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ABSTRACT Fillet yield (FY) and harvest weight (HW) are economically important traits in Nile tilapia
production. Genetic improvement of these traits, especially for FY, are lacking, due to the absence of efficient
methods to measure the traits without sacrificing fish and the use of information from relatives to selection.
However, genomic information could be used by genomic selection to improve traits that are difficult to
measure directly in selection candidates, as in the case of FY. The objectives of this study were: (i) to perform
genome-wide association studies (GWAS) to dissect the genetic architecture of FY and HW, (ii) to evaluate the
accuracy of genotype imputation and (iii) to assess the accuracy of genomic selection using true and imputed
low-density (LD) single nucleotide polymorphism (SNP) panels to determine a cost-effective strategy for
practical implementation of genomic information in tilapia breeding programs. The data set consisted of
5,866 phenotyped animals and 1,238 genotyped animals (108 parents and 1,130 offspring) using a 50K SNP
panel. The GWAS were performed using all genotyped and phenotyped animals. The genotyped imputation
was performed from LD panels (LD0.5K, LD1K and LD3K) to high-density panel (HD), using information from
parents and 20% of offspring in the reference set and the remaining 80% in the validation set. In addition, we
tested the accuracy of genomic selection using true and imputed genotypes comparing the accuracy
obtained from pedigree-based best linear unbiased prediction (PBLUP) and genomic predictions. The results
from GWAS supports evidence of the polygenic nature of FY and HW. The accuracy of imputation ranged
from 0.90 to 0.98 for LD0.5K and LD3K, respectively. The accuracy of genomic prediction outperformed the
estimated breeding value from PBLUP. The use of imputation for genomic selection resulted in an increased
relative accuracy independent of the trait and LD panel analyzed. The present results suggest that genotype
imputation could be a cost-effective strategy for genomic selection in Nile tilapia breeding programs.
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Investment in selective breeding programs generates economic return
because genetic selection is aimed at improving productivity of important

economic traits that result in permanent, cumulative and sustainable
changes in a farm’s population over generations of selection (Gjedrem
2012). In a simulation study, Ponzoni et al. (2007) estimated that the
benefit/cost ratio reached a maximum of 60/1 with the implementation
of family based breeding programs inNile tilapia. The improvement in the
benefit/cost ratio by using genomic information has never been reported
in the literature for aquaculture species. However, Sonesson et al. (2009)
suggested that the extra cost of genotyping can be partly recovered by
higher genetic gains due to the increased accuracy by genomic prediction
compared to breeding values estimated using conventional pedigree-based
best linear unbiased prediction (BLUP). Therefore, selective breeding is
an important tool to increase aquaculture production and profitability,
satisfying the increasing demand for animal protein (Gjedrem 2012).
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The first Nile tilapia breeding program was established in 1988 and
since then high levels of genetic gains have been achieved for econom-
ically important traits, e.g., genetic gains for body weight ranged from
7 to 20% per generation (Bentsen et al., 2017; Eknath et al., 1998;
Gjedrem et al., 2012 and Khaw et al., 2008). However, until now the
Nile tilapia breeding programs have been based only on pedigree and
phenotype information for genetic evaluations. The incorporation of
genomic information for genetic analysis has not been evaluated or
implemented in tilapia breeding programs. This is mainly due to the
fact that dense SNP panels were not available until recently (Joshi et al.
2018; Yáñez et al. 2019). The use of genomic information for the
implementation of genomic selection has already been assessed in var-
ious aquaculture species, e.g., Atlantic salmon, rainbow trout, salmon
coho, common carp, channel catfish and Pacific oyster (Barria et al.,
2018; Garcia et al., 2018; Gutierrez et al., 2018; Palaiokostas et al., 2018;
Vallejo et al., 2018; Yoshida et al., 2018a; Bangera et al., 2017; Correa
et al., 2017; Meuwissen et al., 2014; Ødegård et al., 2014; Tsai et al.,
2016). As it has been demonstrated in these studies, an increase in
selection accuracy when including genomic information from dense
SNP panels, especially for traits which are difficult to measure in selec-
tion candidates (Yañez and Martinez 2010; Yáñez et al. 2014). Carcass
quality traits (e.g., fillet yield) are considered key traits in the breeding
goal for Nile tilapia genetic improvement (Nguyen et al. 2010; Ponzoni
et al. 2011) and these traits could be more efficiently improved through
the inclusion of genomic information in genetic evaluations.

Theuse of genomic information fromdense SNPpanelsprovides the
opportunity to increase the rateof geneticprogress inbreedingprograms
(Meuwissen et al. 2001). However, the cost of genotyping is high and
alternative methods are necessary for cost-efficient genomic applica-
tions (VanRaden, et al. 2011; Carvalheiro et al. 2014). Strategies such as
selective genotyping (Sen et al. 2009; Jiménez-Montero et al. 2012;
Ødegård and Meuwissen 2014), genotyping animals using low-density
panels (Tsai et al. 2016; Bangera et al. 2017; Correa et al. 2017; Yoshida
et al. 2018a) and genotype imputation (Cleveland and Hickey 2014;
Sargolzaei et al. 2014; Chen et al. 2014) have been tested as alternative
strategies for reducing costs for the practical implementation of geno-
mic information in breeding programs.

Imputation of genotypes reduces the cost of genomic selection by
genotyping a small proportion of animals (e.g., parents or influential
animals) using a dense SNP panel and selection candidates using a LD
SNP panel, and then imputing (predicting) missing genotypes from the
lower to the HD SNP panel (Sargolzaei et al. 2009). In aquaculture
species, these cost-effective strategies have been assessed and reported
to generate genomic prediction accuracies similar to those obtained
when all selection candidates are genotyped with HD SNP panels
(Dufflocq et al., 2019; Tsai et al., 2017; Yoshida et al., 2018b).

The objectives of this study were: (i) to perform a genome-wide
association study to dissect the genetic architecture and identify molecular
markers for growth and fillet yield; (ii) to evaluate the accuracy of genotype
imputation as a cost-effective strategy for genotyping, and (iii) to assess the
accuracy of genomic selection for growth and fillet yield using true and
imputedSNPgenotypes in farmedNile tilapia.Toourknowledge, this is the
first study evaluating the incorporation of true and imputed dense geno-
types for the implementation of genomic predictions in farmedNile tilapia.

MATERIAL AND METHODS

Phenotypes
TheNile tilapiapopulationused in thecurrent studybelongtoabreeding
nucleus established by Aquacorporación Internacional group (GACI)
in Costa Rica. The origin of the population is described in detail by

Yoshida et al. (2019a). This population consisted of eight generations
selected for growth rate. Here, we used phenotype information for fillet
yield and harvest weight from four generations. In addition, for all
analysis (GWAs, genotype imputation and genomic predictions) we
used the pedigree information of all animals from the eight generations
(65,570 animals). To generate the families from each year-class, briefly,
the eggs of each full-sib family were incubated and reared in separate
hapas until tagging. A mating design of two dams per sire was used to
produce full and half-families, which varied from 74 to 89 families
across the year-classes (Table 1). For each year-class an average number
of 18 fish/family (ranging from 5 to 49) were tagged at an average
weight and age of 13 g (SD = 8 g) and 104 days (SD = 18 days),
respectively. After, the fish were reared until an average of 13 months
old, where the traits fillet yield (FY (%) = (fillet weight/harvest
weight�100) and harvest weight (HW in grams) were recorded for each
individual fish and the fillet weight was measured for both fillet.

Genotypes
Genomic DNA was extracted from fin clip samples from 108 parents
(45sires and63dams) and1,364offspring fromyear-class2017. Samples
were then genotyped using a 50K SNP Illumina BeadChip, which is
described in detail by Yáñez et al. (2019). Genomic DNA was purified
from all the samples using the DNeasy Blood & Tissue Kit (QIAGEN)
according to the manufacturer’s protocol. Before the genome-wide
association study (GWAS) and imputation analysis, genotypes and
samples were filtered according to the following exclusion criteria:
Hardy-Weinberg Disequilibrium (HWE, p-value , 1·1026), Minor
Allele Frequency (MAF , 0.05) and genotyping call-rate for SNP
and samples , 0.95.

Genome-wide association analysis
We performed the GWAS to dissect the genetic architecture and to
identify regions of the Nile tilapia genome containing SNPs with
important effects on FY and HW. We used the weighted single step
genomic best linear unbiased prediction (wssGBLUP) method (Wang
et al. 2012) implemented in postGSf90 module from BLUPf90 family
programs (Misztal et al. 2016). The following model was used:

y ¼ Xbþ ZaþWcþ e (1)

where y is a vector of phenotypes (FY or HW), b is a vector of
contemporary group as fixed effects that comprise the year-
class:sex:tank, and harvest weight or age for FY and HW as covariate,
respectively; a is a vector of random additive direct genetic effects; c is
a vector of common environmental effect and e is a vector of residual
effect. X, Z and W are incidence matrices for b, a and c effects,
respectively.

The wssGBLUP is similar to the pedigree-based BLUP (PBLUP)
method except for the use of a combined genomic and pedigree re-
lationship. The kinship matrix A-1 is replaced by matrix H-1 (Aguilar
et al. 2010), which combines genotype and pedigree relationship
coefficients:

H21 ¼ A21 þ
�
0 0
0 G212A21

22

�
;

where, A21
22 is the inverse of a pedigree-based relationship matrix for

genotyped animals; and G21 is the inverse genomic relationship ma-
trix. The SNPs were assumed with an initial value of one correspond-
ing to the single-step genomic BLUP (ssGBLUP) method (Misztal
et al. 2009). In the wssGBLUP the marker variances were estimated
from allele frequencies and used as weights, which were updated on
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each iteration (Wang et al. 2014). We tested three iterations of
weights, and used the second iteration to manhattans plots, as sug-
gested by Wang et al. (2012) and Zhang et al. (2016), who proposed
that two iterations were sufficient to correctly identify major SNPs
in wssGBLUP. The wssGBLUP included all HD genotyped animals
(parents and offspring) which passed quality control (n = 1,238) and
all the phenotyped fish present in Table 1.

To evaluate the presence of putative genes associated with the traits
under study, we reported all genes between the first and last SNP
position of each 20-SNP window, searched using BLAST (Basic Local
Alignment Search Tool) of the SNP probes against the last version of the
Oreochromis niloticus reference genome (Conte et al. 2019), publicly
available at NCBI (GenBank assembly accession GCA_001858045.3).

Genotype imputation
Three in silico LD panels were constructed with SNP densities of
500 (LD0.5K), 1,000 (LD1K) and 3,000 (LD3K). The SNPs from the
LD panels were selected using the option–indep-pairwise of Plink v1.9
software (Purcell et al. 2007), with a window size of 180,432 kb, a step of
1 SNPs and a variable r2 according to chromosome. This command
produced a subset of markers that are proportional for chromosome
size, are approximately evenly spaced and in low linkage disequilibrium
with each other as recommended by Cleveland and Hickey (2014).

The imputations were run using genotype information from
108 parents and 20% of the offspring (n = 225) as a reference set (HD
panel) and 80% of offspring (n = 904) were used as the validation set
(LD panel). The assignment of the offspring to the reference and
validation sets was random, and five replicates were used each time. In
addition, we used pedigree information available for all individuals for
imputation (65,770 animals), consisting of eight generations of selec-
tion. Imputation of genotypes was performed using the FImpute v2.2
software (Sargolzaei et al., 2014) and the accuracy of imputation was
calculated as the correlation between true and imputed genotypes for
the validation set.

Genomic prediction
We used two scenarios to assess prediction accuracies using a fivefold
cross validation. The first scenario used the true genotyped LD panels
(LD0.5K, LD1K and LD3K) and represented the same in silico LD panel
constructed for genotype imputation. The second scenario used the
imputed genotypes from LD0.5K, LD1K and LD3K to 32K panel.
In addition, accuracy of breeding values was also estimated using
pedigree-based information (PBLUP method) and the true 32K SNPs
(true markers that passed in quality control). Briefly, all genotyped
animals (n = 904) with phenotypes were randomly divided into five
exclusive training sets (80% of the dataset; n = 721 and SD = 5 an-
imals) which were used to estimate the SNP effects; the remaining
animals were used as validation sets (20% of the dataset; mean =
193 and SD = 5 animals), for which their phenotypes were masked
and their performance was predicted based on the marker effects.

This fivefold cross validation was replicated five times for each
SNP panel density and the results are presented as a mean for all
replications.

We used the BLUPF90 family of programs (Misztal et al. 2016) to
perform the genetic evaluations using pedigree-based information and
the ssGBLUPmethod which uses both pedigree and genomic informa-
tion, and additional information of the animals with only phenotypes
(Table 1) in the validation set. The statistical model fitted was the same
of the equation 1, except for PBLUP method, for which the kinship
matrix used was A-1 instead of H-1 in ssGBLUP.

Prediction accuracies were calculated in the validation sets using the
following equation:

rðGÞEBV ;BV ¼ rðGÞEBV ;y
h

(2)

where rGEBV ;y is the correlation between the estimated breeding value
(EBV) or genomic estimated breeding values (GEBV) of a given
model (predicted for the validation set using information from the
training set) and the true phenotypic record, while h is the square root
of the pedigree-based estimate of heritability.

Genetic parameters and heritability
The total additive genetic variance (s2

aÞwas estimated using the kinship
matrix A and H for PBLUP and ssGBLUP, respectively. For all traits
studied, the heritabilities were computed using the following equation:

h2 ¼ s2
a

s2
a þ s2

c þ s2
e

(3)

where, s2
c   and   s

2
e is the common environmental and residual vari-

ance, respectively.

Cost evaluation
We evaluated the direct savings when genotyping a proportion of
animals using a LDpanel and performing genotyping imputation. Costs
werecalculatedonthebasisofonediscretegeneration, for sevendifferent
sizes of a Nile tilapia breeding populations, ranging from a total of 4,150
to 10,150 fishes, with half of the animals were used as reference
population (RP) and the other half as selection candidates (SC). All
animals descend from a fixed number of parents (P; 100 females and
50males) (Table S2). We evaluated four different scenarios: scenario A:
all animals (P, RP and SC) were genotyped using a HD panel; and,
scenario B, C andD, inwhich all parents and 20%of RPwere genotyped
using aHDSNPpanel and the remaining animalswere genotyped using
a 3K, 1K or 0.5K LD panel, respectively. The genotyping cost was
calculated assumingprices ofU$50, $25, $20 and$10 per sample forHD
(50K), 3K, 1K, and 0.5K, respectively. In addition, for scenario A, we
assumed a price reduction of 10% in each increase of 1,000 animals
genotyped using a HD panel, which resulted in prices ranging from
$50 to $26.60 per sample for genotyping 4,150 and 10,150 animals,

n Table 1 Summary statistics for phenotyped animals by year-class

Year-class
Number of
Families

Animals
genotyped

Age Fillet Yield Harvest Weight

Mean SD2 Number Mean (%) SD2 Number Mean (g) SD2

2011 89 — 376.25 24.24 1,004 36.34 1.85 1,027 919.15 257.61
2012 82 — 343.48 16.33 0760 34.47 2.05 0767 730.79 235.62
2013 80 — 514.22 14.49 2,628 34.07 2.45 2,636 907.91 268.04
2017 74 1,130� 370.54 20.04 1,474 31.74 2.16 1,479 953.57 252.86

�Number of genotyped animals after quality control. Additionally 108 parents of year-class 2017 were genotyped using 50K SNPs panel to perform genotype
imputation.
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respectively. The results of the genotyping cost evaluation (Table S3) are
presented as terms of cost reduction (%) comparing scenario A to other
scenarios.

Data availability
All raw phenotypic and genotypic data used in the current study can
be found at Figshare public repository (https://figshare.com/s/
9b265a22b7e138c5a839). Furthermore, Supplementary Figures
(Figure S1-S4) and Supplementary Tables (Table S1-S3) are available
at Figshare: https://figshare.com/s/9b265a22b7e138c5a839.

RESULTS

Basic statistics and genotype quality control
The total number of individuals phenotyped ranged from5,866 to 5,909
for FY and HW, respectively, and varied per year-class with the
maximum number of animals phenotyped in 2013. On average, the
recorded fish were 401 days old at harvest weight. The average FY was
34.2% (SD = 2.13% g) and the average HWwas 878 g (SD = 254 g) for
phenotyped fish (Table 1).

Out of the initial 1,364 individuals and 43,272 SNPs which were
effectively genotyped, a total of 1,130 animals and 32,306 SNPs (32K)
passed in the quality control. The MAF , 0.05 parameter excluded
the highest number of SNPs (4,779), whereas HWE and genotyped
call-rate excluded 1,982 and 4,205 SNPs, respectively.

Genetic parameters and heritability
For both FY andHW the additive genetic variance and heritability were
slightly higher when using genomic information compared to the
pedigree-basedmethod. For instance, heritability valuesusing ssGBLUP
were 0.21 and 0.36 for FY andHW, respectively. For PBLUP heritability
for FY and HWwas estimated to be 0.21 to 0.31, respectively (Table 2).
Additionally, a reduction in error of heritability estimates was shown
for ssGBLUP when compared with PBLUP.

Genome-wide association analysis
Manhattanplots for theproportionofgeneticvariance explainedbyeach
20-SNPwindow for FY andHWare shown in Figures 1 and 2. A total of
1,624 20-SNP windows with average length of 530 kb (range from 10 to
6,690 kb) were obtained. After the second iteration of wssGBLUP, the
top five windows cumulatively explained 5.2 and 8.0% of the total ge-
netic variance for FY and HW, respectively (Table 3).

The full list of genes located within the top five 20-SNPs windows
associatedwithFWandHWis shown inTable S1. Somecandidate genes
found within the top fivemost important windows have been suggested
to be involved with growth-related traits in previous studies. For FY we
identified genes U3 small nucleolar RNA-associated protein 6 homolog
(UTP6), Ras-related protein (Rab31) and Follistatin-related protein

(FLRG or FSTL3), located in chromosome 06, 18 and 23, respectively.
For HWwe identified the genes Natriuretic Peptide Receptor 1 (NPR1)
and Exostosin Like Glycosyltransferase 3 (EXTL3) located in chromo-
some 22 and 15, respectively.

Accuracy of genotype imputation
We observed that imputation accuracy decreased with reduced marker
density going from LD3K to LD0.5K SNP panels with values ranging
from 0.98 to 0.90, respectively (Figure 3). The largest increase in im-
putation accuracy occurred when increasing SNP density from 0.5K
to 1K, with an increase in imputation accuracy of about 6%.

Figures S1, S2 and S3 show the correlation between observed and
imputed genotypes for each SNP in all chromosomes using the LD3K,
LD1K and LD0.5 panels, respectively. Imputation accuracy was not
consistent across chromosomes, especially for LD0.5K. Inconsistencies
may happen because of the physical position of imputed SNP and the
location of the SNP on the LD panel. The imputation accuracy decreased
greatlyat telomeres,andincreasedconsiderablywithincreasedSNPdensity.

Accuracy of PBLUP and ssGBLUP
Basedon the fivefold cross validation, the prediction accuracy forGEBV
from genomic methods outperformed the accuracy for EBV from
PBLUP. In addition, the accuracy of genomic selection using imputed
genotypes from LD to HD SNP panels outperformed both PBLUP and
ssGBLUP using true LD genotypes (Table 4).

The relative increase in accuracy of predicted GEBV compared with
EBV from PBLUP varied moderately between the LD panels and traits
(Figure 4). Thus, the relative increase in accuracy for FY when com-
paring ssGBLUP to PBLUP ranged from 4 to 15% for true 0.5 and 32K
genotypes, respectively and from 8 to 15% for imputed genotypes using
the 0.5 and 3K LD SNP panels respectively. For HW the relative in-
crease in accuracy when comparing ssGBLUP to PBLUP ranged from
4 to 25% for true 0.5 and 32K genotypes, respectively and from 22 to
27% for imputed genotypes using the 0.5 and 3K LD SNP panels respec-
tively. In general, the relative increase in accuracy of predicted GEBV
from all true LD SNP panels and imputed genotypes were always better
than EBV from PBLUP even at the lowest marker density of 0.5 K for all
traits. The relative increase in accuracies when comparing ssGBLUP to
PBLUPwere almost always higher forHW than for FY, except for the use
of true 3K genotypes for prediction of FY (14%)whichwas slightly higher
than for HW (13%) using the same 3K genotypes.

The genomic prediction accuracy using imputed genotypes, was
identical or very similar between the LD panels compared to the 32K
SNPgenotypes, especially for FY (Figure 4).When comparing the use of
true and imputed genotypes for genomic selection it was evident that
genotype imputation resulted in a higher increase in relative accuracy
independently of trait and LD SNP panel. As expected, the lowest
genomic prediction accuracy when using imputed genotypes was

n Table 2 Estimates of variance components and heritability for fillet yield and harvest weight in Nile tilapia

Traits

PBLUP ssGBLUP�

s2
a
1

s2
c
2

s2
e
3

h2
4

SE5 s2
a
1

s2
c
2

s2
e
3

h2
4

SE5

Fillet yield 0.972 0.174 3.498 0.209 0.053 0.972 0.168 3.491 0.210 0.038
Harvest weight 19,312 4,296 39,522 0.306 0.073 23,161 3,823 37,345 0.360 0.047
�Estimated for true 32K genotype panel.
1
Additive genetic variance;

2
Common environment variance;

3
Residual variance;

4
Heritability;

5
Standard error.
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always observed for the SNP panel with lowest imputation accuracy
(LD0.5K), which resulted in an accuracy slightly lower than the 32K
SNP panel, but higher than PBLUP.

Cost evaluation
The costs using different LD genotyping panels and different sizes of Nile
tilapia breeding populations, ranged from an increase of 4.74% to a
reduction of 69.40%, when compared to scenario A, where all animals
were genotypedusing aHDpanel. As expected, scenarioD, resulted in the
most substantial cost reduction, ranging from 69 to 45%, depending on
the size of the breeding population and scenario B resulted in the worst
cost reduction (Figure S4). Interestingly, due to value adjustment when
increasingthenumberof samples togenotype, for scenarioBandanumber
of RP+ SC equal to 10,150, it is more cost efficient to genotype all animals
usingaHDpanel thangenotypingaproportionof animalsusingLDpanel.

DISCUSSION

Heritability
Wefoundmoderateheritabilityvalues forFYandHWwhichagreeswith
previous estimates calculated using pedigree-based methods (Gjerde

et al., 2012; Nguyen et al., 2010; and Rutten et al., 2005). HW and
FY heritability values in tilapia, estimated using genomic information,
are reported for the first time in this study. We found slightly higher
estimates of heritability when using genomic information compared to
PBLUP, especially for HW, which is in accordance with what has been
reported in other fish species for fillet yield and growth traits (Tsai et al.
2015; Gonzalez-Pena et al. 2016).

Genome-wide association analysis
In the present study, we found no evidence ofmajor quantitative trait
loci for both fillet yield and harvest weight in Nile tilapia. The small
effect of these loci reinforces evidence of the polygenic nature of these
traits. Our results support previous findings which have shown the
polygenic nature of fillet yield and growth-related traits in different
aquaculture species, with no evidence of major effect genes or
genomic regions assessed by GWAS (Gutierrez et al. 2015; Tsai
et al. 2015; Gonzalez-Pena et al. 2016; Yoshida et al. 2017; Garcia
et al. 2018; Reis Neto et al. 2019). Furthermore, within the five
20-SNP windows that explained the higher proportion of genetic
variance, we found several genes that could potentially be involved
in growth and fillet yield.

Figure 2 Manhattan plot of ge-
netic variance explained by 20-SNP
windows for harvest weight in the
2nd iteration of wssGBLUP.

Figure 1 Manhattan plot of ge-
netic variance explained by 20-SNP
windows for fillet yield in the 2nd

iteration of wssGBLUP.
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Although, it is out of the scope of thepresent study todiscuss indetail
the putative genes involved in FY and HW, we found it worthy to
mention some of the most biologically relevant candidates that may be
worthy of functional validation. For instance, the UTP6 gene is sug-
gested to enhance cellular growth through an increase in the number of
ribosomes in Chinese hamster ovary cells (Courtes et al. 2013). For
both FY and HW, between position 24,563,797 and 24,886,884 bp, we
identified the RAB31 gene, which has a role in trafficking the epidermal
growth factor receptor (EGFR) gene (Chua and Tang 2014), an impor-
tant receptor of tyrosine kinase in animals that functions in develop-
ment, growth and tissue regeneration (Wang et al. 2018). In addition,
FSTL3, present in one of the top 5 SNP windows explaining a high
proportion of the genetic variance for FY, is a member of follistatin
family, which has been suggested to be an inhibitory binding protein

of myostatin activity (Hill et al. 2002, 2003). Rebhan and Funkenstein
(2008) reported experimental evidence that myostatin activity can be
inhibited by follistatin. Chu et al. (2016) observed an increase in the
number of muscle fibers, satellite cell activation and decreased expres-
sion of myostatin in animals treated with FSTL3; suggesting that the
gene might be involved to muscle development in the Chinese Perch
(Siniperca chuatsi).

In plants NPR1 is an essential regulator of systemic acquired re-
sistance, conferred immunity to broad-spectrum of pathogens (Cao
et al. 1997; Mou et al. 2003). However, Vanacker et al. (2001) reported
a novel function for NPR1, which is associated with growth control, cell
division and suppressing endoreduplication during leaf development
in Arabidopsis. In humans, a mutation affected the EXTL3 gene caus-
ing skeletal dysplasia, immune deficiency and development delay. In
zebrafish abnormalities of cartilage development and defective forma-
tion in fin and branchial arch were reported (Norton et al. 2005). Other
genes located in a 20-SNP window flanking the top five windows are
presented in Table S1.

Accuracy of genotype imputation
The imputation accuracy, on average, was above 90%, independent of
the LD SNP panel used but decreased from LD3K to LD0.5K, which is
in accordance with the same pattern seen by Habier et al. (2009),
Hickey et al. (2012) and Yoshida et al. (2018b). The imputation errors
could be higher in LD panels because they could be less efficient in
capturing the linkage and linkage disequilibrium between the markers.
Like previous studies we found accuracies of genotype imputation to be
very similar using panels of 3K SNPs or denser (Druet et al. 2010;
Zhang and Druet 2010; Duarte et al. 2013; Carvalheiro et al. 2014;
Cleveland andHickey 2014; Kijas et al. 2016; Tsai et al. 2017). However,
it is likely that 3K or denser SNP panels will be considerably more
expensive than 0.5K or 1K SNP panels, thus cost-effectiveness must
be carefully evaluated in further studies.

Some imputation studies tested the size of the reference population
(Zhang and Druet 2010; Cleveland and Hickey 2014; Tsai et al. 2017;
Yoshida et al. 2018b), and have shown that the number of animals used
in this study should be sufficient to not influence the imputation accu-
racy. Therefore, we did not include the effect of different genotyping
strategies in the final results; however, in preliminary tests we found
imputation accuracies lower than 90% using a small proportion of

Figure 3 Imputation accuracy from low-density (LD3K, LD1K and LD0.5K)
to high-density (HD) panel in Nile tilapia using parents (n = 108) and 20%
of offspring (n = 226) genotyped with the HD panel as the reference set
and 80% of offspring (n = 904) as the validation set.

n Table 3 Top five ranked 20-SNP windows that explain the largest proportion of genetic variance for fillet yield and harvest weight in
Nile tilapia

CHR1
Position

Pvar2 (%) Window length (bp) Genes3Initial Final

Fillet Yield
LG04 11,812,441 12,225,401 1.439 412,960 cacng3, clcn7, dctn5
LG06 25,191,450 25,573,340 0.981 381,890 adap2, rab11, utp6
LG18� 24,563,797 24,886,884 0.969 323,087 ankrd12, mtcl1, rab31
LG23 40,389,783 41,076,465 0.907 686,682 armh1, atp5f1d, fstl3
LG07 61,517,871 61,850,135 0.889 332,264 —

Harvest Weight
LG16 05,380,219 05,989,612 2.082 609,393 calcrl, gulp1
LG22 34,016,287 34,585,708 1.852 569,421 dnai2, ints3, npr1
LG12 37,027,113 37,559,043 1.434 531,930 endog, entr1, med27
LG15 14,423,480 14,846,999 1.383 423,519 cpsf2, extl3, fut8
LG18� 24,563,797 24,886,884 1.238 323,087 —

�Coincident window for both traits.
1
Chromosome;

2
Percentage of genetic variance explained by each 20-SNP window;

3
Oreochromis niloticus used as reference species (full list of genes are available in Table S1).
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offspring (less than 10%) in the reference set when imputing genotypes
from the 0.5K SNP panel (results not show). This is probably because of
the small number of animals per family in the reference population,
which can influence imputation accuracy (Hickey et al. 2012). In this
case we had approximately 18 sibs genotyped/family and we used as
reference set 20% of offspring in addition to the parents genotyped with
the 32K SNP panel to achieve similar accuracy values to those reported
by Yoshida et al. (2018b) for Salmo salar, where 31 sibs/family and
just 10% of offspring were needed to surpass an imputation accuracy
of 90%.

Figures S1, S2 and S3 indicate regions of the genome containing
markerswithhigh imputationerrors, especially at thebeginningandend
of the chromosomes. This is could be an effect of recombination rates,
that are known to be higher around the telomeres (Chowdhury et al.
2009; Tortereau et al. 2012). The physical location of the SNP is another
factor that has been shown to be affect the imputation accuracy and to
reduce the errors in these regions, some previous studies suggested
increasing the coverage of SNP chromosomal extremes (Badke et al.
2012; Boichard et al. 2012; Dassonneville et al. 2012). In addition, high
imputation errors far from chromosome extremes can be the result
of erratic patterns of linkage disequilibrium, which suggests potential
issues related to physical maps and reference genome assembly (Druet
et al. 2010; Carvalheiro et al. 2014; Yoshida et al. 2018b).

Another important factor that may affect the imputation accuracy
is the linkage disequilibrium between markers (Hickey et al. 2012;
Carvalheiro et al. 2014). A previous study, showed a more rapid

decrease of linkage disequilibrium with inter-marker distance for this
Nile tilapia population (Yoshida et al. 2019a) when compared to other
populations of different aquaculture species (Gutierrez et al. 2015; Kijas
et al. 2016; Vallejo et al. 2018; Barría et al. 2019). Nevertheless, our
imputation accuracies are close to the imputation values reported in the
literature for salmonids (Kijas et al. 2016; Tsai et al. 2017; Yoshida et al.
2018b) and terrestrial species (Badke et al. 2012; Hayes et al. 2012;
Duarte et al. 2013; Hozé et al. 2013; Carvalheiro et al. 2014), suggesting
that the family-based imputation approach is less sensitive to linkage
disequilibrium patterns by efficiently exploiting information of highly
related animals.

The imputation methods can be classified in family-based and
population-based methods. The first exploits linkage information from
close related animals and the second uses linkage disequilibrium in-
formation of the population (Sargolzaei et al. 2014). Previous studies
tested the use of different imputation methods as well as different
imputation software (Hayes et al. 2012; Carvalheiro et al. 2014;
Sargolzaei et al. 2014). Here, we used the FImpute software
(Sargolzaei et al., 2014) that consider both family and population-based
approaches, or only population-based when the pedigree information
is not available. The imputation proceeds using overlapping sliding
windows, starting with long haplotypes andmoving to short haplotypes
(Sargolzaei et al., 2014). This method results in high imputation accu-
racy when close relatives of targeted individuals are present in the
reference group (Carvalheiro et al. 2014; Sargolzaei et al. 2014;
Larmer et al. 2014). Furthermore, the computing requirements

Figure 4 Relative increase in
accuracy of different genomic
selection methods for fillet yield,
harvest weight and waste weight
compared to PBLUP in Nile tila-
pia using true and imputed
genotypes.

n Table 4 Mean accuracy of EBV and GEBV for fillet yield and harvest weight in Nile tilapia using pedigree-based information, true and
imputed genotypes

Traits Pedigree-based
BLUP

True genotypes1 Imputed genotypes2

32K 3K 1K 0.5K 3K 1K 0.5K

Fillet yield 0.539 0.621 0.612 0.574 0.560 0.621 0.620 0.585
Harvest weight 0.479 0.601 0.539 0.537 0.500 0.607 0.600 0.586
1
High-density (32K) and different true in silico low-density panel.

2
Imputed genotypes from different low-density panel (3K, 1K or 0.5K) to high-density panel (32K).
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are considerably lower than other software used for imputation
(Sargolzaei et al., 2014).

Accuracy of genomic prediction
Our results showed that the use of genomic information for estimating
breeding values achieved higher accuracies compared to using only
pedigree information for FY andHW, independent of the LDSNPpanel
used, with or without imputation of genotypes (Figure 4). The relative
increase in GEBV accuracies compared to PBLUP has been previously
reported for growth (Garcia et al., 2018; Tsai et al., 2015) and for
different disease resistance traits in farmed aquaculture species (Tsai
et al. 2016; Vallejo et al. 2017; Bangera et al. 2017; Correa et al. 2017;
Barria et al. 2018; Yoshida et al. 2018a, 2018b).

The accuracy of GEBV depends on some factors such as the number
of genotyped andphenotyped individuals in the trainingpopulation, the
heritability and the number of loci affecting the trait (Daetwyler et al.
2008; Goddard 2009). Furthermore, the accuracy of genomic prediction
is highly dependent on the genotype density used, which means that
increasing marker densities tends to generate higher GEBV accuracies
(Tsai et al. 2016; Bangera et al. 2017; Correa et al. 2017; Yoshida et al.
2018a). In addition, the use of different methods to estimate the GEBV
can directly affect the accuracy of genomic prediction. In general, the
genomic methods differ in distributional assumptions of marker effects
and the calculation of the genetic relationshipmatrix. Here, we used the
ssGBLUP method (Misztal et al. 2009), which assumed a normal dis-
tribution of marker effects and has some of practical advantages, given
that it uses information from genotyped and nongenotyped animals
(Lourenco et al. 2014), and it has also been demonstrated to provide
higher accuracy than the PBLUP method and other genomic methods
(Chen et al. 2011; Christensen et al. 2012; Vallejo et al. 2017; Yoshida
et al. 2018a).

To test the impact of genotype imputation errors in genomic
predictions we estimated the accuracy of genomic predictions for FY
and HW using imputed genotypic data and compared the data to true
32K and LD SNP genotypes (LD3K, LD1K and LD0.5K). Our results
indicate that genomic prediction accuracies using imputed genotypes
were always higher than those obtained using true LD genotypes and
equal or slightly lower than using true 32K genotypes (Figure 4). For
HW the accuracy of GEBV was substantially higher using the imputed
LD0.5K than true LD0.5K, LD1K and even LD3K, whereas for FY the
accuracy using imputed LD0.5K did not surpass the true LD3K panel.
Our results are in accordance with previous studies in aquaculture
(Dufflocq et al., 2019; Tsai et al., 2017; Yoshida et al., 2018b) and
livestock species (Berry and Kearney 2011; Erbe et al. 2012); indicating
that the use of genotype imputation can decrease the cost of genotyping
by means of using less expensive LD SNP panels without compromis-
ing prediction accuracies. In addition, the influence of imputation error
on genomic prediction accuracy depends on the genetic architecture
underlying the studied traits. For traits that are influenced by few QTL
with large effect, accuracy of genomic prediction could be more sensi-
tive to imputation errors than polygenic traits, such FY and HW (Chen
et al. 2014).

Implications
The extra costs to genotyping animals represents a key limiting factor for
the practical implementation of genomic selection in freshwater fish
species. One of the main objectives of this study was to test genotyping
imputation as an alternative to reduce the costs of genotyping for
genomic selection in Nile tilapia breeding programs. The cost to geno-
type depends on the density of the SNP panel, genotyping technology
used and number of samples. In general, the price ranges from USD $5

toUSD $75 for low- (0.5K) and high-density panels (50K), respectively.
Wedidacostevaluation, that resulted ina reductionof cost ranging from
45 to 69% (Figure S4), assuming different sizes of a breeding population
and a strategy aimed to genotyping a proportion of animals using a HD
panel and the remaining animals using a 0.5K panel. These values
represent the direct savings on genotyping fewer animals using a HD
panel and support the results suggested by Dufflocq et al. (2019) and
Tsai et al. (2017) for aquaculture species. The previous authors sug-
gested that the use of imputation strategies can reduce the cost of
genotyping by at least 60% compared to genotyping all animals with
a HD panel. Therefore, the strategies used in the present study to ge-
notype both parents using a HD panel and a proportion of offspring
using a HD and LD panel resulted in accuracies of genomic prediction
similar to when all animals were genotyped with the HD panel. These
results suggest that genotype imputation can decrease the costs for the
practical implementation of genomic prediction in Nile tilapia breeding
programs.

CONCLUSIONS
TheGWAS indicated a polygenic architecture forfillet yield and harvest
weight, with some markers explaining a small proportion of genetic
variance; indicating that the implementationofmarkerassisted selection
couldnotbe successfullyapplied for these traits in thepresentNile tilapia
population. In contrast, the use of genomic selection could increase the
response to selection and improve genetic progress. The use of genotype
imputation can reduce genotyping costs and allow the implementation
of genomic selection in Nile tilapia breeding programs.
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