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Abstract: Alzheimer’s disease is an emerging health disorder associated with cognitive decline and
memory loss. In this study, six curcumin analogs (1a–1f) were synthesized and screened for in vitro
cholinesterase inhibitory potential. On the basis of promising results, they were further investi-
gated for in vivo analysis using elevated plus maze (EPM), Y-maze, and novel object recognition
(NOR) behavioral models. The binding mode of the synthesized compounds with the active sites of
cholinesterases, and the involvement of the cholinergic system in brain hippocampus was determined.
The synthesized curcumin analog 1d (p < 0.001, n = 6), and 1c (p < 0.01, n = 6) showed promising
results by decreasing retention time in EPM, significantly increasing % SAP in Y-maze, while sig-
nificantly (p < 0.001) enhancing the % discrimination index (DI) and the time exploring the novel
objects in NORT mice behavioral models. A molecular docking study using MOE software was used
for validation of the inhibition of cholinesterase(s). It has been indicated from the current research
work that the synthesized curcumin analogs enhanced memory functions in mice models and could
be used as valuable therapeutic molecules against neurodegenerative disorders. To determine their
exact mechanism of action, further studies are suggested.

Keywords: curcumin analogs; Alzheimer’s disease; amnesia; acetylcholinesterase; butyrylcholinesterase;
docking; scopolamine; EPM; Y-maze; NORT; hippocampus

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative brain disease responsible for both
mental and physical deterioration in patients, causing death. It is one of the common
forms of dementia [1,2], characterized by serious short-term memory loss with cognitive
decline, impaired reasoning and judgment, and communication difficulties followed by
neurodegeneration, and it is considered a growing health issue worldwide [3]. It has
been surveyed that 60–70% cases of AD were diagnosed with dementia [4], and about
46.85 million affected individuals with AD around the globe and it has been predicted that
this figure will be two-fold by 2030, according to a report published in 2015 on Alzheimer’s
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disease [5]. The exact cause of AD is still a mystery to researchers; however, cholinergic
deficiency has been considered one of the leading causes associated with cognitive decline
and is correlated to AD [2].

Acetylcholine is a neurotransmitter responsible for the regulation of cognitive func-
tions, and the centrally acting cholinergic system, maintains their level, which plays a vital
role in the memory and learning process [2,6]. Acetylcholine is degraded by cholinesterases,
which causes serious cholinergic deficiency leading to the onset of AD, and inhibitions
of these enzymes remains a significant therapeutic target for AD [7]. The immediate re-
sponse of altering enzyme activity remains the prime target for drug design; even with the
increased usage of drugs, 47% of all current drugs inhibit the enzyme targets [8]. Based
on cholinergic hypothesis, AChE inhibitors are the most prescribed drugs against the
disease, as patients with AD have an apparent deficit in acetylcholine (ACh) and possess
multifactorial and complex pathophysiology. Therefore, acetylcholinesterase inhibition is
suggested to be a promising strategy [9].

Recent studies indicated the role of basal forebrain cholinergic systems in mem-
ory and cognition [10]. The cholinergic system plays a vital role in the memory reten-
tion process by maintaining the acetylcholine level [11]. The decreased level of acetyl-
choline causes memory impairment, which can be overcome with the management of
cholinesterase inhibitors [12]. The activation of the cholinergic system by the adminis-
tration of acetylcholinesterase inhibitors offers symptomatic aid in dementia. Currently,
acetylcholinesterase inhibitors, donepezil, galantamine, rivastigmine and tacrine have been
approved for symptomatic therapy of AD, which were reported recently [13–15] (Figure 1a).
The available cholinesterase inhibitors only manage to prevent the progress of the disease
but are unable to cure it because they lose long-term efficacy. They also cause severe side
effects and it is why there is an urgent need for designing effective anti-AD molecules.
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Figure 1. (a) Cholinesterase inhibitors (b) Chemical structure of natural curcumin (c) General structure
of curcumin analogs.

Curcumin is one of the most important constituents of the curcuminoid family and
is naturally found in Curcuma longa L. [16] (Figure 1a). Curcumin showed a wide range
of biological applications and has been used for centuries as a dietary pigment and as
a spice [17]. Recently, it was reported that curcumin and curcuminoids have memory-
enhancing effects in rats [18]; more importantly, they played a crucial role as a remedy for
Alzheimer’s disease and other neurodegenerative diseases [2,19,20]. It has been reported
that β-diketone moiety is responsible for many pharmacological activities and plays a vital
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role in the reactivity of curcumin analogs [21]. Curcumin analogs with active methylene
group (-CH2-) between two carbonyl groups exhibited significant potential against AD [3].
The aim of this research was to design symmetric synthetic curcumin analogs with di-
carbonyl moiety, encouraging the cascade of our previously published work on mono-
carbonyl curcumin analogs [2], and evaluate them in behavioral mice models for memory-
enhancing effects as possible alternative therapeutics molecules for neurodegenerative
diseases like AD.

2. Results

In this research study, six symmetrical synthetic curcumin analogs (1a–1f) with substi-
tuted functional groups on aromatic rings were synthesized from acetyl acetone treated
with substituted aldehydes at room temperature in the presence of ethanol as solvent
(Scheme 1). The compound 1a with no substitution on the aryl ring, 1b with methyl
substituent, 1c with methoxy substituent, and 1e with N,N’-dimethyl amino substituent
were synthesized in good yields. These substituents have an electron-donating effect and
increased the reactivity of the compounds, while 1d and 1f have deactivating substituents
that decreased the product yield.
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2.1. In Vitro Cholinesterase Activity

The in vitro anti-cholinesterase activity of the synthesized curcumin analogs was de-
termined against cholinesterases (AChE and BuChE), as shown in Table 1. Compounds
1d, 1c, and 1b showed comparable results and higher AChE inhibition with IC50 val-
ues of 112.52 nM, 467.18 nM and 733.84 nM, respectively, while compound 1a with IC50
2615.42 nM, 1e with IC50 3267.95 nM, and 1f with IC50 5839.96 nM showed mild enzyme
inhibition activities compared to standard donepezil. Donepezil was used as the standard
with IC50 of 9.31 nM. Similarly, against the BuChE enzyme, the synthesized curcumin
analogs were evaluated in a similar way as for acetylcholinesterase, and it was revealed
that the tested samples showed lower enzyme inhibition activities against BuChE than
they did against the AChE enzyme. Selectivity for AChE with IC50 values calculated for 1d
were 378.43 nM, followed by 1c with IC50 1356.14 nM, and 1b with IC50 2159.08 nM, while
compound 1a with IC50 5347.16 nM, 1e with IC50 6635.82 nM, and 1f with IC50 9664.71 nM
have weak butyrylcholinesterase inhibition activities compared to standard donepezil. The
IC50 value obtained for donepezil remained 33.65 nM.
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Table 1. In vitro cholinesterase inhibition potential of compounds (1a–1f).

Compound AChEI (IC50 (nM)) BuChEI (IC50 (nM))

1a 2615.42 5347.16

1b 733.84 2159.08

1c 467.18 1356.14

1d 112.52 378.43

1e 3267.95 6635.82

1f 5839.96 9664.71

Donepezil 9.31 33.65
Donepezil was used as positive control. Data were expressed in mean ± SEM, (n = 3), and significantly different
values were compared to positive control.

2.2. Molecular Docking

MOE-Dock protocol was used for the prediction of an interaction between ligX appli-
cation, ligand molecules, and AChE and BuChE within the MOE package [22]. Both the
cholinesterases were docked with (1a–1f) compounds via the MOE tool. All the synthe-
sized compounds showed good binding affinity with target proteins. The IC50 values were
parallel to the binding modes of compounds.

Validation of Docking for Anticholinesterases

Synthesized curcumin analogs, as co-crystallized ligands, were re-docked in the
cholinesterase inhibitor (PDB ID: 2gyu) binding cavity after removal from the active sites.
The incorporated docking protocol for the tested compounds, after the observed RMSD
1.618 Å value, was validated and MOE-Dock was determined to be a reliable method.
The compound 1d exhibited a promising docking score (−12.089) for AChE, and both the
active site residues Trp86 and Ser298 showed interaction with the chlorobenzene moieties,
while the third active site residue Tyr124 made a hydrogen bond with the di-carbonyl
moiety (Figure 2A) Table 2. Similarly, 1d was also active against BuChE, interacting with
the residues of two active sites with a docking score of −10.962, in which Tyr332 inter-
acted with chlorobenzene moiety, while Gly116 interacted with the di-carbonyl moiety via
hydrogen bonding (Figure 2B) and Table 2.
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Table 2. The docking scores and binding energies of compounds (1a–1f) of the calculated IC50 values
against AChE and BuChE.

Comp AChEI (IC50 nM) Docking Score Binding Energy
(GBVI/WSA) BuChEI (IC50 nM) Docking Score Binding Energy

(GBVI/WSA)

1a 2615.42 −7.371 −13.101 5347.16 −7.871 −13.207

1b 733.84 −8.236 −14.082 2159.08 −8.054 −14.749

1c 467.18 −10.427 −18.127 1356.14 −8.556 −15.217

1d 112.52 −12.089 −21.159 378.43 −10.962 −19.081

1e 3267.95 −7.391 −13.330 6635.82 −6.918 −12.652

1f 5839.96 −6.998 −12.146 9664.71 −6.202 −11.023

The lower scores showed more favorable pose in all the scoring functions. In the molecular docking studies,
choosing between active and non-active molecules is based on binding energies and docking score. GBVI/WSA is
a scoring function of estimated free energy from a given pose in ligand binding and represents Generalized-Born
Volume Integral/Weighted Surface Area.

The data for binding energy values and docking scores for docked targets with the
compounds (1a–1f) are shown in Table 2. The data interpretation of binding interactions
of synthesized compounds with docked targets showed that the tested compounds were
accurately docked into the active site residues and showed significant interactions against
both cholinesterases (AChE and BuChE).

2.3. In Vivo Behavioral Study

The synthesized curcumin analogs were evaluated using EPM, Y-maze and NORT
behavioral models for investigation of the memory-enhancing potential.

2.3.1. Elevated Plus Maze

In the elevated plus maze (EPM) paradigm, synthesized curcumin analogs showed
promising results (Figure 3A,B). There was a marked amnesia induced in mice after 30 min
of the last dose on day 7 upon administration of scopolamine 1 mg/kg i.p, and a signif-
icantly higher transfer latency time (TLT) in seconds was recorded in comparison to the
vehicle treated group. Pretreatment with donepezil significantly altered and decreased TLT
(34.57 ± 1.93 s) (p < 0.001) when compared to the amnesic group.
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Figure 3. Effects of synthesized curcumin analogs (1a–1f), (A) Transfer latency (seconds) at 7.5 mg/kg
of the tested compounds and (B) Transfer latency (seconds) at 15 mg/kg of the tested compounds
in EPM behavioral mice model versus scopolamine treated groups (1 mg/kg); (C) %Spontaneous
alternation performance at 7.5 mg/kg of the tested compounds and (D) %Spontaneous alternation
performance at 15 mg/kg of the tested compounds versus scopolamine (1 mg/kg) treated group in Y-
maze behavioral mice model. Data were presented in (mean ± SEM), n = 6. ### p < 0.001 vs. normal
control. Significantly different values were compared with amnesic group; ***, **, * and ns represents
p-value < 0.001, <0.01, <0.05, >0.05 respectively.

Similarly, pretreatment with synthesized compounds in both doses for 7 days, in
which compound 1d had significantly reduced TLT in seconds (p < 0.05) at 7.5 mg/kg and
(p < 0.001) at 15 mg/kg, reversed the amnesia. For the other compounds: 1c with reduced
TLT in seconds (p < 0.05) at 7.5 mg/kg and (p < 0.01) at 15 mg/kg, respectively, showed a
weak response, while 1a (p > 0.05) was non-significant, 1b (p > 0.05) was non-significant
at 7.5 mg/kg and (p < 0.05) showed poor response at 15 mg/kg. Similarly, 1e and 1f were
non-significant at both doses, respectively.

2.3.2. Y-Maze Test

The synthesized curcumin analogs were evaluated for anti-amnesic effect using the
Y-maze mice model, which showed significantly higher memory-enhancing potential,
Figure 3 (C and D). Scopolamine administration caused serious amnesia by decreasing the
percent spontaneous alternation performance to 37.66 ± 3.94 (p < 0.001) in comparison with
normal controls (70.16 ± 4.58). The standard drug donepezil with a % SAP of 68.50 ± 1.95
(p < 0.001) and the treated compounds 1d at both doses have significantly increased the %
SAP at 55.66 ± 2.82 (p < 0.01) and 67.66 ± 2.84 (p < 0.001), respectively, when compared to
the scopolamine treated amnesic group. The memory-enhancing effects were observed to
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be comparable for compound 1c with a % SAP of 47.16 ± 2.77 (p < 0.05) at 7.5 mg/kg, and
was enhanced significantly at 15 mg/kg with a % SAP of 62.33 ± 184 (p < 0.001), while 1a,
1b showed poor response (p < 0.05), and 1e, 1f (p > 0.05) were non-significant at both doses,
respectively. The curcumin analogs 1d and 1c have showed their effectiveness against
memory impairment in amnesic mice.

2.3.3. Novel Object Recognition Test

The synthesized curcumin analogs (1a–1f) for memory-enhancing potential using the
NORT mice model were evaluated, and the results are presented in Figure 4. In the short-
term memory, there was no significant change observed in sample phase in the exploration
time for both identical objects when treated with all sample compounds. There was a
significantly higher exploration time for the novel object than the identical object recorded
in the test phase when treated with synthesized compounds at 7.5 and 15 mg/kg and
standard donepezil at 2 mg/kg. Pretreatment with donepezil has significantly enhanced
the time spent in seconds (21.59 ± 1.44 (p < 0.001)) exploring the novel object with 65.26%
DI and it was reduced for the familiar object (11.49 ± 1.39 s 32.32% DI) as compared to the
amnesic group. Synthesized curcumin analogs 1c with a discrimination index of 60.16%
(p < 0.001) and 61.25% (p < 0.001) at both doses, respectively, and 1d with 61.43% (p < 0.001)
and 62.03% (p < 0.001) showed promising results with a significantly higher exploration
time compared to the amnesic group. Similarly, in this study, compound 1a with a DI of
54.53% (p < 0.05) and 55.10% (p < 0.01) at both doses, respectively, showed promising results,
and 1b with a DI of 55.68% (p < 0.01) and 57.47% (p < 0.01) showed significant results at both
doses, respectively, while 1e and 1f showed no promising potential in comparison with
the amnesic group. After 24 h of the short-term memory evaluation, in terms of long-term
memory, the synthesized curcumin analogs were tested and the results indicated that 1c
and 1d showed a significant improvement in comparison with the amnesic group, with
a DI of 60.58% (p < 0.001), 62.28% (p < 0.001), and 63.78% (p < 0.001), 64.61% (p < 0.001)
at both doses, respectively. Compound 1b demonstrated moderate memory-enhancing
activity with a DI of 52.45% and 53.61% (p < 0.05) at both doses, respectively, while 1a, 1e
and 1f showed no significant change.
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Figure 4. The effect of synthesized curcumin analogs for the evaluation of memory (1a–1f) in NORT 

(A) Time spent in the sample phase, (B) Time spent in the test phase, (C) Discrimination index (%) 

were measured in treated groups (7.5 mg/kg) versus scopolamine (1 mg/kg) treated group. (D) Time 

spent in the sample phase, (E) Time spent in the test phase, (F) Discrimination index (%) were meas-

ured in treated groups (15 mg/kg) versus scopolamine (1 mg/kg) treated group for measuring short-

term memory in NORT behavioral mice model; (G) Time spent in the sample phase, (H) Time spent 

in the test phase, (I) Discrimination index (%) were measured in treated groups (7.5 mg/kg) versus 

scopolamine (1 mg/kg) treated group. (J) Time spent in the sample phase, (K) Time spent in the test 

phase, (L) Discrimination index (%) were measured in treated groups (15 mg/kg) versus scopola-

mine (1 mg/kg) treated group for measuring long-term memory in NORT behavioral mice model. 

Results were presented in (mean ± SEM), n = 6. ###P ˂ 0.001 vs. normal control. Significantly differ-
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= 6), increased AChE activity compared to the control group. The increased AChE activity 

caused the degradation of acetylcholine and produced cholinergic deficiency, which re-

sults in amnesia. The compound 1d (p < 0.001, n = 6), 1c (p < 0.01, n = 6), 1b (p < 0.05, n = 6) 
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Figure 4. The effect of synthesized curcumin analogs for the evaluation of memory (1a–1f) in NORT
(A) Time spent in the sample phase, (B) Time spent in the test phase, (C) Discrimination index (%)
were measured in treated groups (7.5 mg/kg) versus scopolamine (1 mg/kg) treated group. (D) Time
spent in the sample phase, (E) Time spent in the test phase, (F) Discrimination index (%) were
measured in treated groups (15 mg/kg) versus scopolamine (1 mg/kg) treated group for measuring
short-term memory in NORT behavioral mice model; (G) Time spent in the sample phase, (H) Time
spent in the test phase, (I) Discrimination index (%) were measured in treated groups (7.5 mg/kg)
versus scopolamine (1 mg/kg) treated group. (J) Time spent in the sample phase, (K) Time spent
in the test phase, (L) Discrimination index (%) were measured in treated groups (15 mg/kg) versus
scopolamine (1 mg/kg) treated group for measuring long-term memory in NORT behavioral mice
model. Results were presented in (mean ± SEM), n = 6. ### p < 0.001 vs. normal control. Significantly
different values were compared with amnesic group; ***, **, * and ‘ns’ represents p-value < 0.001,
<0.01, <0.05, >0.05 respectively.
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2.4. Biomarker Study

The synthesized compounds after in vitro and in vivo study were subjected into an
ex vivo biomarker study to check the activity of AChE and BuChE in the hippocampi of
mice brains.

Effect of Synthesized Curcumin Analogs on AChE and BuChE Activity in the
Brain Hippocampus

In this study, the cholinesterases’ (AChE and BuChE) inhibitory activity was investi-
gated in the hippocampi of mice brains. Scopolamine administration notably (p < 0.001,
n = 6), increased AChE activity compared to the control group. The increased AChE activ-
ity caused the degradation of acetylcholine and produced cholinergic deficiency, which
results in amnesia. The compound 1d (p < 0.001, n = 6), 1c (p < 0.01, n = 6), 1b (p < 0.05,
n = 6) and standard donepezil (p < 0.001, n = 6) markedly reduced the increased activity
of AChE induced by scopolamine (Figure 5A). However, among these groups, only 1d
(p < 0.01, n = 6) and 1c (p < 0.05, n = 6) decreased the increased BuChE activity induced by
scopolamine, showing their selectivity towards AChE (Figure 5B).
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BChE (B) in the hippocampus region of mice brains versus scopolamine treated group. Data were
presented in (mean ± SEM), n = 6. ### p < 0.001 vs. normal control. Significantly different values
were compared with amnesic group; ***, **, * and ns represents p-value < 0.001, < 0.01, <0.05,
> 0.05 respectively.

3. Discussion

Curcumin exhibits low toxicity and good bioactivities [23] and it has been reported
that curcumin and curcumin analogs have the potential to inhibit the toxicity induced by
nicotine in the lungs [24]. The synthesized curcumin analogs showed a safe profile in the
acute toxicity study.

The cholinesterase inhibition by the synthesized compounds were consistent with the
reported cholinesterase inhibitory activity of curcumin [20]. The current research study
indicated the higher cholinesterase (AChE and BuChE) inhibitory potentials of curcumin
analogs, specifically 1d and 1c. The inhibition of the cholinesterases by the synthesized
curcumin analogs was supported by the molecular docking study, according to MOE-Dock
protocol. The cholinesterase activity against both cholinesterases (AChE and BuChE) were
predicted by interacting ligand molecules, ligX application and cholinesterases [22].

The docked pose of both targets, AChE and BuChE, indicated that compound 1d
has affinity with the target proteins, making strong interactions with chlorobenzene and
di-carbonyl moiety, which predicted significant cholinesterase inhibition. The docking
of the synthesized compounds were successfully correlated with the three dimensional
crystallographic structures of the compound, specifically 1d, as observed against AChE and
BuChE, given the in vitro results of 1d structure similarities with the calculated binding
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affinities of (−12.089 kcal/mol) and (−10.962 kcal/mol), respectively [25]. The compound
1d with chloride substituent on a phenyl ring showed higher enzyme inhibitory potential
when compared to other analogs, which was parallel with the previous finding [26].

The binding capability of the synthesized curcumin analogs and their enzyme in-
hibitory potentials were consistent with the binding interactions between amino acids and
different functional groups of curcumin and their analogs [27,28]. This study suggested
that these compounds could be therapeutic candidates against neurodegenerative diseases.

Elevated plus maze is considered a reliable behavioral mice model for evaluation of
memory in mice [29]. The acquisition and retention of memory in spatial long-term memory
has been determined by an EPM behavioral learning task [30]. The improvement in the
memory of mice by the synthesized compounds revealed from the EPM mice paradigm
with the reduction of transfer latency in the retention session was significantly different
from the acquisition session. The pretreatment of synthesized curcumin analogs have
significantly attenuated the memory deficits induced by scopolamine administration in
mice [31]. The potential benefits of curcumin analogs were revealed from the memory-
enhancing effects in the elevated plus maze (EPM) mice model study. The synthesized
curcumin analogs significantly reversed the memory deficits caused by scopolamine, and
protected neuronal degeneration and enhanced memory, which is parallel with the reported
studies [20,32].

Y-maze is a behavioral mice model based on sequential two choice discriminations
that inherently motivates animals to explore unknown environments [33]. Y-maze has a
simple structure and convenient operation, due to which more animal experiments have
adopted the Y-maze model for exploring objects and measuring memory in mice [34]. The
Y-maze paradigm presented percent spontaneous alternation behavior in mice as described
in the reported studies [35,36]. The compound 1c and 1d significantly increased the % SAP,
which is consistent with the reported studies [5,37].

The recognition of previously explored stimulus in the behavioral mice models form
the focus of research on human amnesia [38]. The novel object recognition test is a common
behavioral model evaluating learning and cognition aspects of animal behavior. It can be
completed in just a few days and is a simple technique with habituation, familiarization
and test sessions. In the familiarization phase, two identical objects were explored by mice;
in the test phase, on object is replaced by a novel object [39]. The time spent exploring
the novel object was significantly higher when the mice were t treated with synthesized
compounds and donepezil in the test phase and showed a high discrimination index.
The long-term memory in the mice was also retained when treated with donepezil and
synthesized curcumin analogs, indicating an improvement in learning and memory. These
results from the behavioral assays were consistent with the in vitro cholinesterase inhibition
activity which was supported by the molecular docking approach and consistent with the
previous research [5,40].

The cholinergic depletion caused memory impairment, as scopolamine did in the
amnesic group, by increasing the activity of cholinesterases (AChE and BuChE), which
degraded acetylcholine in the synaptic cleft. The synthesized curcumin analogs and
donepezil retained memory by significantly reducing the cholinesterases activity in the
brain hippocampus, as revealed in the behavioral assays. The inhibitors of cholinesterases
enhanced the acetylcholine level by inhibiting AChE, which increased both the transmission
of nerve conduction and the period of transmission [41]. In this tudy, the increased level
of acetylcholine and the decreased activity of AChE in the hippocampi of mice brains
following treatment with synthesized curcumin analogs, showed the potential role of
synthesized curcumin analogs as cholinesterase inhibitors [18,20].

4. Materials and Methods

Chemicals and solvents were from Merck, Sigma Aldrich, Darmstadt, Germany, which
were of analytical grade and obtained from local markets. Different solvent systems were
used for checking the purity of the compounds, giving single spot in ethyl acetate and
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n-hexane. Thin-layer chromatography (TLC) plates (Merck 60F254) on silica gel were
used for monitoring the progress of reaction. 1H-NMR spectra (see Supplementary) were
obtained using FT Spectrometer (Bruker Varian Mercury 300 MHz, Billerica, MA, USA)
in CDCl3. Mass spectra (MS) were determined using water: Micromass ZMD connected
to Varian MAT 312 double focusing mass spectrometer connected to DEC-PDP 11/34
computer system (Milford, CT, USA). The synthesized compounds were docked using
Molecular Operating Environment (MOE) software package (http://www.chemcomp.
com/) (access date: 5 April 2021).

4.1. Methods
4.1.1. General Procedure for the Synthesis of Curcumin Analogs (1a–1f)

A series of symmetrical curcumin analogs were synthesized by treating substituted
aldehydes with acetyl acetone. Substituted aldehydes (2 mmol) were treated with acetyl
acetone (1 mmol) in 250 mL reaction flask using ethanol (15 mL) as solvent, and NaOH 40%
solution (10 mL) was added. The reaction mixture was stirred continuously for 2 h and
the reaction progress was monitored by TLC. At the end, HCl (1:1) aqueous solution was
added to neutralize the catalyst, and finally, the filtered dried precipitate of the reaction
was recrystallized in ethanol or ethyl acetate [42].

Synthesis of (1E,6E)-1,7-diphenylhepta-1,6-diene-3,5-dione (1a)

Yield: 68%, yellow crystalline powder, solubility: chloroform, ethyl acetate, melting
point: 151–154 ◦C. Rf value: 0.70 in ethyl acetate hexane eluents (3:7). 1H-NMR (CDCl3,
300 MHz): δ 7.8 (d, 2H) 7.6 (d, J = 15.9 Hz, 2H, Ar), 7.28 (d, J = 6.6 Hz, 4 H Ar), 7.09 (d, 2H,).
7.64 (d, J = 15.8 Hz, 4H Ar), 6.9 (d 2H) 4.0 (s, 2H). HR-MS m/z: 277.1184 (M + 1)+, calcd for
C19H16O2 276.1150. 13CNMR, and IR was reported by [43].

Synthesis of (1E,6E)-1,7-di-p-tolylhepta-1,6-diene-3,5-dione (1b)

Yield: 75%, yellow crystals, melting point: 179–183 ◦C, solubility: chloroform, ethyl
acetate, Rf value: 0.76 in ethyl acetate hexane eluents (3:7). 1H-NMR (CDCl3, 300 MHz): δ
7.76 (s, J = 15.9 Hz, 2H), 7.037 (d, 2H) 7.54 (m, 4H Ar), 7.24 (m, 4H Ar), 7.06 (d, J = 15.9 Hz,
2H), 3.87 (s, 2H), 2.41 (s, 6H). IR νmax (cm−1): 3340; 2927;1880; 1717; 1650; 1593; 1504;
1437; 1403; 1339; 1294; 1276; 1170; 1075; 990; 977. HR-MS m/z: 305.1497 (M + 1)+, calcd for
C21H20O2 304.1463.

Synthesis of (1E,6E)-1,7-bis(4-methoxyphenyl)hepta-1,6-diene-3,5-dione (1c)

Yield: 63%, yellow crystals, melting point: 164–167 ◦C, solubility: chloroform, ethyl
acetate, Rf value: 0.44 in ethyl acetate hexane eluents (3:7). 1H-NMR (CDCl3, 300 MHz):
δ7.5 (d, J = 15.8 Hz, 2H), 7.6 (d, J = 8.8 Hz, 2H), 6.9 (d, J = 8.8 Hz, 2H), 4.91 (s, 2H), (s, 1H),
3.87 (s, 6H). 13CNMR and IR was reported by [43].

Synthesis of (1E,6E)-1,7-bis(4-chlorophenyl)hepta-1,6-diene-3,5-dione (1d)

Yield: 49%, yellow crystals, melting point: 166–168 ◦C, solubility: chloroform, ethyl
acetate, Rf value: 0.72 in ethyl acetate hexane eluents (3:7). 1H NMR (CDCl3, 300 MHz):
δ7.72 (d, J = 15.8 Hz, 2H), 7.67 (d, J = 8.4 Hz, 4H), 7.2 (d, J = 8.4 Hz, 4H), 4.56 (s, 2H). HR-MS
m/z: 346.0341 (M + 1)+, calcd for C19H14Cl2O2 344.0371. 13CNMR, and IR data was reported
by [43].

Synthesis of (1E,6E)-1,7-bis(4-(dimethylamino)phenyl)hepta-1,6-diene-3,5-dione (1e)

Yield: 52%, reddish powder, melting point: 194–198 ◦C, solubility: chloroform, ethyl
acetate, Rf value: 0.51 in ethyl acetate hexane eluents (3:7). 1H-NMR (CDCl3, 300 MHz):
δ 7.77 (d, 2H), 7.74(d, 4H, Ar), 7.32(d, 4H, Ar), 6.59 (d,2H), 6.53 (s, 2H), 3.01 (s, 6H) 3.09(s,
3H). HR-MS m/z: 363.2028 (M + 1)+, calcd for C23H26N2O2 362.1994. 13CNMR and IR data
was reported by [44].

http://www.chemcomp.com/
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Synthesis of (1E,6E)-1,7-bis(4-nitrophenyl)hepta-1,6-diene-3,5-dione (1f)

Yield: 31%, brown powder, melting point: 108–113 ◦C, solubility: ethyl acetate, Rf
value: 0.11 in ethyl acetate hexane eluents (3:7). 1H-NMR (CDCl3, 300 MHz): δ 8.43 (d,
J = 15.8 Hz, 4H), 8.40 (d, J = 8.4 Hz, 4H), 7.74 (d,2H) 7.28 (d, J = 8.4 Hz, 2H), 4.58 (s, 2H).
IR νmax (cm−1): 3359; 2931; 1727; 1660; 1650; 1597; 1508; 1431; 1407; 1342; 1298; 1272; 1165;
1070; 995; 971.

4.2. In Vitro Cholinesterase Assay

The in vitro cholinesterase assay of the synthesized curcumin analogs were carried out
according to the Ellman’s method with slight modification [45]. The enzymes AChE and
BuChE were obtained from electric eel and equine serum, respectively. Test samples were
dissolved in methanol then diluted in phosphate buffer (0.1 M) from 1000 to 62.5 µg/mL
concentrations. The dilution of 518 U/mg AChE and 7–16 U/mg BuChE was accom-
plished in 0.1 M (pH 8.0) phosphate buffer. The final concentrations of AChE 0.03 U/mL
and 0.01 U/mL of BuChE were achieved. The substrate of 0.5 mM acetylcholine iodide,
0.2273 mM DTNB and 0.5 mM butyrylcholine iodide solution was made and maintained
separately at 8 ◦C in vials. The experiment was started by adding 5 µL enzyme solutions to
cuvette, then 205 µL test sample and 5 µL DTNB reagents were added. Substrate solution
(5 µL) was added, and the solution mixture was kept in a water bath for 15 min at 30 ◦C.
Spectrophotometric absorbance was recorded at 412 nm at 30 ◦C with a reaction time of
4 min. The donepezil was kept as positive control and the experiment was carried out in
triplicate. Percent enzyme inhibition was calculated using formula:

V =
∆Abs

∆t

where V = rate of change of absorbance; % enzyme inhibition = 100—% enzyme activity;
% enzyme activity = 100 × V/Vmax, Vmax = enzyme activity.

4.3. Molecular Docking Study

The protein data bank (PDB IDs: 2gyu and 4tpk) was used as the source for the 3-D
structures of AChE and BuChE in this study, and the structures were refined using 3D
protonation by removing water molecules of the protein molecules. The MOE software
package (http://www.chemcomp.com/), access date: 5 April 2021, was applied for energy
minimization of protonated (3D) structures. The current geometry in chiral constraint of
MMFF94X + Solvation (force field) 0.05 gradients were set as the parameters for energy
minimization. The energy minimization was terminated by default when the root-mean-
square gradient fell below 0.5 [46]. The minimized protein structures (final product) were
subjected to simulation of molecular docking.

Ligands were recaptured utilizing MOE Builder application [47] and just like the
protein, the MOE apparatus was run for energy minimization of the structures and were
spared in .mol2 arranged and traded in a single database of (.mdb) records. At that point,
MOE-Dock was at long last utilized for molecular docking of the arranged database of
ligand structures [48].

4.3.1. Receptors Preparation

The donepezil inhibitor made from a complex of homodimer (PDB ID: 4EY7) with
AChE of 2.35 Å resolutions and tacrine inhibitor of 2.10 Å resolutions, (PDB ID: 4BDS)
and a monomer complex with human BuChE was used. Human AChE chain B was
chosen for docking implementation and the missing residues were adjusted under MOE.
The interacted water molecules were retained while others were deleted. The energy
minimization was attained after adding hydrogen atoms in the complex structures [45].

http://www.chemcomp.com/
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4.3.2. Re-Docking Setup

The MOE software was found validated after re-docking. The fitness of each re-
docked pose in the active sites of AChE and BuChE was determined after incorporating
the co-crystalized ligand on the basis of root-mean-square deviation [45].

4.4. Acute Toxicity Study

The synthesized compounds were tested for acute toxicity to get a safe dose for in vivo
behavioral studies. The samples (1a–1f) were administered orally to different groups of
animals in two stages. Animals were treated with 1.875, 3.75, 7.5, 15, 30, 50, 75 mg/kg
doses in stage-I, and in stage-II, treated with 5, 15, 30, 50, 75, 100, 150 mg/kg doses of the
synthesized compounds. Immediately after dosing, the mice were observed for 24 h for
toxicity symptoms, such as tremors, lacrimation, salivation, convulsions, sedation, motor
activity, loss of righting reflex, hypnosis, and diarrhea and muscle spasm. The mice were
observed for 72 h for mortality. All the samples were safe and non-toxic up to 75 mg/kg in
stage-I and 150 mg/kg doses in stage-II. Therefore, a dose of 7.5 mg/kg, which was 1/10th
of 75 mg/kg, and 15 mg/kg dose, which was 1/10th of 150 mg/kg treated dose, according
to OECD guidelines, were selected as the appropriate doses for the behavioral activities [5].

4.5. In Vivo Analysis

The synthesized compounds were evaluated for possible memory-enhancing po-
tentials after the preliminary in vitro cholinesterase inhibition assays, according to the
standard procedures.

4.5.1. Animals and Dosing

This study was conducted according to approval from the “Departmental Ethical
Committee (SBBU/IEC-20–02)” in compliance with Scientific Procedure Issue-I of the
University of Malakand 2008 animal Bye-Laws. A total of sixteen groups of mice, with
six in each group, were used in the experiment. Vehicle treated group (Normal control
group) were administered 10 mL/kg (p.o) of normal saline. The scopolamine treated
(amnesic) group were administered 1 mg/kg (i.p) of scopolamine. Donepezil treated were
administered 2 mg/kg (p.o) of donepezil. Sample treatment groups were administered
7.5 mg/kg and 15 mg/kg (p.o) of synthesized compounds, respectively. All groups were
administered with various doses continually for 7 days, and on day 7, 60 min after the last
dose of donepezil or tested samples, 1 mg/kg (i.p) dose of scopolamine was administered
to each animal, except the vehicle treated group, and 30 min after the scopolamine dose,
the cognitive paradigms were evaluated [49].

4.5.2. Elevated Plus Maze

Elevated plus maze paradigm is an important behavioral model for evaluation of
anti-amnesic potentials in mice [50]. This apparatus comprised of two open and two closed
arms with dimensions of 16 cm × 5 cm × 12 cm and elevated 25 cm from the floor on a
wooden stand. The EPM was designed in plus shape from two acrylic sheets having a
central platform with dimensions of 5 cm × 5 cm. Initially, mice were placed in one of the
open arms in such a way that it was directed away from the central platform. Then TLT
was recorded after the mice moved to the closed arm, with their four legs from the open
arm and then the mice were returned to their home cage. The time of exploration of the
apparatus for each animal was 90 s. The mice, if they failed to find the closed arm in a
specific time, were then gently moved to the closed arm, and a time of 90 s was assigned for
that specific animal as tail and latency time. The TLT was noted 45 min after scopolamine
administration. The mice explored the apparatus and returned to their home cage, and
after 24 h of scopolamine administration, TLT was noted again. Reduction of TLT indicated
memory-enhancing effect of the test samples. The inflexion ratio (IR) was calculated as:

IR =
L0 − L1

L0
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where L1 presents the initial transfer latency (s), and L0 is the retention transfer latency (s).

4.5.3. Y-Maze Test

The synthesized compounds were evaluated for anti-amnesic activity using Y-maze
behavioral mice model, according to standard procedure [5]. This apparatus is designed
in a Y-shape with equal three arms, and these arms were expressed by A, B, and C for
convenience. The dimensions of the arms were 15.5 cm high, 6 cm wide, 20 cm long and
connected with each other with an angle of 120◦. This test was conducted for a 5 min
duration for each animal. The order and number of arm entries made by each animal after
placing in one arm were recorded. Complete arm entry in any given arm was considered to
be when the hind paws were completely inside, and the alternation was the consecutive
arm entries into three different arms by each mouse. Ethanol 70% v/v solution was used
to clean the Y-maze arena to avoid olfactory cues between each test. At the end of day 7,
escape latency (seconds) for each animal was recorded. Mice were freely allowed to explore
the objects when they were initially placed at the center of the apparatus. The formula was
used to calculate the %SAP by recording the same arm returns (SAR), alternate arm returns
(AAR) and the number of arm entries.

SAP (%) =
total alterations
total arm entries

—2 × 100

4.5.4. Novel Object Recognition Test (NORT)

In this study, the memory-enhancing potentials of synthesized compounds were
determined using novel object recognition test mice model. Dimensions of the apparatus
were 40 cm × 40 cm × 30 cm and designed from Plexiglass in a box shape [6]. After
acclimatization, the mice were habituated with the apparatus for 2–3 min one day before
the test. Initially, in the sample phase, two identical objects were placed in the two corners
of the apparatus and the mice were allowed to freely explore the apparatus. The objects in
the apparatus were explored by each animal either by touching the objects or keeping their
noses within 2 cm of them. Test phase was started after 24 h of the sample phase in which
one of the familiar objects was replaced by a new (novel) object. Mice were allowed again
to freely explore both the objects in a similar way as in sample phase, and the time spent by
each animal exploring the novel and familiar object (F) was recorded.

The following formula was used for calculation of discrimination index.

D1 =
N − F
N + F

D1 = discrimination index; N = novel object; F = familiar object

4.6. Assessment of Biochemical Parameters and Biomarker Study

After the behavioral study, the mice were sacrificed by decapitation, providing a quick
and painless death by cervical dislocation. The isolated brain of each animal in chilled
phosphate buffer saline was subjected into biomarker assays using AChE and BuChE
enzymes [50].

4.6.1. Cholinesterase Activity

Mice were sacrificed within 24 h of the behavior study; brains were dissected and
stored at −80 ◦C. The bilateral hippocampus was homogenized before the assay into
volumes of 0.01 M phosphate buffer (2.7 mM KCl, 137 mM NaCl, 2 mM KH2PO4, 10 mM
Na2HPO4) and centrifuged at 4 ◦C for 30 min at 12,000× g. Supernatant was used for the
measurement of cholinesterase (AChE and BuChE) activity.
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Acetylcholinesterase (AChE) Activity

Acetylcholine/Acetyl cholinesterase assay Kit was used for the determination of
AChE activity, according to the standard procedure. The assay was carried out using
96-well plate, and every reaction comprised of 100 µL sample, 200 µM Amplex Red reagent,
50 µM of acetylcholine, 1 U/mL horseradish peroxidase (HRP) and 0.1 U/mL choline
oxidase in buffer solution. Incubation period for the reaction mixture was 20 min at room
temperature in the dark. The fluorescence intensity at 560 nm excitation and 580 nm
emission wavelength was measured [12].

Butyrylcholinesterase (BuChE) Activity

Butyrylcholinesterase (BuChE) activity of the synthesized compounds were measured
according to Ellman method with slight modification [51]. BuSCh was hydrolyzed by
BuChE and choline iodide produced, which reacted with DNTB, and then the production
of TNB. The TNB was quantitated by calorimetry that indicated the BuChE activity. BuChE
assay was accomplished in 96-well plate and every reaction mixture contained 40 µL
sample, 80 µL DTNB (0.25 mg/mL) and 70 µL BuSCh (7.5 mM). The absorbance was
determined at 37 ◦C after incubation for 60 min.

4.7. Statistical Analysis

The measured data was presented in mean ± SEM and analyzed statistically using
One-way ANOVA by applying Dunnet’s multiple comparison tests on Graph Pad Prism
Software 5.01.

5. Conclusions

The current study concluded that curcumin-based compounds with various function-
alities can produce memory-enhancing effects. The six curcumin analogs (1a–1f) were syn-
thesized, characterized and tested in vitro for cholinesterase inhibitory effects along with
preliminary in vivo behavioral investigation. These compounds were further evaluated
for cholinesterase inhibitory potential in the ex vivo analysis. The synthesized curcumin
analogs demonstrated significant in vitro cholinesterase inhibitory activity, promising
in vivo and ex vivo memory-enhancing effects, which was validated by molecular docking
studies. These analogs improved memory in mice brains and restored the acetylcholine
level by significantly inhibiting the activity of both AChE and BuChE enzymes. However,
it needs further study to explore its exact mechanism.
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