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Abstract

In this paper, we consider Dagum distribution which is capable of modeling various shapes

of failure rates and aging criteria. Based on progressively type-I interval censoring data, we

first obtain the maximum likelihood estimators and the approximate confidence intervals of

the unknown parameters of the Dagum distribution. Next, we obtain the Bayes estimators of

the parameters of Dagum distribution under the squared error loss (SEL) and balanced

squared error loss (BSEL) functions using independent informative gamma and non infor-

mative uniform priors for both scale and two shape parameters. A Monte Carlo simulation

study is performed to assess the performance of the proposed Bayes estimators with the

maximum likelihood estimators. We also compute credible intervals and symmetric 100(1 −
τ)% two-sided Bayes probability intervals under the respective approaches. Besides, based

on observed samples, Bayes predictive estimates and intervals are obtained using one-and

two-sample schemes. Simulation results reveal that the Bayes estimates based on SEL and

BSEL performs better than maximum likelihood estimates in terms of bias and MSEs.

Besides, credible intervals have smaller interval lengths than confidence interval. Further,

predictive estimates based on SEL with informative prior performs better than non-informa-

tive prior for both one and two sample schemes. Further, the optimal censoring scheme has

been suggested using a optimality criteria. Finally, we analyze a data set to illustrate the

results derived.

1 Introduction

[1] introduced a heavy tail distribution, called the Dagum distribution, especially for modeling

income distributions which could be used in place of log-normal and Pareto models. Since

then, researchers have employed Dagum distribution for studying the distribution of wealth

and income, reliability and survival data, etc. Further, Dagum distribution admits a mixture

representation in terms of generalized gamma and inverse Weibull distributions. The distribu-

tion can also be obtained as a compound generalized gamma (GG) distribution whose scale
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parameter follows an inverse Weibull (IW) distribution with identical shape parameters.

Lately, researchers have also adopted the Dagum distribution in the context of reliability and

survival analysis (see [2–4]). [5, 6] carried out a detailed study on the origin and applications

of the Dagum distribution. Recently, [7] studied the properties and different classical methods

of estimation of the Dagum distribution.

A random variable t has the Dagum distribution with three parameters θ, β and λ if it has

cumulative distribution function (CDF) (for t> 0) given by

Fðt; y;b; lÞ ¼ ð1þ lt� yÞ� b: t > 0 ð1Þ

The probability density function (pdf) corresponding to (1) reduces to

f ðt; y;b; lÞ ¼ yblt� y� 1ð1þ lt� yÞ� b� 1
; t > 0 ð2Þ

where θ and β are the shape parameters and λ is the scale parameter respectively. The reliability

(survival) function is given by,

Rðt; y; b;lÞ ¼ 1 � ð1þ lt� yÞ� b; t > 0 ð3Þ

and hazard rate function is

hðt; y; b;lÞ ¼
yblt� y� 1ð1þ lt� yÞ� b� 1

1 � ð1þ lt� yÞ� b
: t > 0 ð4Þ

In several cases of life testing and survival analysis, the test unit is terminated before failure

due to restriction of time, budget cost or accidental breakage. The data obtained from such

cases may not be complete which is called a censored sample. For studying different observable

physical phenomena, several censoring methodologies have been developed over the last sev-

eral decades. In literature, type-I and type-II are the two most common censoring schemes

which are widely used in reliability and life testing experiments (see [8]). However, none of

these schemes allow the removal of any experimental units during the experiment. This limita-

tions led to the development of progressive censoring scheme wherein test items are with-

drawn before the termination of experiment (see [9] for more details). In many life testing

experiments items put on a test are observed within an interval of time called interval censor-

ing. However, this censoring schemes also does not allow removal of units in between the

experiments. [10] introduced progressive type-I interval censoring scheme for the exponential

distribution. In such type of censoring, items can be withdrawn between two prescheduled

consecutive time points. In the recent past, progressive type-I interval censored scheme gained

wide popularity due to its applicability in many practical problems.

In the recent past, several authors studied progressive type-I interval censored sampling

schemes under varied conditions. In this regard, readers may refer to the works of [11–23].

The first objective of this paper is to obtain the unknown parameters of the model using the

maximum likelihood estimators (MLEs). Further, we obtain the asymptotic confidence inter-

vals for the unknown parameters. The second objective is to obtain Bayes estimators under

SEL and BSEL functions using independent gamma priors for both scale and shape parameters

of the model. We have also obtained Bayes credible intervals of the unknown parameters using

Gibbs sampling technique. The third objective is to obtain Bayes predictive estimates and

intervals based on the observed samples using one-sample and two-sample schemes. Finally,

the fourth objective is to obtain optimal censoring schemes. As far as we know, no study has

attempted to study three parameter distribution by taking into account one and two-sample

prediction intervals in the Bayesian framework along with optimal censoring schemes using
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progressively type-I interval censored schemes perhaps, due to complexities in computational

work.

The remainder of this article is organized in the following manner: In Section 3, a brief dis-

cussion on progressive type-I interval censored sampling is presented. Section 4 deals with

maximum likelihood estimation and its associated approximate confidence intervals. Section 5

discusses Bayesian estimation and its credible intervals. Section 6 includes a discussion on

Bayesian prediction based on one sample and two sample schemes. A simulation study is con-

ducted in Section 7, to compare the performance of various estimates developed in this paper.

In Section 8 deals with optimal censoring schemes. In Section 9, with the help of a real data set

estimation procedures developed in the previous sections are illustrated. Finally, conclusion is

presented in Section 10.

2 Progressive type-I interval censoring

Assume that n identical items are put on a life test at time t0 = 0 and under inspection at pre-

specified times 0< t1 < t2 < . . .< tm where tm is the schedule time to terminate the experi-

ment and m is prefixed. At time tj, the total number of observed failures in the interval (tj−1 −
tj] are Dj. Further, assume that Rj alive items are removed randomly from the life testing at

time tj, j = 1, 2, . . ., m. Here the number of surviving units at time tj, say Sj is a random variable,

and therefore Rj� Sj. Thus, Rj could be determined by the pre-fixed percentage values p1, p2,

. . ., pm−1 with pm = 1, Rj be determined by Rj = [Sj pj], for j = 1, 2, . . ., m − 1. So the data in pro-

gressive type-I interval censoring is given by Tj = (Dj, Rj, tj), j = 1, 2, . . ., m. If Rj = 0, for j = 1, 2,

. . ., m − 1, and Rm ¼ n �
Pm

j¼1
Dj, then progressive type I interval censoring scheme reduces

to the normal interval censored sample.

3 Maximum likelihood estimators

Given the progressively type-I censored data, Tj = (Dj, Rj, tj), j = 1, 2, . . ., m of size n, from a

continuous lifetime distribution with CDF as defined in (1), then the likelihood function can

be written as ([10])

Lðdataj�Þ /
Ym

j¼1

ðFðTj;�Þ � FðTj� 1;�ÞÞ
Djð1 � FðTj;�ÞÞ

Rj ; ð5Þ

where t0 = 0 and ϕ� (θ, β, λ) is the parameter vector.. For the CDF of Dagum distribution

defined in (1), the likelihood function (5) can be specified as follows:

Lðdataj�Þ /
Ym

j¼1

ðð1þ lðt� yj ÞÞ
� b
� ð1þ lðtj� 1Þ

� y
Þ
� b
Þ
Djð1 � ð1þ lðtjÞ

� y
Þ
� b
Þ
Rj : ð6Þ

The log likelihood function, after ignoring the constant of proportionality, is given by

lðdataj�Þ /
Xm

j¼1

½Djlogðð1þ lt
� y

j Þ
� b
� ð1þ lt� yj� 1

Þ
� b
Þ þ Rjlogð1 � ð1þ lðtjÞ

� y
Þ
� b
Þ�: ð7Þ
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The corresponding normal equations are

@lðdataj�Þ
@y

¼
Xm

j¼1

DjðUjÞy

Uj
�
blRj log ðtjÞ

Vj

 !

¼ 0; ð8Þ

@lðdataj�Þ
@b

¼
Xm

j¼1

DjðUjÞb

Uj
þ
Rj log ðlt� yj þ 1Þ

ðlt� yj þ 1Þb � 1

 !

¼ 0; ð9Þ

@lðdataj�Þ
@l

¼
Xm

j¼1

DjðUjÞl

Uj
þ bRjVj

 !

¼ 0; ð10Þ

where

Uj � Ujðy; b; lÞ ¼ ðlt� yj þ 1Þ� b � ðlt� yj� 1
þ 1Þ� b; ð11Þ

Vj � Vjðy; b;lÞ ¼ ðtyj þ lÞððlt
� y
j þ 1Þb � 1Þ; ð12Þ

ðUjÞy �
@Ujðy; b;lÞ

@y
¼ t� yj log tj

� �
ðlt� yj þ 1Þ

� b� 1
� t� yj� 1

log tj� 1

� �
lt� yj� 1

þ 1
� �

� b� 1; ð13Þ

ðUjÞb �
@Ujðy; b; lÞ

@b
¼ lt� yj� 1

þ 1
� �

� b log lt� yj� 1
þ 1

� �
� lt� yj þ 1
� �

� b log lt� yj þ 1
� �

; ð14Þ

and

ðUjÞl �
@Ujðy; b; lÞ

@l
¼ t� yj� 1

lt� yj� 1
þ 1

� �
� b� 1 � t� yj lt� yj þ 1

� �
� b� 1: ð15Þ

The maximum likelihood estimates ŷMSL, b̂MSL and l̂MSL of θ, β and λ, respectively, can be

obtained by solving the Eqs (8), (9) and (10), respectively. For more details about the maxi-

mum likelihood estimates see for example Dong et al. [24], Chen et al. [25] and Chen et al.

[26]. For interval estimation of the model parameters, we require the observed information

matrix. Applying the usual large sample approximation, asymptotic distribution of the MLE �̂

is ð�̂ � �Þ ! Nð0; I� 1ð�ÞÞ, see [27], where I(ϕ), the expected Fisher information matrix of the

unknown parameters ϕ = (θ, β, λ) is

Ið�Þ ¼ � E

@
2l

@y
2

@
2l

@y@b

@
2l

@y@l

@
2l

@b@y

@
2l

@b
2

@
2l

@b@l

@
2l

@l@y

@
2l

@l@b

@
2l

@l
2

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

¼ � E

Cyy Cyb Cyl

Cby Cbb Cbl

Cly Clb Cll

2

6
6
6
4

3

7
7
7
5
; ð16Þ

and I−1(ϕ), the 3 × 3 inverse of the observed information matrix of the unknown parameters ϕ
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= (θ, β, λ) is

I� 1ð�Þ ¼ � E

Cyy Cyb Cyl

Cby Cbb Cbl

Cly Clb Cll

2

6
6
6
4

3

7
7
7
5

� 1

y¼ŷ ;b¼b̂ ;l¼l̂

¼

varðyÞ covðy; bÞ covðy; lÞ

covðb; yÞ varðbÞ covðb; lÞ

covðl; yÞ covðl; bÞ varðlÞ

2

6
6
6
4

3

7
7
7
5

y¼ŷ ;b¼b̂ ;l¼l̂

: ð17Þ

A 100(1 − τ)% approximate confidence intervals for each parametercan be obtained as fol-

lows: ŷ � Zt
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

varðŷÞ
q

, b̂ � Zt
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

varðb̂Þ
q

; and l̂ � Zt
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

varðl̂Þ
q

; where Zt
2

is the upper t

2

� �th
per-

centile of the standard normal distribution.

4 Bayesian analysis

This section considers Bayes estimation of the parameters. When all the parameters are

unknown, no jooint conjugate prior is available. In such a situation, there are number of ways

to choose the priors. Here, we consider the piecewise independent gamma priors [see [28–

31]]. It is assumed that θ, β and λ have the independent gamma prior distributions with pdf

given by

gðyÞ / ya1� 1e� b1y y > 0 ð18Þ

gðbÞ / ba2 � 1e� b2b b > 0 ð19Þ

gðlÞ / l
a3 � 1e� b3l l > 0 ð20Þ

Here all the hyper parameters a1, b1, a2, b2, a3 and b3 are assumed to be known. Thus, the

joint prior distribution is given by

gð�Þ / ya1� 1
b
a2 � 1

l
a3 � 1e� ðb1yþb2bþb3lÞ; � > 0 ð21Þ

Combining (21) with (6), the joint posterior distribution is derived as

pð�jtÞ ¼ gð�ÞLðdataj�Þ ð22Þ

The marginal posterior probability density functions of θ, β and λ are given respectively as

p1ðyjb; l; tÞ ¼
R1

0

R1
0
gð�ÞLðdataj�Þ db dl; ð23Þ

p2ðbjy; l; tÞ ¼
R1

0

R1
0
gð�ÞLðdata�Þ dy dl; ð24Þ

p3ðljy; b; tÞ ¼
R1

0

R1
0
gð�ÞLðdataj�Þ dy db: ð25Þ

4.1 Bayes estimators under squared error loss function

Bayes estimator of the parameters under SEL function are nothing but the posterior mean of

the corresponding parameters. Hence the Bayes estimator ŷSEL of θ under SEL can be simply
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expressed as

ŷSEL ¼ EðyjtÞ ¼
Z 1

0

y p1ðyjb; l; tÞ dy

In a similar way, we can obtain the estimators b̂SEL and l̂SEL of β and λ, respectively, as given

below:

b̂SEL ¼ EðbjtÞ ¼
Z 1

0

b p2ðbjy; l; tÞ db;

and

l̂SEL ¼ EðljtÞ ¼
Z 1

0

l p3ðljy; b; tÞ dl:

As these estimators can not be obtained explicitly, so the estimates are obtained by numeri-

cal method.

4.2 Bayes estimators based on balanced squared error loss function

Instead of using the well known symmetric SEL function, one can use balanced squared error

loss function (BSEL) which was first proposed by [32] and subsequently extended class of

BSEL function was introduced by [33] and can be expressed as:

Lð�; �̂Þ ¼ oLð�̂0; �Þ þ ð1 � oÞLð� � �̂Þ; ð26Þ

where Lð�; �̂Þ is an arbitrary loss function, when �̂0 is a chosen estimator of ϕ and the weight

ω 2 [0, 1]. The BSEL is a generalized loss functions which includes absolute error loss function,

entropy loss function, LINEX loss function and generalizes SEL function.

[34] suggested the use of BSEL function, if Lð�; �̂Þ ¼ ð�̂ � �Þ2 is substituted in (26), the

BSEL function can be obtained and given by the following form:

LBSELð�; �̂Þ ¼ oð� � �̂0Þ
2
þ ð1 � oÞð� � �

�
Þ

2
; ð27Þ

the corresponding Bayes estimator �̂BSEL of a function ϕ using BSEL is given by

�̂BSEL ¼ o�̂ML þ ð1 � oÞ�̂SEL: ð28Þ

where �̂ML is the MLE of ϕ and �̂SEL of ϕ based on SEL function, where ϕ = (θ, β, λ).

4.3 Credible intervals

The Bayesian interval estimates can be derived more directly than the frequentist confidence

interval estimates. After obtaining the marginal posterior distribution of ϕ, a symmetric 100(1

− τ)% two-sided Bayes probability interval estimate of ϕ, denoted by [Lϕ, Uϕ], can be obtained

by solving the following equation. The Bayesian analog to the confidence interval is called a

credible interval. In general,

p½LðtÞ < � < UðtÞ� ¼
Z UðtÞ

LðtÞ
pðYjtÞ d� ¼ 1 � t ð29Þ

for the limits Lϕ and Uϕ. We need to apply suitable numerical method to compute the above

intervals.
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5 Prediction of future values

In the following two subsections, we will investigate the one and two-sample prediction inter-

vals in the Bayesian framework.

5.1 One-sample prediction

[35] obtained 100(1 − τ)% predictive intervals based on the two sample schemes. Let t1 < t2 <
. . .< tr be the ordered informative sample from a distribution function whose CDF is F(x).

5.1.1 Point estimation. The future sample consists of the remaining order statistics tr+1 <

tr+2 < . . .< tn.

Let Ys = tr+s, s = 1, 2, . . ., n − r. Assume fs(ys|ϕ) to denote the pdf of the sth unit to fail, given

that the rth unit had already failed.

fsðysj�Þ / ½Fðysj�Þ � Fðtrj�Þ�
s� 1
½1 � Fðysj�Þ�

n� r� s
½1 � Fðtrj�Þ�

� ðn� rÞf ðysj�Þ; ð30Þ

The binomial expansion of each of the first two terms on the right-hand side then yields

fsðysj�Þ /
Xs� 1

j1¼0

Xn� r� s

j2¼0

Dj1
Dj2
½Fðtrj�Þ�

j1 ½Fðysj�Þ�
s� 1� ðj1� j2Þ

½1 � Fðtrj�Þ�
� ðn� rÞfsðysj�Þ; ð31Þ

where F(.|ϕ) and f(.|ϕ) are given by (1) and (2), respectively, ϕ = (θ, β, λ), Dj1
¼ ð� 1Þ

j1 s� 1

j1

� �
,

and Dj2
¼ ð� 1Þ

j2 n� r� s
j2

� �
. Therefore, (31) becomes

fsðysj�Þ /
Xs� 1

j1¼0

Xn� r� s

j2¼0

Dj1
Dj2
ybly� y� 1

s ð1þ ly� ys Þ
� bðs� j1þj2Þ� 1

ð1þ lt� yr Þ
� bj1

�ð1 � ð1þ lt� yr ÞÞ
� b
Þ
� ðn� rÞ

:

ð32Þ

The predictive density function of the future order statistic ys, s = 1, 2, . . ., n − r, is given by

f �s ðysjtÞ ¼
R

�
fsðysj�Þpð�jtÞ d�; ys > tr ð33Þ

¼

Z

�

Xs� 1

j1¼0

Xn� r� s

j2¼0

Dj1
Dj2
ybly� y� 1

s ð1þ ly� ys Þ
� bðs� j1þj2Þ� 1

ð1þ lt� yr Þ
� bj1

� ð1 � ð1þ lt� yr ÞÞ
� b
Þ
� ðn� rÞ

pð�j t� Þ d�; ð34Þ

where pð�jtÞ is as given by (22).

5.1.2 Prediction bounds. In general ðLðtÞ < YðsÞ < UðtÞÞ is a 100(1 − τ)% credibility

interval for Y(s) if

pðLðtÞ < YðsÞ < UðtÞÞ ¼
Z UðtÞ

LðtÞ
f �s ðysjtÞ dyðsÞ ¼ 1 � t;

Therefore, we can obtain the Bayesian predictive bounds for Y(s) as:

pðYðsÞ � qsjxÞ ¼
Z 1

qs

f �s ðysjtÞ dyðsÞ:

where f �s ðysjtÞ is given in (34)
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5.2 Two samples prediction

Assume that {Y1, . . ., Ym} be the future sample of size m independent of the informative sample

{T1, . . ., Tm}. Let Y(1) < . . .< Y(m) be the order statistics (OS) of the future sample. In order to

obtain the predictive density of the OS Y(r) of the future sample given the informative sample

{T1, . . ., Tm}, the probability density function of the sth OS of the future sample is given by

frðyrj�Þ ¼
m!

ðr � 1Þ!ðm � rÞ!
½Fðyrj�Þ�

r� 1
½1 � Fðyrj�Þ�

m� rf ðyrj�Þ; ð35Þ

where f(.|ϕ) is as given in (2) and F(.|ϕ) denotes the corresponding CDF of f(.|ϕ). Let f �r ð:jtÞ be

the predictive density of Y(r), then

f �r ðyrjtÞ ¼
Z

�

frðyrj�ÞpðYjtÞ d�: ð36Þ

where pðYjtÞ is defined in (22). Since, f �r ðyrjtÞ cannot be expressed in closed form, it cannot be

evaluated analytically. A symmetric 100 γ% predictive interval for Y(r) for the lower bound L
and upper bound U can be obtained by solving the following non-linear Eqs (37) and (38).

pðYðrÞ � LjtÞ ¼
1

2
�
g

2
; ð37Þ

pðYðrÞ � UjtÞ ¼
1

2
þ
g

2
: ð38Þ

Here we need to apply suitable numerical method to compute the above intervals.

6 Simulation study

In this section, we obtain the maximum likelihood estimates (MLE), the Bayes estimates of the

unknown parameters of the Dagum distribution under SEL and BSEL functions through a

simulation study using R language. We obtain one and two-sample Bayes predictive estimates

based on observed samples. The MLE of the model parameters ϕ and the approximate 95%

confidence intervals are obtained using progressively type-I interval censored data. Here, we

consider two different values of n such as n = 50, 100. In Table 2, we report the mean square

error (MSE) values for the maximum likelihood estimators of the Dagum distribution model

parameters ϕ. We have also considered Bayesian approach of estimating the Dagum distribu-

tion parameters ϕ by assuming independent gamma distribution prior, θ* gamma(a1, b1), β
* gamma(a2, b2) and λ* gamma(a3, b3) with known and non-negative values for the hyper

parameters a1, a2, a3, b1, b2 and b3 using the SEL and BSEL functions and for both informative

and non-informative priors. We generate the progressive type I interval censored sampling

data, Hj = {Dj, Rj, tj} of the Dagum distribution by first generating n random variables U1, U2,

. . ., Un, n�m from a U(0, 1) distribution. The data t1, t2, . . ., tn are there by calculated using

tj ¼ 1

l
U
� 1
b

j � 1
� �� 1

y

where the number Di of failures within (ti−1, ti] are generated and Ri surviv-

ing items are randomly removed from the testing based on the pre-specified inspection times

t1� . . .� tm and the pre-specified percentage p = (p1, p2, . . ., pm−1, 1), respectively. Again, we

divided each sample size, n, to five intervals m = 5. The progressive type I interval censoring

data is then generated by setting D0 = 0 and R0 = 0 and for i = 1, 2, . . ., m. where

• RijRi� 1; . . . ;R0;Di� 1; . . . ;D0 � rbinom n �
Pj� 1

i¼1
ðDj þ RjÞ;

ðFi � Fi� 1Þ

ð1� Fi� 1Þ

� �
.
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• DijRi; . . . ;R0;Di� 1; . . . ;D0 ¼ floorðpi � n �
Pi

j¼1
Dj �

Pi� 1

j¼1
RjÞ.

where, rbinom(n, p) generates a random variable from the binomial distribution with parame-

ters n and p, floor() denotes the largest integer not greater than the argument and 0� pi� 1,

i = 1, 2, . . ., m − 1, pm = 1 and F is given by (1). The following two schemes are used in progres-

sive type-I interval censoring

• scheme 1: p(1) = (0, 0.2, 0.50, 0.75, 1),

• scheme 2: p(2) = (0, 0.4, 0.7, 0.9, 1).

In simulation study, both informative and non-informative priors have been used. In case

of informative prior, we choose prior θ* gamma(10, 10), β* gamma(0.5, 10) and λ*
gamma(0.1, 10), while for non-informative prior, we choose uniform distribution ϕ* U(0, 5).

We run 1000 iterations for each of the two schemes. In Tables 2 and 3, we report two schemes:

scheme 1, with p(1) = (0, 0.2, 0.50, 0.75, 1) and scheme 2, with p(2) = (0, 0.4, 0.7, 0.9, 1) respec-

tively. For each censoring scheme, we compute the estimated mean (Mean), bias, lower and

upper confidence (credible) limits for both classical and Bayesian estimates under the SEL and

BSEL functions using both informative and non-informative priors. We have also presented

the estimates of the posterior predictive values of the censored observation and intervals based

on one and two sample predictive intervals for both schemes using both informative and non-

informative priors in Table 4.

7 Optimal censoring scheme

Among all censoring schemes, the optimal censoring scheme provides the maximum informa-

tion of the unknown parameters. The literature on optimal progressive type I Interval Censor-

ing scheme is rather limited. [13] provided optimal progressive type I interval censoring

schemes using A- and D-optimal design criteria. [12] studied optimum reliability sampling

plans under progressive type I interval censoring scheme. [36] presented a method on inspec-

tion times and optimal censoring for Burr XII distribution under progressive type I interval

censoring scheme. Recently, [21] presented a method on optimal censoring for inverse Wei-

bull distribution under progressive type I interval censoring scheme and references cited

there-in. In this paper, we consider the optimal censoring scheme with respect to minimum

trace criteria based on [37, 38], see also [39]. For illustrative purposes, we provide a small table

indicating the optimal censoring scheme with respect to minimum trace criteria. Consider the

pth quantile of the Dagum distribution:

tp ¼ p

� 1

b � 1

0

B
@

1

C
A=l

0

B
@

1

C
A

� 1

y

;
ð39Þ

Using the idea of [40], the following information measure for a given censoring scheme {t1,

. . ., tm} has been used

Iwðt1; � � � ; tmÞ ¼
R 1

0
Vðt1; � � � ; tmÞpwðpÞdp; ð40Þ

where, V(t1, . . ., tm)p denotes the asymptotic variance of t̂ p the MLE of tp, based on the censor-

ing scheme (t1, . . ., tm). Moreover, w(.)is a non-negative weight function such that
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R 1

0
wðpÞdp ¼ 1. In this case, V(t1, . . ., tm)p can be expressed as

@tp
@y

@tp
@b

@tp
@l

h i
I� 1ð�Þ

@tp
@y

@tp
@b

@tp
@l

2

6
6
6
4

3

7
7
7
5
¼ t2p

1

yl

logðpÞ

yb2 p
1
b � 1

� � logðtpÞ
y2

" #

I� 1ð�Þ

1

yl

logðpÞ

yb2 p
1
b � 1

� �

logðtpÞ

y2

2

6
6
6
6
4

3

7
7
7
7
5

where tp is as given by (39) and I−1(ϕ) is the asymptotic variance covariance matrix of the

MLEs of (θ, β, λ) is given by (17) (see in Appendix).

8 Applications

The data sets illustrate the potentiality of the Dagum model for UK Quarterly Gas Consump-

tion (1960–1986). The data correspond to the quarterly UK gas consumption from the first

quarter of 1960 to the last quarter of 1986. The data in Table 1 are reported in [41]

9 Results and discussion

The parameters of the Dagum distribution are calculated using MLE and the Bayesian

approaches using both SEL and BSEL function with informative and non-informative prior

Table 1. Real data.

year Qtr1 Qtr2 Qtr3 Qtr4

1960 160.1 129.7 84.8 120.1

1961 160.1 124.9 84.8 116.9

1962 169.7 140.9 89.7 132.3

1963 187.3 144.1 92.9 120.1

1964 176.1 147.3 89.7 123.3

1965 185.7 155.3 99.3 131.3

1966 200.1 161.7 102.5 136.1

1967 204.9 176.1 112.1 140.9

1968 227.3 195.3 115.3 142.5

1969 244.9 214.5 118.5 267.3

1970 244.9 216.1 136.1 336.2

1971 301.0 196.9 136.1 267.3

1972 317.4 230.5 152.1 336.2

1973 371.4 240.1 158.5 355.4

1974 449.9 286.6 179.3 403.4

1975 491.5 321.8 177.7 483.5

1976 593.9 329.8 176.1 483.5

1977 584.3 395.4 187.3 485.1

1978 669.2 421.0 216.1 509.1

1979 827.7 467.5 209.7 542.7

1980 840.5 414.6 217.7 670.8

1981 848.5 437.0 209.7 701.2

1982 925.3 443.4 214.5 683.6

1983 917.3 515.5 224.1 694.8

1984 989.4 477.1 233.7 730.0

1985 1087.0 534.7 281.8 787.6

1986 1163.9 613.1 347.4 782.8

https://doi.org/10.1371/journal.pone.0252556.t001
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for n = 50 and n = 100. Table 2 gives the values of the parameters when w = 0.3 and the propor-

tions are p(1) = (0, 0.4, 0.7, 0.9, 1). Table 3 gives the values of the parameters when w = 0.3 and

the proportions are p(2) = (0, 0.2, 0.5, 0.75, 1). Table 4 gives the values of predicted values Y(s)

for one and two samples schemes using proportion p(1) = (0, 0.4, 0.7, 0.9, 1) and p(2) = (0, 0.2,

0.50, 0.75, 1), for sample sizes n = 50 and n = 100. We observe from Tables 2 & 3, in case of

MLE, the MSEs of the two censoring percentage, p(1) and p(2) are the same for the scale param-

eter λ while for the two shape parameters θ and β are different. It is also observe that the Bayes

estimates based on SEL and BSEL performs better than maximum likelihood estimates in

terms of bias and MSEs. Also, in all the cases, MSEs decrease as we increase the sample sizes. It

verifies the consistency of the estimators. The results also show that the performance of SEL

based on informative prior is more or less same as non-informative prior both in terms of bias

and MSEs values. However, in terms of MSEs of the parameters θ and λ in case of censoring

percentage, p(1) performs better than p(2) while for the parameter β, p(2) performs better than

p(1). Further, we observe that the performance of BSEL for both informative and non-informa-

tive priors are not better off than the SEL. It is to be noted that under non-informative prior

based on BSEL(BSEL-non) function, MSEs in p(2) performs better than p(1) for all parameter

values θ, β and λ. The performance of the Bayes estimates under SEL improve in almost all

cases with the increase in the sample size n. This behaviour holds true under both the censor-

ing schemes and different choices of n. Further, we observe that as the sample size gets larger,

average asymptotic confidence interval estimates and credible interval estimates decreases for

the parameters β and λ. Finally, it is seen that the credible intervals have smaller interval

lengths. From Table 4, we observe that predictive estimates based on SEL with informative

prior performs better than non-informative prior for both one and two sample schemes. We

note that the censoring percentage in p(1) is more than p(2), so the experiment rapidly gets

Table 2. Maximum likelihood and Bayes estimates based on scheme 1, w = 0.3, m = 5, p(1) = (0, 0.4, 0.7, 0.9, 1).

n = 50 n = 100

Parameters Mean bias MSE lower upper Mean bias MSE LCL UCL

MLE MLE

θ 0.9708 1.0292 1.2673 0.0264 1.0354 0.0261 0.6104 0.4950 2.0349 3.1859

β 0.1184 0.1575 0.0253 0.0264 0.0354 0.0186 0.14029 0.0896 1.4248 2.2946

λ 0.0068 0.9999 0.9999 0.0181 0.0188 2.437e-06 0.9999 0.9999 0.000 2.6839e-05

SEL-in SEL-in

θ 1.8996 0.1004 0.0098 1.8990 1.9014 1.90111 0.0988 0.0098 1.8991 1.9007

β 2.0996 0.0996 0.0101 2.0909 2.1012 2.09809 0.0980 0.0096 2.0998 2.1026

λ 0.8982 0.1018 0.0099 0.8096 0.9011 0.90052 0.0995 0.0098 0.8996 0.90111

SEL-non SEL-non

θ 1.8995 0.1004 0.0098 1.8091 1.9005 1.90111 0.0988 0.0098 1.8998 1.9019

β 2.1001 0.1001 0.0101 2.0088 2.1011 2.09809 0.0980 0.0096 2.0968 2.0997

λ 0.5389 0.4610 0.0099 0.8199 0.9020 0.90052 0.0995 0.0098 0.8998 0.9011

BSEL-in BSEL-in

θ 2.2268 0.2268 0.0515 1.8990 1.9116 2.1848 0.1848 0.0886 2.0054 2.3482

β 2.0063 0.0063 4.04e-05 2.1648 2.1889 2.0027 0.0027 0.0913 1.9876 2.1437

λ 0.5402 0.4598 0.2114 0.9298 0.9878 0.5403 0.4597 0.05938 0.4837 0.8192

BSEL-non BSEL-non

θ 1.8995 0.10046 0.05111 1.8986 1.9005 2.1848 0.1848 0.0886 2.0054 2.3482

β 2.1002 0.1002 3.67e-05 2.0988 2.1011 2.0027 0.0027 0.0913 1.9876 2.1437

λ 0.9009461 0.0991 0.21108 0.8995 0.9020 0.5403 0.4597 0.05938 0.4837 0.8192

https://doi.org/10.1371/journal.pone.0252556.t002
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Table 3. Maximum likelihood and Bayes estimates based on scheme 2, w = 0.3, m = 5, p(2) = (0, 0.2, 0.50, 0.75, 1).

n = 50 n = 100

Parameters Mean bias MSE lower upper Mean bias MSE LCL UCL

MLE MLE

θ 0.0275 0.7493 1.2776 1.3572 4.1413 0.02610 0.6104 0.4950 2.03499 3.18587

β 0.01865 0.1352 0.2692 1.0409 2.6887 0.01859 0.1403 0.0895 1.42480 2.29461

λ 1.338e-06 0.9999 0.9999 0.0000 2.440e-05 2.43e-06 0.9999 0.9999 0.0000 2.683e-05

SEL-in SEL-in

θ 1.9009 0.0098 0.0245 1.8999 1.90143 1.9001 0.0999 0.0099 1.89906 1.90072

β 2.1007 0.01015 0.0009 2.0998 2.10125 2.10082 0.10082 0.01017 2.09949 2.10239

λ 0.9004 0.0099 0.1367 0.8996 0.90115 0.9002 0.09981 0.0099 0.89938 0.90074

SEL-non SEL-non

θ 1.8995 0.1005 0.0101 1.8985 1.9005 1.90111 0.09888 0.00978 1.89976 1.90187

β 2.1002 0.10019 0.01004 2.0988 2.1011 2.09809 0.09809 0.009621 2.09677 2.09973

λ 0.9009 0.09905 0.0098 0.8995 0.9020 0.90052 0.99479 0.00989 0.89976 0.90109

BSEL-in BSEL-in

θ 2.15542 0.1554 0.0242 2.0648 2.3981 2.18426 0.18426 0.08792 2.15394 2.26975

β 2.02995 0.02995 0.0009 1.9983 2.3698 2.00438 0.00438 0.00093 2.02948 2.08792

λ 0.6303 0.3697 0.1367 0.6099 0.6919 0.54011 0.45989 0.00682 0.53898 0.55993

BSEL-non BSEL-non

θ 2.1545 0.1545 0.0238 1.91985 1.9200 2.18484 0.18484 0.09979 2.14391 2.26975

β 2.02957 0.0296 0.0009 2.0388 2.3941 2.00273 0.00273 0.00693 2.00182 2.08792

λ 0.63066 0.36933 0.1364 0.6195 0.9002 0.54031 0.45969 0.00982 0.53698 0.55192

https://doi.org/10.1371/journal.pone.0252556.t003

Table 4. Predictive estimates based on scheme 1 and scheme 2, m = 5, p(1) = (0, 0.4, 0.7, 0.9, 1), p(2) = (0, 0.2, 0.50, 0.75, 1).

n Type Mean bias MSE LCL UCL

50, p1 SEL_non

one sample Ys 1.1991911 0.800808 0.6412950 1.1984408 1.199796

two samples Ys 0.9005342 0.896534 0.0803773 0.8999234 0.901019

SEL_in

one sample Ys 1.2010362 0.798963 0.638343 1.1998073 1.201669

two samples Ys 0.0031222 1.314e-06 0.000877 0.0017258 0.004087

100, p1 SEL_non

one sample Ys 1.2008427 0.799157 0.6386526 1.1999928 1.201471

two samples Ys 0.9000144 0.896014 0.0802841 0.8994546 0.900604

SEL_in

one sample Ys 1.20083481 0.799165 0.6386655 1.1997385 1.202074

two samples Ys 0.00434036 0.000340 6.094e–07 0.0026393 0.005397

50, p2 SEL_non

one sample Ys 1.19994440 0.800055 0.640089 1.198668 1.201423

two samples Ys 0.90062120 0.896621 0.803930 0.899512 0.901870

SEL_in

one sample Ys 1.20125620 0.798743 0.637992 1.199918 1.202989

two samples Ys 0.00452716 0.000527 6.191e-07 0.003342 0.005583

100, p2 SEL_non

one sample Ys 1.2000322 0.799967 0.6399486 1.199348 1.200539

two samples Ys 0.9000486 0.896048 0.8029033 0.898844 0.900711

SEL_in

one sample Ys 1.200673316 0.799326 0.6389233 1.199747 1.201356

two samples Ys 0.004647491 0.000647 6.355e-07 0.003626 0.005362

https://doi.org/10.1371/journal.pone.0252556.t004
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finished in case of p(1) than p(2), thus censoring percentage p(1) saves the time and money more

than p(2). In Table 5, we report the decision variables D0 and p0 and different values of m for

optimal censoring scheme. From Table 5, we observe that the optimal values of D0 decreases as

the number of inspection times m increases which implies that as the number of inspection

time increases, intermediate time between two successive inspections get shorter. Again, with

the increase of number of inspections, the optimal values increase. for real data analysis the

results are presented in Table 6.

In real data analysis, we could not observe any changes in the results for both the percentage

censoring (i.e., p(1) and p(2)), thus we just reported one of them (i.e., p(2)). In addition, there is

no difference between SEL results and BSEL as presented in Table 7. In the next Tables we

denote lower confidence limit (LCL) and upper confidence limit (UCL).

Table 5. Optimal censoring scheme for trace-optimal criteria when θ = 2, β = 3, λ = 2 and n = 50, 100 and different values of m.

n m D0, p0 trace-optimal times

50 2 (0.67,0.00) (0.54,1.98)

3 (0.54,0.00) (0.43,1.73,2.26)

4 (0.49,0.00) (0.38,1.49,2.1,1,2.82)

5 (0.37,0.00) (0.32,0.96,1.74,2.51,2.97)

100 5 (0.46,0.00) (0.37,1.06,1.89,2.74,2.99)

6 (0.42,0.00) (0.34,1.01,1.72, 2.15,2.27,2.45)

7 (0.39,0.00) (0.29,0.94,1.63,1.97,2.15,2.28,2.31)

8 (0.34,0.00) (0.24,0.78,1.43,1.82,1.90,1.97,2.16,2.22)

9 (0.31,0.00) (0.21,0.34,0.68,0.89,1.14,1.27,1.45,1.51,1.67)

10 (0.29,0.00 (0.18,0.23,0.35,0.39,0.47,0.49,0.61,0.70,0.83,0.89)

https://doi.org/10.1371/journal.pone.0252556.t005

Table 6. Optimal censoring scheme for trace-optimal criteria when θ = 3.2, β = 5.9, λ = 1.75, n = 88 using real data.

m D0, p0 trace-optimal times

2 (414.6,0.00) (317.4, 670.8)

3 (371.3,0.00) (286.6, 329.6,483.5)

4 (336.3,0.00) (241.1,321.8,437.0,467.5)

https://doi.org/10.1371/journal.pone.0252556.t006

Table 7. Maximum likelihood and Bayes estimates based on scheme 2, m = 4, p(2) = (0, 0.2, 0.50, 0.75, 1), θ = 3.2, β = 5.9, λ = 1.75 using real data.

Parameters Mean standard error LCL UCL

MLE

θ 4.490103 1.290103 4.490046 4.490159

β 5.984063 0.084063 5.983605 5.984521

λ 1.635266 0.114734 1.635237 1.635296

SEL_in

θ 3.098201 0.101799 3.097116 3.099765

β 6.000055 0.031639 5.999388 6.000530

λ 1.649941 0.031639 0.000000 0.000011

Ys 0.002201 0.00199 0.001116 0.003769

SEL_non

θ 3.1012967 0.098707 3.099783 3.102186

β 5.9991934 0.099192 5.998141 6.000093

λ 1.6507618 0.099192 1.649200 1.651973

Ys 0.9012967 0.099241 0.899783 0.902186

https://doi.org/10.1371/journal.pone.0252556.t007
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10 Conclusions

In this paper we discussed parameter estimation for the Dagum distribution based on progres-

sive type-I interval censored data. Under classical set up we obtain maximum likelihood esti-

mates and confidence intervals. In Bayesian framework, we have obtained Bayes estimates

under SEL and BSEL functions using independent informative gamma and non informative

uniform priors for both scale and two shape parameters. Moreover, Bayes predictive estimates

and intervals are obtained using one and two sample schemes. Further, the optimal censoring

scheme based on minimum trace criteria is discussed. Finding an optimum censoring scheme

is an open problem from the computational point of view. More work is needed along that

direction. So, present work may help the industry people to analyze progressive type-I interval

censored lifetime data with optimal censoring. A future work is to estimate procedures of

stress-strength reliability for Dagum distribution. Another future work is to study and com-

pare the Bayesian estimation based on maximum likelihood and based on maximum product

of spacing to estimate the stress-strength reliability of Dagum distribution.

Appendix

The second derivatives of the information matrix of Dagum distribution based on progressive

type I interval censoring with respect to θ, β and λ are given by the following equations:
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� b
ðtyj � blÞ

ðtyj þ lÞ
2

�
logðtj� 1Þðlt� yj� 1

þ 1Þ
� b
ðtyj� 1
� blÞ

ðtyj� 1
þ lÞ

2

�

;

ðUjÞbl �
@Ujðy; b;lÞ

@bl
¼ t� yj� 1

ðlt� yj� 1
þ 1Þ

� b� 1
ð1 � blogðlt� yj� 1

þ 1ÞÞ þ t� yj

�ðlt� yj þ 1Þ
� b� 1
ðblogðlt� yj þ 1Þ � 1Þ;

ðVjÞyb �
@Ujðy; b; lÞ

@yb
¼ � logðtjÞðlt

� y

j þ 1Þ
b
ðbllogðlt� yj þ 1Þ

þtyj ð� logðlt
� y
j þ 1ÞÞ þ lÞ;

ðVjÞbb �
@Ujðy; b;lÞ

@b
2

¼ t� yj ðlt
� y

j þ 1Þ
bþ1log2

ðlt� yj þ 1Þ;

ðVjÞb ¼ t� yj ðlt
� y
j þ 1Þ

bþ1logðlt� yj þ 1Þ;

ðUjÞll �
@Ujðy; b; lÞ

@l
2

¼ bðbþ 1Þ
ðlt� yj þ 1Þ

� b

ðtyj þ lÞ
2
�
ðlt� yj� 1

þ 1Þ
� b

ðtyj� 1
þ lÞ

2

 !

;

and Uj, Vj, (Uj)θ, (Uj)β, (Uj)λ are given by (11)–(15), respectively.
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