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Abstract
Caragana korshinskii Kom. is widely distributed in various habitats, including gravel desert,

clay desert, fixed and semi-fixed sand, and saline land in the Asian and African deserts. To

date, no previous genomic information or EST-SSR marker has been reported in Caragana
Fabr. genus. In this study, more than two billion bases of high-quality sequence of C. kor-
shinskii were generated by using illumina sequencing technology and demonstrated the de

novo assembly and annotation of genes without prior genome information. These reads

were assembled into 86,265 unigenes (mean length = 709 bp). The similarity search indicat-

ed that 33,955 and 21,978 unigenes showed significant similarities to known proteins from

NCBI non-redundant and Swissprot protein databases, respectively. Among these annotat-

ed unigenes, 26,232 a unigenes were separately assigned to Gene Ontology (GO) data-

base. When 22,756 unigenes searched against the Kyoto Encyclopedia of Genes and

Genomes Pathway (KEGG) database, 5,598 unigenes were assigned to 5 main categories

including 32 KEGG pathways. Among the main KEGG categories, metabolism was the big-

gest category (2,862, 43.7%), suggesting the active metabolic processes in the desert tree.

In addition, a total of 19,150 EST-SSRs were identified from 15,484 unigenes, and the char-

acterizations of EST-SSRs were further compared with other four species in Fabraceae.
126 potential marker sites were randomly selected to validate the assembly quality and de-

velop EST-SSR markers. Among the 9 germplasms inCaranaga Fabr. genus, PCR success

rate were 93.7% and the phylogenic tree was constructed based on the genotypic data.

This research generated a substantial fraction of transcriptome sequences, which were

very useful resources for gene annotation and discovery, molecular markers development,

genome assembly and annotation. The EST-SSR markers identified and developed in this

study will facilitate marker-assisted selection breeding.
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Introduction
Caragana is a genus comprises about 100 species in the family Fabraceae, and distributes in
Asia and Eastern Europe. Most of the Caragana species are shrubs or small trees and with the
character of high tolerance to several abiotic stresses including drought, salt, and cold [1].
However, compared with its high ecological and economic values, the genome and genetic es-
sence remain largely unknown because of little genomic information. Caragana korshinskii,
which is widely distributes in sandy grassland in northwestern China and Mongolia[2], is a
useful model organism for studying salt and drought resistance mechanisms in
Caragana Fabr. because it can tolerate severe drought stress with 7.38% of soil water content-
[3]. Much of the work conducted on this species to date has focused on the physiological
mechanisms responsible for its resistance to abiotic factors [4,5]. More recent studies using
different types of molecular markers, such as RAPD[6], AFLP[1,7] have provided useful in-
formation on its genetics and evolutionary history. However, partly because of the scarcity of
suitable molecular markers, much remains to be learned about the genetic factors responsible
for the ability of C. korshinskii to cope with various adverse environmental conditions.

Molecular markers play important roles in many aspects of plant breeding, such as genetic
diversity research [8], marker-assisted selection [9], and identification of genes that are respon-
sible for desirable traits [10]. SSR is one of the most often used molecular markers and widely
used in different aspects of agronomic research [11,12]. Traditional SSR marker development
needs partial genomic DNA library construction, cloning and labour-intensive Sanger se-
quencing [13,14]. With the application of next-generation sequencing (NGS) technology, it
has become possible to develop large numbers of SSR markers for non-model organisms
quickly and cost-efficiently [15,16]. The transcriptome profile provides information on gene
expression and regulation. Therefore, transcriptome analysis is essential to interpret the func-
tional elements of the genome and reveal the molecular components of cells and tissues
[17,18]. Transcriptome sequencing is an efficient way to generate functional genomic-level
data for non-model organisms. Large collections of EST sequences are very important for
gene annotation and discovery [19], comparative genomics [20], development of molecular
markers [16], and population genomics studies of genetic variation associated with adaptive
traits [21]. Until now, transcriptomic sequencing for SSR mining has been used in a wide range
of angiosperm species, such as rubber tree [22], castor bean[23], sesame[24]. Furthermore,
transcriptome-derived SSR markers have been found close to or within the functional genes
[25,26]. And it was found the characters of di-, tri-, tetra-, penta- and hexa-nucleotide SSRs
varying in different taxa. For example, tri-nucleotide repeats have generally been observed to
have the highest frequency in many crops, including cotton, barley, wheat, maize, sorghum,
rice and peanut [27–29]. While, in sesame and some Rosaceae species, the most abundant re-
peat motif type was the di-nucleotide type [24,30]. Transcriptomic information, however, is ex-
tremely lacking for the species of Caragana Fabr. Until now, there has been little interest in
such data.

Companion with the NGS technology developing, an excellent opportunity exists to
explore the issues related to SSR markers from the transcriptome of C. korshinskii. In
this study, we first obtained the transcriptome of C. korshinskii by Illumina sequencing
to validate and characterize microsatellite markers. Based on these databases,
thousands of SSR loci were used to design SSR primers. A sample of these primers was
further developed to estimate genetic diversity of nine representative species in Caragana
Fabr.genus.

RNA-Seq and EST-SSRMarker Identification in C.korshinskii

PLOSONE | DOI:10.1371/journal.pone.0115805 January 28, 2015 2 / 12



Materials and Methods

Plant materials collection and preparation
Caragana korshinskii seeds were provided by the Gansu Desert Control Institute. The seeds
were sown on damp filter paper and incubated at 4°C for 4 days before being placed at 23°C
under long-day (16 h light/8 h dark) conditions with a photosynthetic photon flux density of
150 μmol m-2 s-1. After growth for one month, the different tissues from seedlings, including
leaves, stems and roots, were harvested for RNA isolation.

RNA isolation and transcriptome sequencing
The total RNA of plants was extracted with TRIzol Reagent (Invitrogen, 15596–026) according
to the manufacturer’s instructions. The RNA samples that met the requirements were used to
construct transcriptome sequence libraries. The total RNA of each sample was then pooled at
equivalent quantities. Sequencing libraries were generated using a NEBNext Ultra RNA
Library Prep Kit for Illumina (NEB, USA) following the manufacturer’s recommendations.
Following the manufacturer’s procedures, mRNA was purified from the pooled total RNA
using polyT oligo-attached magnetic beads. A fragmentation buffer was added to disrupt
the mRNA into short fragments. Reverse transcriptase and random primers were used to
synthesise the first-strand cDNA from the cleaved mRNA fragments. The second-strand
cDNA was synthesised using buffer, dNTPs, RNaseH, and DNA polymeraseI. The
double-strand cDNA was purified using the QIAquick PCR extraction kit (QIAGEN, Hilden,
Germany) and washed with EB buffer for end repair and single nucleotide A (adenine) addi-
tion. Finally, sequencing adaptors were ligated onto the fragments. The required fragments
were purified by AMPure XP beads and enriched by PCR to construct a library for
transcriptome sequencing.

Data filtering and de novo assembly
The transcriptome library was sequenced using the Illumina HiSeq 2000 system. The sequenc-
ing-received raw image data were transformed by base calling into the sequence data, which
were termed raw reads. The raw data were then filtered by data-processing steps to generate
clean data via a process that included the removal of adapter sequences, reads in which un-
known bases are greater than 10%, and low-quality sequences (the percentage of low-
quality bases of quality value�5 is greater than 50% in a read). All of the raw data was
submitted to the database with the code Bioproject: SUB718537 and BioSample:
SAMN03121496. After obtaining the clean data, transcriptome assembly was accomplished
by using Trinity software [31] with min_kmer_cov set to 2 by default and all other parameters
set at default values.

Functional annotation of unigenes
For functional annotation, the assembled unigenes that might putatively encode proteins were
searched against NR (http://www.ncbi.nlm.nih.gov/), Swiss-Prot (http://www.expasy.ch/sprot/),
KEGG (http://www.genome.jp/kegg/) using the BLASTX algorithm. A typical cut-off value of
E<1e-5 was used. With the NR annotation, the Blast2GO program [32] was used to obtain the
GO annotation of unigenes according to component function, biological process and cellular
component ontologies. After obtaining a GO annotation for every unigene, WEGO software[33]
was used to perform GO functional classification for all unigenes and to understand the distri-
bution of gene functions of the species at the macro level.
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SSRmining and primer design
The RNA-seq data from the other four Fabrceae species, Cicer arietium, Lotus corniculatus,
Medicago sativa, andMedicago truncatula were got from the database PlantGDB(http://www.
plantgdb.org/). Then, the MISA software (http://pgrc.ipk-gatersleben.de/misa/misa.html) was
used to identify microsatellites in the unigenes got in this study and the four above database.
The standard of EST-SSRs was assumed to contain motifs of one to six nucleotides in size. De-
finement of microsatellites was used with the following settings, SSR repeat motifs and number
of repeats shown respectively, mono-10, dimer-6, trimer-5, tetramer-5, pentamer-5, hexamer-5.
The primer for each SSR was designed using Primer3 (http://primer3.sourceforge.net/releases.
php).

PCR amplification and validation of selected EST-SSRmarkers
All primer pairs were screened for amplification and polymorphisms using DNA from 9 Cara-
gana species including C.opulens Kom., C.microphylla Lam., C.intermedia Kuang et H.C.Fu,
C.arborescens Lam., C.rosea Turcz.ex Maxim, C.roborovskyi Kom., C.stenophylla Pojark.,
C.acanthophylla Kom. C.korshinskii Kom. In total, 126 pairs of primers were designed (S3 Table)
and validated by PCR. The DNA for PCR amplification was extracted from the control samples
using the CTAB method[34]. PCR amplification was carried out as follows: 94°C for 4 min, fol-
lowed by 35–40 cycles of 94°C for 30 s, 55–60°C for 30 s and 72°C for 30 s. The final extension
was performed at 72°C for 10 min. The PCR products were analysed by electrophoresis on 1.0%
agarose gels. Coefficients of genetic similarity for the 9 species used in this study were calculated
using the SIMQUAL program of NTSYS-pc Version 2.10 [35]. A neighbor-joining dendrogram
was constructed based on the genetic similarity matrix with the SHAN clustering program of
NTSYS-pc using the UPGMA algorithm.

Results

Illumina paired-end sequencing and de novo assembly
To elucidate the transcriptome of C. korshinskii, RNA was extracted from different tissues and
sequenced with Illumina paired-end sequencing technology. In this study, a total of 66,351,948
raw sequencing reads with a length of 100 bp were generated from a 200 bp insert library. After
removing adaptors and low-quality data, 64,031,599 clean reads were obtained. Then, the high-
quality reads were used to assemble the transcriptome data with Trinity software. According to
the overlapping information of high-quality reads, 202,163 transcripts were generated with an
average length of 1,089 bp and an N50 of 1,772 bp. After extracting the longest transcript for
each transcript, 86,265 unigenes were obtained. The average length was 709 bp, and the length
greater than 500 bp accounted for approximately 37.27% (Table 1, S1 Fig.).

Annotation of all nonredundant unigenes
For the validation and annotation of the assembled unigenes, the assembled unigenes were
searched against the NCBI non-redundant (NR) and SwissProt protein databases using the
BLAST2 program with an E-value threshold of 1e-5. Among 86,265 unigenes, 33,955 (39.36%)
had significant similarity to 21,118 unique proteins. Of all of the unigenes, 21,978 (25.47%)
with significant identities to SwissProt proteins were matched with 21,978 unique protein ac-
cessions (Table 2). A lower percentage was obtained when searching against the SwissProt pro-
tein database. In total, BLAST searches identified 16,533 unique protein accessions from the
NR and SwissProt protein databases, suggesting that this Illumina paired-end sequencing proj-
ect generated a substantial fraction of the expressing genes in this study.
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Functional classification by GO analysis
Gene ontology (GO), is an internationally standardised gene functional classification system.
In order to classify the functions of the predicted C. korshinskii unigenes, GO analysis was per-
formed. In total, 26,232 unigenes with BLAST matches to known proteins were assigned to GO
classes with 9787 functional terms (Table 2, S1 Table). As shown in Fig. 1, assignments to the
biological process constituted the majority (67,062, 46.17%), followed by cellular component
(45,175, 31.1%) and molecular function (33,021, 22.73%).

Under the category of biological process, cellular process (15,743, 23.48%) and metabolic
process (14995, 22.36%) were prominent, indicating that important cell processes and metabolic
activities occurred in C. korshinskii. Under the classification of molecular function, binding
(15,374, 46.6%) and catalytic activity (12,420, 37.6%) were the first and second largest categories,
respectively, whereas other categories, such as transporter activity, structural molecule activity,
nucleic acid binding transcription factor activity, and molecular transducer activity, contained
4017 unigenes, representing only 12.17%. Regarding the cellular components, two categories—
cell and cell part—represented approximately 38.75% of cellular components, organelle ac-
counted for approximately 13.84%, and membrane and membrane part accounted for 19.21%.

Functional classification by the KEGG pathway
To further analyse the transcriptome of C. korshinskii, all of the unigenes were analysed in the
KEGG pathway database.The KEGG pathway database is a knowledge base for the systematic
analysis of gene functions in terms of networks of genes and molecules in cells and their vari-
ants specific to particular organisms. Out of the 86,265 unigenes, 5598 (6.49%) with significant
matches in the database were assigned to 5 main categories, including 32 KEGG pathways
(Fig. 2, S2 Table). Among these 5 main categories, metabolism was the largest (2862, 43.7%),
followed by genetic information (1485, 22.68%), organismal systems (1045, 15.96%), cellular

Table 1. Summary of the Caragana korshinskii transcriptome.

Category Number Total number Mean length (bp) N50 (bp) Total nucleotides

200–500bp 500–1kbp 1k-2kbp >2kbp

Transcripts 78,801 44,253 47,654 31,455 202,163 1,089 1772 220,191,379

Unigenes 54,117 15,417 10,235 6496 86,265 709 1231 61,128,411

doi:10.1371/journal.pone.0115805.t001

Table 2. Summary of functional annotation of assembled unigenes.

Public database Number of Unigenes Percentage (%)

Annotated in NR 33,955 39.36

Annotated in NT 28,400 32.92

Annotated in KO 5598 6.48

Annotated in SwissProt 21,978 25.47

Annotated in PFAM 22,956 26.61

Annotated in GO 26,232 30.4

Annotated in KOG 10,867 12.59

Annotated in all Databases 3012 3.49

Annotated in at least one Database 41,493 48.09

Total Unigenes 86,265 100

doi:10.1371/journal.pone.0115805.t002
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processes (644, 9.83%) and environmental information processing (513, 7.83%). These results
indicate that active metabolic processes were on-going. As shown in S2 Table, KEGG metabo-
lism contained 12 categories, such as carbohydrate metabolism, nucleotide metabolism, the
biosynthesis of other secondary metabolisms, amino acid metabolism, lipid metabolism, and
energy metabolism, among others.

Motif comparison of EST-SSRmarkers among 4 Caragana Fabr.
species
In this study, the 86,265 unigenes generated in this study were used to mine potential microsat-
ellites that were defined as mono- to hexa-nucleotide motifs with a minimum of three

Fig 1. Functional classification of assembled unigenes. Functional classification of assembled unigenes
based on Gene Ontology (GO) categorisation. The results are summarised in three main GO categories:
biological process, cellular component and molecular function. The x-axis indicates the subcategories, and
the y-axis indicates the numbers related to the total number of GO terms present; the unigene numbers that
are assigned the same GO terms are indicated on the top of the bars.

doi:10.1371/journal.pone.0115805.g001

Fig 2. Pathway assignment based on the Kyoto Encyclopedia of Genes and Genomes (KEGG).
(A) Classification based on cellular process categories, (B) classification based on environmental
information processing categories, (C) classification based on genetic information processing categories,
(D) classification based on metabolism categories, and (E) classification based on organismal
systems categories.

doi:10.1371/journal.pone.0115805.g002
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repetitions. Using the MISA software, a total of 19,150 potential simple sequence repeats (SSR)
were identified in 15,484 unigenes. Of the 15,484 unigenes, 12,575 and 2,909 unigenes con-
tained one and more than one SSR, respectively (Table 3). The number of potential EST-SSR
per unigene varied from 1 to 8, with an average of 1.17.

To obtain a comprehensive perspective of motif distribution, we further compared our results
with data from other species in Fabraceae. Besides Mono-nucleotide type, the di- and tri- type
were the most two frequent types (Fig. 3). Comparing with other 4 species, the di-nucleotide
was the most abundant type, while for the other 4 species, the tri-nucleotide was the most fre-
quent type. The dominant di-nucleotide repeat motif in SSRs was AG/CT, whereas CG/GC was
the least abundant (Table 4). Among the tri-nucleotide repeats, the most frequent repeat was
AAG/CTT, followed by ACC/GTT (19.6%) and AAT/ATT. The most frequent of the motif was
consistent with the other 4 species. While in Lotus corniculatus, ACC/GGTmotif was the second
abundant type, and inMedicago sativa andMedicago truncatula, the third abundant type was
the ACC/GGTmotif.

Validation of EST-SSRmarkers
Based on the SSR-containing sequences, 126 SSR sites were randomly selected to design EST-
SSR primers with Primer Premier 3.0. The information of the EST-SSR primers is shown in
S3 Table. Among the 126 primer pairs, 118 were successful in PCR amplification with genomic
DNA, and the remaining eight pairs of primers failed to generate PCR products at various an-
nealing temperatures. Of the 118 working primer pairs, 98 PCR products showed specific am-
plification, among which 90 PCR products generated expected sizes, whereas the other nine
generated PCR products that were larger than expected, suggesting that the amplified regions
likely contained introns. A total of 20 PCR products generated more than one band, which
might result from the primer design or the high heterozygosity of the Caragana germplasm.

All polymorphic loci were used to analyse the diversity of 9 species. The observed number
of alleles (A) ranged from 1 to 5, with an average of 2.12 alleles per locus. The genetic distance
was calculated by the NTSYS software. It was showed that for the 9 species could be divided
into two groups (Fig. 4), the C.rosea Turcz.ex.Maxim was the far distance with the other spe-
cies. The other eight species could be divided into two groups. Among the groups, the C.Kor-
shinskii was closet to C.microphylla, C.intermedia Kuang et H.C.Hu and C.arborescens Lam.

Table 3. Summary of the EST-SSRs that were identified in the transcriptome.

Search item Numbers

Total number of examined unigenes 86,265

Total size of examined sequences (bp) 61,128,411

Total number of identified EST-SSRs 19,150

Number of EST-SSRs containing sequences 15,484

Number of sequences containing more than one EST-SSR 2909

Mono-nucleotide 11,472

Di-nucleotide 3924

Tri-nucleotide 3433

Tetra-nucleotide 284

Penta-nucleotide 26

Hexa-nucleotide 11

doi:10.1371/journal.pone.0115805.t003
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Discussion
In this study, a large number of C.Korshinskii transcriptomic unigenes (86,265) were sequenced
with the Illumina HiSeq 2000 platform (Table 1). The N50 length of the unigenes was 1231 bp,
and the average length was 709bp.These results are comparable to recently published plant
transcriptomic analyses, such as that of Gossypium aridum (N50 = 593 bp) [36] andMomor-
dica cochinchinensis(N50 = 450bp)[37]. Trinity is one of most powerful packages in the de
novo assembly of short reads. In this study, fewer than half of the unigenes (41,493, 48.09%)
were successfully annotated by BLAST against the public databases Nr, Nt, Swiss-Prot, GO and
KEGG, given the absence of genomic information of C. Korshinskii (Table 2). Notably, the per-
centage of annotation is relative low among the previous studies using the same sequencing
strategy during the last year (55 to 78.9% [38–40]). One possible reason of this lack of

Fig 3. SSRsmotif distribution analysis inCaragana korshinskii Kom. and 4 supplementary materials
from public database. The bars from left to right in each species represent di-, tri-, tetra-, penta- and hexa-
nucleotides.

doi:10.1371/journal.pone.0115805.g003

Table 4. Comparasion of three types of motifs for EST-SSR in all the five species.

Motif Cicer arietium Lotus corniculatus Medicago sativa Medicago truncatula Caragana korshinskii

A/T 5445(75)* 2126(46.5) 442(47.1) 9061(70.5) 11150(58.22)

C/G 1052(14.5) 138(3.02) 8(0.85) 785(5.23) 322(1.68)

AG/CT 216(3) 575(12.6) 119(12.7) 1766(17.8) 2584(13.5)

AT/AT 108(1.5) 204(4.5) 19(2.0) 468(3.1) 460(2.4)

AC/GT 30(0.4) 112(2.5) 31(3.3) 201(1.3) 873(4.6)

CG/CG 3(0.04) 2(0.04) - 31(0.2) 7(0.04)

AAG/CTT 96(1.4) 414(9.1) 97(10.3) 851(5.7) 1035(5.4)

AAC/GTT 55(0.8) 143(3.1) 40(4.3) 313(2.1) 619(3.2)

AAT/ATT 69(0.95) 49(1.1) 23(2.5) 297(2.0) 360(1.9)

ACC/GGT 47(0.6) 246(5.4) 39(4.2) 211(1.4) 326(1.7)

ACG/CGT 4(0.06) 16(0.4) 2(0.2) 35(0.2) 40(0.2)

ACT/AGT 9(0.1) 32(0.7) 2(0.2) 74(0.5) 114(0.6)

AGC/CTG 15(0.2) 79(1.7) 26(2.8) 141(0.9) 181(0.9)

AGG/CCT 16(0.2) 119(2.6) 12(1.3) 119(0.8) 295(1.5)

ATC/ATG 59(0.8) 166(3.6) 43(4.6) 391(2.6) 395(2.1)

CCG/CGG 4(0.06) 44(1.0) 1(0.1) 18(0.1) 68(0.4)

*: The numbers in the bracket showed the percentage of the specific SSR motif type.

doi:10.1371/journal.pone.0115805.t004
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annotation is technical limitations, such as sequencing depth and read length[41], which were
common in all of the studies using de novo transcriptome analysis. The unannotated sequences
were, on average, much shorter than were the annotated unigenes (382 bp vs 1182 bp).

The EST-SSR marker is important for a variety of research, including the assessment of genet-
ic diversity, the development of genetic maps, comparative genomics, marker-assisted selection,
and other fields. Until now, there has been no report of EST-SSR identification in desert trees.
The transcriptome sequencing provided many sequences for developing numerous EST-SSR
markers in the C.Korshinskii tree. In total, 19,150 potential EST-SSRs were identified from
15,484 unigenes. In this study, in addition to the common di-, tri- and other nucleotide repeats
that were included in the selection, the mono-nucleotide repeats included SSR, and its proportion
was greater than that of the other types. If mono-nucleotide repeats were excluded, the frequency
of di-nucleotide was higher than that of tri-nucleotide in C.Korshinskii, which is different with
the other 4 species. In previous studies, some of the results showed that di-nucleotide was the
most abundant type, such as sesame[24], oilpalm[42], while other results showed tri-nucleotide
was the most abundant type, like barley[43], wheat[29]. The most abundant di- and tri-
nucleotide motifs were AG/TC and AAG/TTC, respectively. These results are consistent with re-
sults for dicots, such as oak [44] and castor bean [23].

Of 126 primer pairs that were randomly selected for PCR validation, 118 (93.7%) produced
clear bands. The PCR success rate was the same as in previous studies, such as Populus euphra-
tica [45], and higher than the results from Triwitayakorn et al. (75%) [46], which mean that the
identified EST-SSR makers have high cross-transferability in Caragana genus. The polymor-
phism frequency among the 9 species was 90.5%, and this ratio is much higher than that in
crops. For example, in sesame, 276 (92.0%) EST-SSR primer pairs yielded PCR amplification
products in 24 cultivars. Thirty two primer pairs (11.59%) exhibited polymorphisms. More-
over, 203 primer pairs (67.67%) yielded PCR amplicons in the wild accession and 167 (60.51%)
were polymorphic between species[24]. In peanut, 26 (10.3%) EST-SSRs exhibited polymor-
phisms between 22 cultivated peanut accessions and 221 (88%) were polymorphic between 16
wild peanut species[28].

Our dendrogram, based on genetic similarity results, divided the 9 species into 2 clear
groupings. Among the group, the C.Korshinskii was closet to C.microphylla, C.intermedia
Kuang et H.C.Hu and C.arborescens Lam. This result was consistent with other previous re-
searches[47]. While for the other group, the C.roborovskyi Kom. was classified into the group,

Fig 4. Graph of genetic distance among the UPGMA dendrogram of the genetic relationships among 9
species fromCaragana Fabr genus. The dendrogram was generated using the Jaccard similarity
coefficient based on 118 polymorphic primer pairs.

doi:10.1371/journal.pone.0115805.g004
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this result was different with the classification described by Zhao (1993)[47,48]. He divided the
Caragana Fabr. genus into three sub-groups, and C.roborovskyi Kom. was the only one species
in one sub-group. While the classification was only based on morphology investigation, it
needed more molecular evidence to support. So the result in our research extended the re-
searches for Caragana Fabr. genus.

Conclusion
To sum up, our data provided a case study that the microsatellite markers developed from tran-
scriptome of C. korshinskii Kom. can be used for population genetic studies in Caranaga Fabr.
Likewise, these markers should be of great value in further research on population and conserva-
tion genetics of species in the genus. The use of transcriptome sequences from next-generation
sequencing, being rapid and efficient in the development of microsatellite markers, is of great
value, not only for analysing intraspecies genetic diversity, but for future research across
the genus.
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