IQR = interquartile range, NSCLC = non- 
small cell lung cancer, NOS = not otherwise specified. 
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within and between days by a linear mixed model 
approach. The cfDNA concentrations measured 
across the six different time points are shown in 
Figure 1. No significant differences were found 
between the morning, afternoon, and evening, or 
between the two days. Parameter estimates and 
corresponding 95% confidence intervals and var
iance components are displayed in Table 2. The 
cfDNA concentration found in males was signifi
cantly lower as compared to females (p=0.034; 
Wald test). Age, weight, therapy during urine 

collection, survival, tumor stage, or tumor histol
ogy were not associated with the cfDNA 
concentration.

Between- and within-subject variation
Similarly, the variation in cfDNA concentration 
was assessed at the individual patient level, as 
illustrated in Figure 2. The ICC value was 0.49, 
meaning that 49% of the variance is due to varia
bility between patients, and 51% of the variance 
can be explained by variability within patients. 
Parameter estimates of cfDNA concentrations 
measured over time are summarised in Table 2.

Variation in methylation levels

Variation during the day and between days
DNA methylation levels of CDO1, SOX17, and 
TAC1 were measured in all urine samples 
(n=138) by qMSP (Figure 3). Five urine samples 
were excluded from the analysis based on an 
ACTB Ct value of ≥ 32. The discriminatory 
power of the qMSP was verified by comparing 
methylation levels in 11 pairs of NSCLC and 
adjacent normal tissues (Supplementary 
Figure 1). Differences in time were assessed by 
a linear mixed model framework. None of the 

Figure 1. Logarithmic representation of cfDNA concentrations (ng/mL urine) measured at different collection time points, illustrating 
the median and IQR of each collection time point. Outliers are indicated by bold circles located outside the whiskers of the boxplot. 
No significant differences were found within or between the days. cfDNA = cell-free DNA; IQR = interquartile range.

Table 2. Parameter estimates of cfDNA concentration in the 
urine of NSCLC patients measured across the different sampling 
time points according to the fitted linear mixed model cor
rected for sex.

cfDNA concentration

Fixed effects Estimates 95%-CI p
(Intercept) 19.51 (8.31, 45.72)
day [2] −0.13 (−0.52, 0.25) 0.512
time [afternoon] 0.11 (−0.36, 0.60) 0.638
time [evening] 0.25 (−0.22, 0.76) 0.298
sex [male] −1.32 (−4.00, −0 ·.08) 0.034
Random Effects
σ2 1.27
τ00 subject 1.24
ICC 0.49
N subject 23
Observations 138

cfDNA concentration estimates are presented in ng DNA/mL urine. 
σ2 = within-subject variability; τ00 = between-subject variability; 
cfDNA = cell-free DNA; ICC = Intraclass Correlation Coefficient. 
NSCLC = non-small cell lung cancer. 
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studied markers showed systematic differences in 
methylation levels during the day or between the 
two days (Table 3). Methylation levels found were 
independent of sex, age, weight, therapy during 
urine collection, survival, tumor stage, and tumor 
histology. For each marker, a significant associa
tion between methylation level and the cfDNA 
concentration was observed (p< 0.05; Wald test).

Between- and within-subject variation
The variation of DNA methylation levels between 
and within individual patients is displayed in 
Figure 4 and was examined within the same linear 
mixed model with subject as a random effect. The 
ICC values of the markers CDO1, SOX17, and 
TAC1 were 0.74, 0.57, and 0.14, respectively 
(Table 3). This indicated that 26% of the variation 

Figure 2. Conditional scatterplots displaying the between- and within-subject variability of the urinary cfDNA concentration of each 
NSCLC patient across the six sampled time points (m = morning, a = afternoon e = evening), stratified by sex (pink square = female, 
blue circle = male). cfDNA = cell-free DNA; NSCLC = non-small cell lung cancer.
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observed in CDO1 methylation levels is due to 
variability within patients, as opposed to 43% for 
SOX17 and 86% for TAC1.

Model assumptions were not violated as indicated 
by diagnostic tests (Supplementary Material).

Prolonged urine sampling
To explore whether collecting multiple urine sam
ples provides a more accurate test outcome, 
methylation levels of CDO1, SOX17, and TAC1 
were also measured in urine samples of healthy 

Figure 3. Methylation levels of CDO1 (a), SOX17 (b), and TAC1 (c) measured in the urine of NSCLC patients at different collection time 
points illustrating the median and IQR of each collection moment. Methylation levels are normalized according to the reference gene 
ACTB and presented as square root Ct ratios. No significant differences were found within or between the days. IQR = interquartile 
range; NSCLC = non-small cell lung cancer.
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controls (n=60). The control cohort had a median 
age of 69 (range 58–79) and 30 controls were 
female. The qMSP Ct values are provided in the 
Supplementary Data file. The discriminatory 
power of each marker was first evaluated when 
including six samples per patient and compared 

to the levels found in controls. Linear mixed mod
els were used to correct for repeated measure
ments in the patient group. Significant 
differences in methylation levels of cases and con
trols were found for SOX17 (Wald test, p=0.030), 
and also TAC1 showed a trend towards 

Figure 4. Conditional scatterplots displaying the between- and within-subject variability of CDO1 (a), SOX17 (b), and TAC1 (c) 
methylation levels of each patient across the six sampled time points (m = morning, a = afternoon e = evening), stratified by sex 
(pink square = female, blue circle = male). Missing data points indicate excluded urine samples with an ACTB value of ≥ 32.

Table 3. Parameter estimates of DNA methylation levels of CDO1, SOX17 and TAC1 measured over time in urine samples of NSCLC 
patients according to the fitted linear mixed model.

CDO1 SOX17 TAC1

Fixed effects Estimates 95%-CI p Estimates 95%-CI p Estimates 95%-CI p

(Intercept) 0.80 (0.39, 1 ·.20) 0.83 (0.8, 1.17) 0.14 (−0.11, 0.38)
day [2] −0.14 (−0.32, 0.04) 0.136 −0.06 (−0.25, 0.13) 0.528 0.01 (−0.18, 0.20) 0.915
time [afternoon] −0.09 (−0.27, 0.09) 0.343 −0.10 (−0.29, 0.09) 0.295 0.10 (−0.09, 0.28) 0.313
time [evening] −0.07 (−0.22, 0 ·.08) 0.379 −0.05 (−0.1, 0.10) 0.511 0.03 (−0.12, 0.18) 0.674
DNA concentration 0.08 (0.01, 0.15) 0.026 0.21 (0.14, 0.28) <0.001 0.08 (0.02, 0.14) 0.005
Random Effects
σ2 0.9 0.20 0.20
τ00 subject 0.55 0.27 0.03
ICC 0.74 0.57 0.14
N subject 23 23 23
Observations* 133 133 133

DNA methylation level estimates are presented as square root transformed Ct ratios. Methylation levels of all markers were independent of sex, age, 
weight, therapy during urine collection, survival, tumor stage, and tumor histology. σ2 = within-subject variability; τ00 = between-subject 
variability; ICC = Intraclass Correlation Coefficient; NSCLC = non-small cell lung cancer. 

*Five urine samples were excluded from the analysis based on an ACTB Ct value of ≥ 32. 
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significance (Wald test, p=0.059), both indepen
dent of age and sex (Figure 5 and Supplementary 
Table s2).

Next, only one urine sample of each patient was 
compared against the control group by random 
sampling. The results of 100 sampling rounds are 
summarized as median p-value. Table 4 shows the 
discriminatory power (p-value) of each methyla
tion marker between patients and controls when 

collecting one or six urine samples per patient. 
This comparative analysis indicated that the dis
criminatory power of TAC1 and SOX17 decreases 
when only one urine sample was taken into 
account, instead of six.

Discussion

Insight into the dynamics of urinary cfDNA is 
essential to determine whether a preferred collec
tion time and sampling frequency exist, and to 
correctly interpret molecular analyses. Analysis of 
the circadian variation of the cfDNA concentra
tion in the urine of NSCLC patients revealed sub
stantial variation between and within subjects, but 
no clear circadian pattern. Similarly, also for 
methylation levels of lung cancer markers no 
clear circadian pattern was found, whereas the 
biological variation was high.

Figure 5. Methylation levels of CDO1 (a), SOX17 (b), and TAC1 (c) measured in the urine of NSCLC patients (n=23) and healthy 
controls (n=60). Methylation levels are normalised to the reference gene ACTB and presented as square root Ct ratios. Case values 
represent the mean methylation level measured in the six collected urine samples. Outliers are indicated by bold circles located 
outside the whiskers of the boxplot. *p < 0.10 (suggestive evidence), **p < 0.05 (moderate evidence).

Table 4. Statistical differences of CDO1, SOX17 and TAC1 methy
lation levels between NSCLC patients (n=23) and healthy con
trols (n=60) when collecting one or six urine samples per 
patient.

Sample(s) CDO1 SOX17 TAC1

one (random sampling*) 0.662 0.059 0.133
six 0.711 0.030 0.059

Numbers represent p-values found when comparing methylation levels 
found in patients and controls using the Wald-test. *P-values of one 
urine sample represent the median p-value of 100 rounds of random 
sampling. NSCLC = non-small cell lung cancer. 

EPIGENETICS 1065



Data of the current study suggests that the 
moment of urine collection does not significantly 
affect the urinary cfDNA concentration in NSCLC 
patients with active disease. Similarly, no day-to- 
day variation in urinary cfDNA concentration was 
found. So far, only the dynamics of cfDNA in 
plasma have been explored. Madsen et al. [24]. 
reported similar results with stable cfDNA 
amounts in the plasma of lung cancer patients 
during the day and between days. Contradictory 
findings have been described for cfDNA concen
trations in the plasma of healthy subjects. While 
constant cfDNA concentrations were observed by 
Wagner et al. [23], other studies demonstrated 
a significant decrease during the day in healthy 
subjects [24,39]. Previous studies also did not 
find a day-to-day variation of cfDNA in plasma 
[22,24,40], in line with the current findings. The 
only patient characteristic that influenced urinary 
cfDNA concentration levels in this study was sex, 
with a significantly higher concentration found in 
females, following previous studies [41–43].

The proportion of between-subjects variation 
was expressed using the ICC value, where an ICC 
value of one indicates a perfectly reproducible test. 
Although the interpretation of the ICC value dif
fers amongst studies, it has been suggested that 
ICC values below 0.50 reflect poor reproducibility, 
values between 0.50 and 0.75 moderate reproduci
bility, values between 0.75 and 0.90 good reprodu
cibility, and values above 0.90 equal excellent 
reproducibility [44]. The cfDNA concentrations 
measured in the six urine samples per patient 
showed between- and within-subject variability of 
comparable size, approaching a moderate reprodu
cibility (0.49). In other words, both the baseline 
cfDNA concentration of each patient and the ran
dom fluctuation around this baseline contribute 
equally to the observed variation in cfDNA con
centrations. Substantial between- and within- 
subjects variability has also been reported for serial 
measurements of cfDNA in plasma of healthy sub
jects [23,24].

Methylation levels of the CDO1, SOX17, and 
TAC1 genes were also not affected by the time of 
urine collection. This is in accordance with the stable 
detection of EGFR mutations in the plasma of lung 
cancer patients collected during three time points 
within one day [45]. However, alternative results 

have been described for methylation of the SEPT9 
gene in plasma samples of a small group of 11 color
ectal cancer patients. The highest SEPT9 methylation 
levels were found at midnight, detecting all (pre) 
cancers included in the study, as compared to 
77.7% of the cases during the other time points.

Methylation levels of CDO1 and SOX17 
reached moderate to good reproducibility (0.74 
and 0.57), while TAC1 showed poor reproduci
bility (0.14). The reproducibility of the markers 
seems to reflect the level of DNA methylation 
detected. TAC1 with the lowest ICC showed the 
lowest methylation levels of the three markers 
studied. Comparable variation within subjects 
has been observed for the mutant allele concen
tration of tumor-specific mutations in KRAS and 
P53 in the plasma of non-progressive lung cancer 
patients [22]. From a patient monitoring perspec
tive, the between-subject variation observed in 
this study implies that evaluating DNA methyla
tion levels within individual patients, using long
itudinal testing, may be more useful than using 
a dichotomous population-based threshold. Also, 
contrary to the moment of sampling, additional 
value was observed with collecting multiple urine 
samples for markers with the highest within- 
subject variability. This suggests that detecting 
lung cancer in urine will become more likely 
when multiple urine samples are being collected. 
Collecting urine at multiple time points has also 
been proposed by Lui et al. [10]. who published 
the proof-of-concept study for lung cancer detec
tion in urine by the analysis of methylated DNA. 
A previous study by Hubers et al. [46]. indicated 
that prolonged sampling increased the sensitivity 
of lung cancer detection by methylation analysis 
in sputum, with a slight decrease in specificity. 
Other options to improve test accuracy would be 
to increase urine volume, as shown for bladder 
cancer detection in urine [47], or to pool several 
urine samples before DNA isolation, as suggested 
for gene polymorphism analysis [43]. The signifi
cant association found between the methylation 
levels of each marker and the cfDNA concentra
tion of the urine sample indicates that adjusting 
the threshold of the reference gene, used for 
normalization and for excluding samples with 
insufficient DNA quality or quantity, could also 
increase the test reproducibility and accuracy.
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The current study has several limitations. Due 
to the substantial biological variance observed, our 
sample size may have been too small to accurately 
address systematic changes of cfDNA concentra
tion and methylation levels in time. Nonetheless, 
the total of 138 urine samples included is similar 
or even higher as compared to previous studies 
assessing the biological variation of cfDNA in 
plasma [22–24]. Moreover, because this study 
only included patients with active disease, further 
studies are warranted to examine the biological 
variation of cfDNA in patients with early-stage or 
non-progressive disease. Apart from that, the 
variability of the current marker selection in the 
urine of healthy controls and individuals at risk for 
lung cancer (e.g., heavy smokers or patients diag
nosed with chronic obstructive pulmonary disease) 
remains to be determined as no longitudinal sam
ple sets of such subjects were available. This will 
provide essential information since biomarkers 
with small biological variability or even negative 
values in controls are clinically most useful for 
diagnostic and prognostic purposes. Detectable 
changes in such biomarkers will most likely reflect 
disease processes and not merely natural occurring 
variation [48].

The strengths of the study include its relatively 
large sample size and the measurement of both 
cfDNA concentrations and DNA methylation 
levels of three genes at each collection time point. 
Moreover, the use of a standardised and reprodu
cible urine processing protocol limited pre- 
analytical variance [18]. Together with 
a sophisticated linear mixed modelling approach, 
this allowed an accurate estimation of the within- 
and between-subject variation of all analytes 
assessed in the current study. Furthermore, 
although not collected longitudinally, the inclusion 
of a representative control group enabled evalua
tion of the potential benefit of prolonged 
sampling.

In conclusion, no clear circadian pattern of 
methylated cfDNA in the urine of NSCLC patients 
was observed, implying that no preferred time of 
urine collection exists. Nevertheless, the observed 
between- and within-patient variation indicates 
that single methylation marker measurements 
should be interpreted carefully, and that collecting 
multiple urine samples may increase the chance of 

detecting lung cancer in urine. Improved under
standing of the dynamics of urinary cfDNA pro
vides a fundamental step towards the development 
of urine-based biopsies and their translation into 
clinical practice.
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