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Abstract: Confounding adjustment is important for observational studies to derive valid effect
estimates for inference. Despite the theoretical advancement of confounding selection procedure, it is
often challenging to distinguish between confounders and mediators due to the lack of information
about the time-ordering and latency of each variable in the data. This is also the case for the studies
of perfluoroalkyl substances (PFAS), a group of synthetic chemicals used in industry and consumer
products that are persistent and have endocrine-disrupting properties on health outcomes. In this
article, we used directed acyclic graphs to describe potential biases introduced by adjusting for
or stratifying by the measure of obesity as an intermediate variable in PFAS exposure analyses.
We compared results with or without adjusting for body mass index in two cross-sectional data
analyses: (1) PFAS levels and maternal thyroid function during early pregnancy using the Danish
National Birth Cohort and (2) PFAS levels and cardiovascular disease in adults using the National
Health and Nutrition Examination Survey. In these examples, we showed that the potential
heterogeneity observed in stratified analyses by overweight or obese status needs to be interpreted
cautiously considering collider stratification bias. This article highlights the complexity of seemingly
simple adjustment or stratification analyses, and the need for careful consideration of the confounding
and/or mediating role of obesity in PFAS studies.

Keywords: confounder; mediator; perfluoroalkyl substances; body mass index; Danish National
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1. Introduction

Observational studies have played an important role in making inferences about the impact of
environmental exposure on health because experimental studies are often unfeasible or unethical
to perform. Confounding bias is a major concern that may threaten the validity of observational
studies [1]. To reduce confounding, one might think that controlling for as many variables as possible
in the model is preferable, but such an approach sometimes introduces bias and reduces statistical
efficiency [1,2]. For instance, the total effect of the exposure on health outcomes may be underestimated
if an intermediate variable that lies within the causal pathway between the exposure and outcome
is included in the statistical model, and, therefore, the estimated (total) effect would fail to capture
the specific effect mediated through that variable. In addition, if there are unmeasured confounders
between the intermediate variable and the outcome, adjusting for such an intermediate variable could
introduce “collider bias” [3]. Some well-known examples of such bias include the “birth weight
paradox” [4], where maternal smoking became protective on infant mortality risk conditioning on low
birth weight status; or the “obesity paradox” [5] where favorable health risks are observed among obese
individuals, conditional on surviving the study follow-up period. These examples have emphasized
the potential harmfulness of conditioning or stratifying on intermediate variables affected by the
exposure in statistical analyses. However, it is often challenging to determine whether variables are
confounders or mediators when the time ordering of the study variables in a dataset is unclear.

Perfluoroalkyl substances (PFAS), a group of man-made fluorine-containing chemicals, has received
attention over the past decade, and potential adverse health effect of human exposure to these extremely
widespread and persistent compounds have been studied [6]. Although the production of some PFAS,
such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), has been reduced in
Europe and the U.S. since 2000 [7], these compounds are still widely detected [8,9], and several other
types of PFAS are reported to be increasing in use [8]. Research has demonstrated that several types of
PFAS have endocrine-disturbing properties and can affect steroids and thyroid function [10] as well
as cholesterols levels [11,12], leading to cardiovascular disease (CVD) [13]. These previous studies
have adjusted for obesity, which is one of the metabolic disorders that has been associated with PFAS
in adulthood during reproductive age and beyond [14–16]. However, nearly all of the studies were
performed using cross-sectional data [10], and therefore, a possible bidirectional relationship between
PFAS and obesity makes it difficult to determine whether obesity should be treated as a mediator or
a confounder in the statistical analysis, especially if obesity is measured at the same time as PFAS
assessment. Moreover, the biological half-life for common PFAS compounds is in the magnitude of
years. One measurement of both PFAS and obesity might represent cumulative or chronic status years
before data collection.

The goal of this study is to use PFAS research as examples to illustrate how obesity can act as
either a mediator or a confounder in studies of environmental exposure and health. We used causal
diagrams or directed acyclic graphs (DAGs) to explain the confounding mediator dilemma of defining
the role of obesity in PFAS studies. Applying DAGs is useful to guide analysis that aims to estimate
the (total) causal effect of the exposure on the outcome, by identifying a sufficient set of variables that
can close all confounding paths while avoiding controlling for any mediators and colliders [17–19].
As an illustration, we compared results with or without controlling for body-mass-index (BMI) in two
cross-sectional studies that estimated the associations of PFAS levels with maternal pregnancy thyroid
function [20] and with prevalent CVD in adults [13].

2. Confounder-Mediator Dilemma

In general, confounders are variables that are common causes of the exposure and the outcome
(i.e., the variable with arrows pointing into both the exposure and the outcome in DAG). More strictly
speaking, confounders are variables that are causes of the exposure and related to the outcome,
or variables that are causes of the outcome and related to (but not affected by) the exposure [19].
Mediators are variables that lie on the causal pathway from the exposure to the outcome (i.e., the variable
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with an arrow pointing from the exposure and an arrow pointing into the outcome). Figure 1 shows a
DAG that encodes the potential causal relationship between PFAS levels and health outcomes. In this
DAG, obesity “before” the PFAS measurement (Obesitypre) is a confounder for the causal relationship
between PFAS and health outcomes, while obesity “after” the PFAS measurement (Obesitypost) is a
mediator on the causal path from PFAS to health outcomes.
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Figure 1. A causal diagram that illustrates the potential causal relationship between PFAS exposure,
the measure of obesity, and health outcomes. Obesitypre represents a measure of obesity status before
the PFAS measurement and Obesitypost represents a measure of obesity after PFAS measurement.
Obesitypre affects PFAS levels and health outcomes (i.e., a confounder), while Obesitypost is affected by
PFAS and affects health outcomes (i.e., a mediator). In this scenario, we should adjust for Obesitypre

in addition to other confounding variables such as the common causes of exposure and outcomes to
unbiasedly estimate the total effect of PFAS exposure on health outcomes. Adjustment for Obesitypost

is unnecessary and should be avoided. However, the exact timing for Obesitypre is hard to determine
because serum or plasma PFAS levels could represent cumulative exposure. For persistent PFAS
compounds, obesity may need to be measured at least a few years ahead of PFAS measurements to be
considered as Obesitypre.

To estimate the total effect of the exposure on the outcome, only the confounders, but not the
mediators, should be included in statistical analysis. Controlling for intermediate variables can
introduce biased estimate mainly for two reasons (Figure 2): (i) failure to include the effect of the
exposure on the outcome that is mediated through the intermediate variables, and (ii) introduction of a
collider bias, which is the non-existent relationship between the exposure and the outcome through
the mediator-outcome confounders created by controlling for the intermediate variables [3,21].

Most epidemiological studies of PFAS at present have information on obesity measured only once
at baseline and cannot distinguish between a confounder (obesitypre) and a mediator (obesitypost) due to
unknown temporality. Even when we have longitudinal data, it is often challenging to define whether
obesity measurement represents the status prior to or post PFAS exposure, because both obesity and
PFAS levels represent cumulative or chronic status years before the measurements. In such scenarios,
it is important to carefully analyze the data and interpret the results with and without controlling
for obesity or BMI (as a proxy measurement of obesity). In the following sections, we illustrate two
PFAS studies (of which individual-level data were available or accessible to the authors) using BMI as
an example of a variable that could be both a confounder and a mediator between PFAS and health
outcomes. In these examples, we focused on PFOS and PFOA, the two most commonly used PFAS,
for our exposure of interest, and discussed the results in the following discussion section.
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Figure 2. Collider bias due to conditioning on the measure of obesity affected by PFAS when estimating
the effect of PFAS exposure on health outcomes. In this DAG, [variable] represents the adjustment of
the variable. Uncontrolled common causes of obesity and health outcomes are variables that were not
included in the model. Measured confounders (common causes between the exposure and outcome)
and obesitypre should be adjusted to remove confounding (backdoor) paths between PFAS and health
outcomes. However, conditioning on obesitypost will (i) close a causal mediating path between PFAS
exposure on health outcomes, and (ii) induce a biasing path via uncontrolled common causes of
obesitypost and health outcomes (i.e., via a spurious association between PFAS and uncontrolled
common causes of obesitypost and health outcomes as indicated by the dash line in this DAG). The latter
is also known as “collider bias”.

3. Example Illustration I: The Association between PFAS and Thyroid Hormones during
Pregnancy in the Danish National Birth Cohort

One of the main features of PFAS is its endocrine-disrupting properties, particularly affecting
thyroid function [22–24]. Whether PFAS exposure during pregnancy affects maternal thyroid
function—a critical endocrine function for the fetus neurodevelopment [25,26]—has been actively
debated in environmental epidemiology and endocrinology [10,20,27]. A summary of findings about
PFAS exposure and maternal thyroid hormones in pregnancy can be found in recent systematic review
articles [10,28]. Using a sample of 1,366 pregnancies from the DNBC, a national pregnancy cohort study
in Denmark established in 1996–2002 [29], we recently reported possible gestational-week-specific
associations between plasma PFAS levels (continuous [per interquartile range increase] or categorical
[quartiles with the lowest quartile as a reference] variables) and maternal TSH in early pregnancy [20].

In this work, the results were adjusted for pre-pregnancy BMI, assuming that BMI may affect
plasma PFAS levels and maternal thyroid hormones (i.e., obesitypre in Figure 1). This assumption
was based on the prior literature of prenatal PFAS exposure research. However, if PFAS measures
in early pregnancy represent years of cumulative exposure, pre-pregnancy BMI can potentially be a
mediator in the reported PFAS–thyroid association [30,31]. Here, we reevaluated our main findings of
thyroid-stimulating hormone [TSH]—a key marker reflecting thyroid function during pregnancy [32],
and compared the PFAS-TSH association with or without controlling for pre-pregnancy BMI in
the regression model. Moreover, we also performed stratification by maternal overweight status
(pre-pregnancy BMI ≥ 25 kg/m2). Details of the study design and data collection methods have been
described in our previous article [20].
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A total of 1366 pregnant women were included in the study. The median (interquartile range)
value of PFOS and PFOA measured in maternal plasma collected during GW5 to GW19 (median
[interquartile range] = 8 [7–10]) were 29.5 (22.6–37.7) ng/mL and 4.52 (3.38–5.80) ng/mL, respectively.
In multivariable regression analyses, the effect estimates were close to null between prenatal PFOS
or PFOA and TSH levels before and after adjusting for pre-pregnancy BMI (Table 1). In an analysis
stratified by maternal overweight status, a tendency for positive associations between PFAS, especially
for PFOA, and TSH among non-overweight women were observed. However, for overweight women,
the effect estimates between PFOS and PFOA levels and TSH went in the negative direction, and for
specific exposure quartiles, some estimates excluded the null (Table 2).

Table 1. Associations between plasma PFAS levels (ng/mL) and maternal thyroid hormone levels with
or without adjustment of pre-pregnancy body mass index (BMI; n = 1366).

PFAS Relative % Difference of TSH (95% CI) 1

Model 1 2 Model 2 3

PFOS
Per IQR increase 1.06 (0.96, 1.16) 1.04 (0.96, 1.14)
Quartile 1 Ref Ref
Quartile 2 0.85 (0.68, 1.07) 0.86 (0.69, 1.06)
Quartile 3 0.93 (0.75, 1.16) 0.96 (0.78, 1.17)
Quartile 4 1.03 (0.84, 1.27) 1.01 (0.83, 1.22)

PFOA
Per IQR increase 1.02 (0.94, 1.11) 1.01 (0.93, 1.10)
Quartile 1 Ref Ref
Quartile 2 0.95 (0.76, 1.19) 0.96 (0.78, 1.19)
Quartile 3 1.01 (0.81, 1.25) 1.02 (0.83, 1.25)
Quartile 4 1.09 (0.86, 1.39) 1.08 (0.86, 1.36)

IQR, interquartile range; TSH, thyroid-stimulating hormone; BMI, body mass index. 1 Multivariable linear regression
models were employed to estimate the relationships between PFAS levels and ln-TSH. 2 Adjusted for maternal age,
parental socio-occupational status, parity, maternal smoking, and birth year. 3 Adjusted for pre-pregnancy BMI
(<18.5, 18.5 to <25, 25 to <30, and ≥30 kg/m2) in addition to variables included in Model 1.

Table 2. Associations between plasma PFAS levels (ng/mL) and maternal thyroid hormone levels
stratified by maternal overweight status indicated by body mass index (BMI).

PFAS Relative % Difference of TSH (95% CI) 1

Non-Overweight,
BMI < 25
(n = 1002)

Overweight,
BMI ≥ 25
(n = 364)

P for Interaction 2

PFOS
Per IQR increase 1.08 (0.97, 1.21) 0.94 (0.82, 1.09) 0.19
Quartile 1 Ref Ref -
Quartile 2 0.87 (0.67, 1.13) 0.79 (0.56, 1.12) 0.83
Quartile 3 1.05 (0.83, 1.33) 0.64 (0.42, 0.98) 0.15
Quartile 4 1.03 (0.83, 1.28) 0.95 (0.66, 1.35) 0.84

PFOA
Per IQR increase 1.04 (0.94, 1.15) 0.95 (0.82, 1.10) 0.24
Quartile 1 Ref Ref -
Quartile 2 1.09 (0.84, 1.42) 0.68 (0.50, 0.92) 0.03
Quartile 3 1.15 (0.90, 1.46) 0.75 (0.53, 1.05) 0.04
Quartile 4 1.12 (0.86, 1.48) 1.02 (0.72, 1.43) 0.52

IQR, interquartile range; TSH, thyroid-stimulating hormone; BMI, body mass index. 1 Multivariable linear regression
models were employed to estimate the relationships between PFAS levels and ln-TSH adjusting for maternal
age, parental socio-occupational status, parity, maternal smoking, and birth year. 2 Tests of heterogeneity were
also performed by assessing the p-value of the interaction term for each PFAS and overweight status in the
regression models.
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4. Example Illustration II: The Association between PFAS and Cardiovascular Disease Using the
US National Health and Nutrition Examination Survey

A number of studies have suggested that higher PFAS exposure levels are associated with glucose
homeostasis and cholesterol levels [11,12,33], which are strong risk factors for CVD. Moreover, a recent
cross-sectional study using the NHANES 1999–2000 and 2003–2014 waves (PFAS was not measured in
the 2001–2002 wave) showed that the serum PFAS levels were associated with the prevalence of CVD
(the self-reported physician diagnosis) in a representative sample of U.S. adults age ≥ 20 years [13].
Previous findings of PFAS exposure and CVD have been summarized in a recent review paper [28].
In the NHANES report [13], BMI of the participants at the time of the survey was included as a
confounder (i.e., obesitypre in Figure 1), and thus adjusted for in all regression models. However,
if PFAS exposure increases the risk of obesity, BMI could act as a mediator (i.e., obesitypost in Figure 1)
instead. Whether BMI here represents obesitypre or obesitypost in Figure 1 cannot be determined using
this cross-sectional data.

Using the publicly assessable data, we re-evaluated the associations between PFAS (continuous
[per interquartile range increase] or categorical [quartiles with the lowest quartile as a reference]
variables) and prevalence of CVD in NHANES 1999–2000 and 2003–2014 with or without adjusting
on participant’s BMI at the time of the study. Moreover, in this U.S. adult sample, we performed
stratified analyses classifying participants into obese (current BMI ≥ 30 kg/m2) or non-obese (current
BMI < 30 kg/m2). We used a different cut-off of BMI (i.e., 30 instead of 25 kg/m2) between the DNBC
cohort and the NHANES cohort because the former included pregnant women in Denmark with a
low prevalence of obesity while the latter included all adults aged ≥ 20 years in the US with a high
prevalence of obesity [34]. Details of the study sample selection, the measurements of each variable,
and the statistical approach are described in Text S1.

Among 7411 US adults included in this complete-case analysis, 571 participants (7.7%) had CVD.
The median (interquartile range) values of PFOS and PFOA were 14.1 (7.9–24.4) ng/mL and 3.5 (2.2–5.2)
ng/mL, respectively. Similar to the findings reported previously, we found that higher PFOS and PFOA
levels were positively associated with the prevalence of CVD and the effect estimates did not change
in the model without (Model 1) or with (Model 2) adjustment of current BMI (Table 3). In stratified
analyses, a stronger positive association between PFOS or PFOA levels and CVD prevalence was
observed for obese adults while the association was null for non-obese participants (Table 4).

Table 3. Associations between serum PFAS levels (ng/mL) and cardiovascular diseases in models with
or without adjustment of body mass index (BMI; n = 7411).

PFAS Prevalence Ratio of Cardiovascular Diseases (95% CI)

Model 1 a Model 2 b

PFOS
Per IQR increase 1.06 (1.03, 1.09) 1.06 (1.03, 1.09)
Quartile 1 Ref Ref
Quartile 2 1.08 (0.76, 1.52) 1.07 (0.76, 1.51)
Quartile 3 1.19 (0.84, 1.67) 1.18 (0.84, 1.67)
Quartile 4 1.18 (0.85, 1.64) 1.19 (0.86, 1.66)

PFOA
Per IQR increase 1.04 (1.01, 1.08) 1.04 (1.01, 1.08)
Quartile 1 Ref Ref
Quartile 2 1.01 (0.75, 1.36) 1.00 (0.75, 1.34)
Quartile 3 1.14 (0.82, 1.58) 1.14 (0.83, 1.56)
Quartile 4 1.30 (0.99, 1.70) 1.31 (1.00, 1.71)

IQR, interquartile range; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; BMI, body mass index.
a Multivariable modified Poisson regression models were employed to estimate the relationships between PFAS
levels and CVD prevalence adjusting for age, sex, race/ethnicity, education status, income, marital status, smoking,
systolic blood pressure, eGFR, HbA1c, statin prescriptions, and history of cancer. b Adjusted for BMI (<18.5, 18.5 to
<25, 25 to <30, and ≥30 kg/m2) in addition to Model 1.
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Table 4. Associations between serum PFAS levels (ng/mL) and cardiovascular diseases stratified obesity
status indicated by body mass index (BMI).

PFAS Prevalence Ratio of Cardiovascular Diseases (95% CI) a

Obese, BMI < 30
(n = 4796)

Non-Obese, BMI ≥ 30
(n = 2615) P for Interaction b

PFOS
Per IQR increase 1.09 (1.04, 1.14) 1.04 (1.01, 1.09) 0.18
Quartile 1 ref ref -
Quartile 2 0.89 (0.58, 1.35) 1.34 (0.78, 2.29) 0.28
Quartile 3 1.01 (0.69, 1.50) 1.51 (0.90, 2.54) 0.29
Quartile 4 1.08 (0.72, 1.60) 1.39 (0.85, 2.27) 0.64

PFOA
Per IQR increase 1.01 (0.95, 1.08) 1.07 (1.04, 1.11) 0.10
Quartile 1 ref ref -
Quartile 2 0.77 (0.53, 1.11) 1.38 (0.85, 2.23) 0.04
Quartile 3 1.01 (0.65, 1.55) 1.35 (0.87, 2.09) 0.35
Quartile 4 1.03 (0.73, 1.46) 1.79 (1.15, 2.77) 0.05

IQR, interquartile range; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; BMI, body mass index.
a Multivariable modified Poisson regression models were employed to estimate the relationships between PFAS
levels and CVD prevalence adjusting for age, sex, race/ethnicity, education status, income, marital status, smoking,
systolic blood pressure, eGFR, HbA1c, statin prescriptions, and history of cancer. b Tests of heterogeneity were also
performed by assessing the p-value of the interaction term for each PFAS and obesity status in the regression models.

5. Discussion

This study highlights the complex role of obesity measurement in PFAS exposure and health
outcome research. Over-adjustment problems caused by conditioning on intermediate variables require
attention in toxicological and environmental epidemiology given that many factors (e.g., medical
conditions, biomarkers, and socioeconomic status, etc) are candidates to be potential mediators in
the exposure-outcome relationship. Particularly, one measure of obesity can simultaneously act as
a confounder and a mediator as well as a “collider” intersecting multiple causal and non-causal
pathways, linking PFAS exposure to a health outcome. A naïve adjustment of obesity measurement in
a regression model may remove confounding but also poses a risk of blocking the mediating effect of
interests. Moreover, conditioning on an intermediate variable between the exposure and the outcome
can also risk an induction of collider bias [3,21], which is often being amplified in stratified analyses
as seen in the birth weight paradox [4,35] and obesity paradox [5]. We suggest careful consideration
of the complex role of obesity in analyses of PFAS exposure on a health outcome, thus results from
models adjusting or stratifying on obesity measurement need to be interpreted with caution. Having
longitudinal measures of BMI and PFAS levels might help to clarify the time–orders relationship
between the exposure and the covariate and appropriate statistical modeling strategies that need to be
employed [36–38].

Animal studies have suggested that the underlying mechanisms of the PFAS–obesity association
might include the activation of the peroxisome proliferator-activated receptors and other transcriptional
factors [39,40], the alteration of lipid metabolism [41], and the alteration of energy metabolism and
thyroid hormone homeostasis [22,23,42]. These mechanisms indicate that higher PFAS exposure may
increase the risk of obesity and possibly other metabolic disorders and CVD. Meanwhile, obesity can
also share several common causes with PFAS levels such as dietary and lifestyle factors, thus obesity
has been often used as a proxy variable to address lifestyle confounding factors that can be unmeasured
or unknown [43,44].

In our illustration examples using the DNBC (PFAS-thyroid association) and the NHANES
(PFAS-CVD association), we did not find a substantial change in estimates after adjusting for BMI.
In both studies, BMI might not be a strong confounder in the exposure-outcome associations. Particularly
for our second example using the NHANES, several variables related to metabolic disorders highly



Toxics 2020, 8, 125 8 of 11

correlated with BMI were already included in the multivariable model. Similarly, BMI might not be
a strong mediator in both studies given the very slight changes in effect estimate after adjusting for
BMI. However, the potential heterogeneity observed in stratified analyses by overweight or obese
status could still be due to collider stratification bias, if there is the presence of other uncontrolled
common causes of BMI and the health outcome (i.e., an open biasing path tracing PFAS→ [BMI]←
other controlled risk factors→ health outcomes in DAG). The direction and magnitude of such bias
within strata of a collider can vary and are hard to predict [45,46]. In the NHANES data, measures of
PFAS and BMI both can be after the participants had CVD, thus a more direct collider path is possible
(i.e., an open biasing path tracing PFAS→ [BMI]← health outcomes in DAG). Pre-pregnancy BMI
in the DNBC indicated weight at pre-pregnancy period before PFAS was measured in pregnancy,
but PFASs are very persistent, thus one serum measure could represent cumulative exposure years
prior to pregnancy. These examples highlight the complexity of seemingly simple adjustment or
stratification analyses routinely performed in epidemiological analyses of PFAS.

In this article, we re-evaluated the main findings reported from two recently published articles on
PFAS exposure. Our results were meant for illustration and do not reflect the full scope of considerations
needed to study the potential causal effect of PFAS on pregnancy thyroid hormones or CVD risk in
adults. Our illustrations were based on the two most common types of PFAS and we focused on
explaining the potentially complex role of one covariate (i.e., BMI as a measurement of obesity) in
analyses. Obesity or overweight measurement was based on self-reported BMI, and stratification
analysis was done using a binary classification for simplicity purpose and considering the distribution
of BMI in these datasets. Although, how obesity should be considered in causal analyses has been
debated in epidemiology [47–49], we simply focused on the role of obesity measure as a confounder or
a mediator in PFAS studies.

In summary, careful consideration of the confounding and/or the mediating role of obesity is
critical for researchers not to misinterpret the data in PFAS studies, particularly when stratifying
the study sample by individuals’ obese or overweight status. If the variable is highly likely to be a
mediator of the causal pathway of interest, we recommend to refrain from conducting and interpreting
the stratified analysis by obesity or overweight, because the stratum-specific effect estimates could be
biased. Measuring and adjusting for common causes of PFAS and obesity such as sociodemographic,
dietary and lifestyle factors that are less likely to be in the mediating pathways would be recommended
to address confounding between PFAS exposure and health outcomes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2305-6304/8/4/125/s1,
Text S1: Methods in “Example Illustration II” using the NHANES.

Author Contributions: Conceptualization, K.I., A.G., T.S., Z.L.; methodology, K.I., Z.L.; formal analysis, K.I.,
Z.L.; investigation, K.I., A.G., T.S., C.H.R.-H., Z.L.; writing—original draft preparation, K.I.; writing—review and
editing, K.I., A.G., T.S., C.H.R.-H., Z.L.; visualization, K.I., C.H.R.-H., Z.L.; supervision, K.I. All authors have read
and agreed to the published version of the manuscript.

Funding: KI was supported by National Institutes of Health (NIH)/NIDDK grant F99DK126119, Toffler award
at UCLA, and Honjo International Foundation Scholarship. ZL was supported by the NIH/NIEHS Pathway to
Independence Award (K99ES026729/R00ES026729). This article does not necessarily represent the views and
policies of the NIH. The funders had no role in the design and conduct of the study; collection, management,
analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit
the manuscript for publication.

Acknowledgments: The Danish National Birth Cohort was established with a significant grant from the Danish
National Research Foundation. Additional support was obtained from the Danish Regional Committees,
the Pharmacy Foundation, the Egmont Foundation, the March of Dimes Birth Defects Foundation, the Health
Foundation and other minor grants. The DNBC Biobank has been supported by the Novo Nordisk Foundation
and the Lundbeck Foundation. Follow-up of mothers and children have been supported by the Danish Medical
Research Council (SSVF 0646, 271-08-0839/06-066023, O602-01042B, 0602-02738B), the Lundbeck Foundation (195/04,
R100-A9193), The Innovation Fund Denmark 0603-00294B (09-067124), the Nordea Foundation (02-2013-2014),
Aarhus Ideas (AU R9-A959-13-S804), University of Copenhagen Strategic Grant (IFSV 2012), and the Danish
Council for Independent Research (DFF-4183-00594 and DFF-4183-00152). The specific grant numbers relevant for
this paper can be found at https://www.dnbc.dk/access-to-dnbc-data/acknowledgement.

http://www.mdpi.com/2305-6304/8/4/125/s1
https://www.dnbc.dk/access-to-dnbc-data/acknowledgement


Toxics 2020, 8, 125 9 of 11

Conflicts of Interest: All authors state that they have no conflict of interest.

References

1. Rothman, K.; Grenland, S.; Lash, T.L. Modern Epidemiology; Wolters Kluwer Health/Lippincott Williams &
Wilkins: Philadelphia, PA, USA, 2008.

2. Schisterman, E.F.; Cole, S.R.; Platt, R.W. Overadjustment Bias and Unnecessary Adjustment in Epidemiologic
Studies. Epidemiology 2009, 20, 488–495. [CrossRef] [PubMed]

3. Cole, S.R.; Platt, R.W.; Schisterman, E.F.; Chu, H.; Westreich, D.; Richardson, D.; Poole, C. Illustrating bias
due to conditioning on a collider. Int. J. Epidemiol. 2010, 39, 417–420. [CrossRef] [PubMed]

4. Hernández-Díaz, S.; Schisterman, E.F.; Hernán, M.A. The Birth Weight “Paradox” Uncovered? Am. J.
Epidemiol. 2006, 164, 1115–1120. [CrossRef] [PubMed]

5. Preston, S.H.; Stokes, A. Obesity Paradox. Epidemiology 2014, 25, 454–461. [CrossRef] [PubMed]
6. US EPA. Per- and Polyfluoroalkyl Substances (PFAS). Available online: https://www.epa.gov/pfas (accessed

on 24 July 2020).
7. WHO State of the Science of Endocrine Disrupting Chemicals—2012. Available online: http://apps.who.int/

iris/bitstream/10665/78101/1/9789241505031_eng.pdf (accessed on 25 April 2018).
8. Bjerregaard-Olesen, C.; Bach, C.C.; Long, M.; Ghisari, M.; Bossi, R.; Bech, B.H.; Nohr, E.A.; Henriksen, T.B.;

Olsen, J.; Bonefeld-Jørgensen, E.C. Time trends of perfluorinated alkyl acids in serum from Danish pregnant
women 2008–2013. Environ. Int. 2016, 91, 14–21. [CrossRef] [PubMed]

9. Kato, K.; Wong, L.-Y.; Jia, L.T.; Kuklenyik, Z.; Calafat, A.M. Trends in exposure to polyfluoroalkyl chemicals
in the U.S. Population: 1999–2008. Environ. Sci. Technol. 2011, 45, 8037–8045. [CrossRef] [PubMed]

10. Ballesteros, V.; Costa, O.; Iñiguez, C.; Fletcher, T.; Ballester, F.; Lopez-Espinosa, M.-J. Exposure to perfluoroalkyl
substances and thyroid function in pregnant women and children: A systematic review of epidemiologic
studies. Environ. Int. 2017, 99, 15–28. [CrossRef]

11. Nelson, J.W.; Hatch, E.E.; Webster, T.F. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight,
and insulin resistance in the general U.S. population. Environ. Health Perspect. 2010, 118, 197–202. [CrossRef]

12. Geiger, S.D.; Xiao, J.; Ducatman, A.; Frisbee, S.; Innes, K.; Shankar, A. The association between PFOA,
PFOS and serum lipid levels in adolescents. Chemosphere 2014, 98, 78–83. [CrossRef]

13. Huang, M.; Jiao, J.; Zhuang, P.; Chen, X.; Wang, J.; Zhang, Y. Serum polyfluoroalkyl chemicals are associated
with risk of cardiovascular diseases in national U.S. population. Environ. Int. 2018, 119, 37–46. [CrossRef]

14. Cardenas, A.; Hauser, R.; Gold, D.R.; Kleinman, K.P.; Hivert, M.-F.; Fleisch, A.F.; Lin, P.-I.D.; Calafat, A.M.;
Webster, T.F.; Horton, E.S.; et al. Association of Perfluoroalkyl and Polyfluoroalkyl Substances with Adiposity.
JAMA Netw. Open 2018, 1, e181493. [CrossRef] [PubMed]

15. Braun, J.M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment. Nat. Rev.
Endocrinol. 2017, 13, 161–173. [CrossRef] [PubMed]

16. Andersen, C.S.; Fei, C.; Gamborg, M.; Nohr, E.A.; Sørensen, T.I.A.; Olsen, J. Prenatal exposures to perfluorinated
chemicals and anthropometry at 7 years of age. Am. J. Epidemiol. 2013, 178, 921–927. [CrossRef] [PubMed]

17. Pearl, J. Causal Diagrams for Empirical Research. Biometrika 1995, 82, 669–688. [CrossRef]
18. Greenland, S.; Pearl, J.; Robins, J.M. Causal Diagrams for Epidemiologic Research. Epidemiology 1999, 10,

37–48. [CrossRef]
19. VanderWeele, T.J. Principles of confounder selection. Eur. J. Epidemiol. 2019, 34, 211–219. [CrossRef]
20. Inoue, K.; Ritz, B.; Andersen, S.L.; Ramlau-Hansen, C.H.; Høyer, B.B.; Bech, B.H.; Henriksen, T.B.;

Bonefeld-Jørgensen, E.C.; Olsen, J.; Liew, Z. Perfluoroalkyl Substances and Maternal Thyroid Hormones in
Early Pregnancy; Findings in the Danish National Birth Cohort. Environ. Health Perspect. 2019, 127, 117002.
[CrossRef]

21. Greenland, S. Quantifying biases in causal models: Classical confounding vs collider-stratification bias.
Epidemiology 2003, 14, 300–306. [CrossRef]

22. Weiss, J.M.; Andersson, P.L.; Lamoree, M.H.; Leonards, P.E.G.; van Leeuwen, S.P.J.; Hamers, T. Competitive
binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin.
Toxicol. Sci. 2009, 109, 206–216. [CrossRef]

23. Yu, W.-G.; Liu, W.; Jin, Y.-H. Effects of perfluorooctane sulfonate on rat thyroid hormone biosynthesis and
metabolism. Environ. Toxicol. Chem. 2009, 28, 990–996. [CrossRef]

http://dx.doi.org/10.1097/EDE.0b013e3181a819a1
http://www.ncbi.nlm.nih.gov/pubmed/19525685
http://dx.doi.org/10.1093/ije/dyp334
http://www.ncbi.nlm.nih.gov/pubmed/19926667
http://dx.doi.org/10.1093/aje/kwj275
http://www.ncbi.nlm.nih.gov/pubmed/16931543
http://dx.doi.org/10.1097/EDE.0000000000000075
http://www.ncbi.nlm.nih.gov/pubmed/24608666
https://www.epa.gov/pfas
http://apps.who.int/iris/bitstream/10665/78101/1/9789241505031_eng.pdf
http://apps.who.int/iris/bitstream/10665/78101/1/9789241505031_eng.pdf
http://dx.doi.org/10.1016/j.envint.2016.02.010
http://www.ncbi.nlm.nih.gov/pubmed/26891270
http://dx.doi.org/10.1021/es1043613
http://www.ncbi.nlm.nih.gov/pubmed/21469664
http://dx.doi.org/10.1016/j.envint.2016.10.015
http://dx.doi.org/10.1289/ehp.0901165
http://dx.doi.org/10.1016/j.chemosphere.2013.10.005
http://dx.doi.org/10.1016/j.envint.2018.05.051
http://dx.doi.org/10.1001/jamanetworkopen.2018.1493
http://www.ncbi.nlm.nih.gov/pubmed/30646133
http://dx.doi.org/10.1038/nrendo.2016.186
http://www.ncbi.nlm.nih.gov/pubmed/27857130
http://dx.doi.org/10.1093/aje/kwt057
http://www.ncbi.nlm.nih.gov/pubmed/23825166
http://dx.doi.org/10.1093/biomet/82.4.669
http://dx.doi.org/10.1097/00001648-199901000-00008
http://dx.doi.org/10.1007/s10654-019-00494-6
http://dx.doi.org/10.1289/EHP5482
http://dx.doi.org/10.1097/01.EDE.0000042804.12056.6C
http://dx.doi.org/10.1093/toxsci/kfp055
http://dx.doi.org/10.1897/08-345.1


Toxics 2020, 8, 125 10 of 11

24. Long, M.; Ghisari, M.; Bonefeld-Jørgensen, E.C. Effects of perfluoroalkyl acids on the function of the thyroid
hormone and the aryl hydrocarbon receptor. Environ. Sci. Pollut. Res. Int. 2013, 20, 8045–8056. [CrossRef]
[PubMed]

25. Burrow, G.N.; Fisher, D.A.; Larsen, P.R. Maternal and fetal thyroid function. N. Engl. J. Med. 1994, 331,
1072–1078. [PubMed]

26. Korevaar, T.I.M.; Medici, M.; Visser, T.J.; Peeters, R.P. Thyroid disease in pregnancy: New insights in diagnosis
and clinical management. Nat. Rev. Endocrinol. 2017, 13, 610–622. [CrossRef] [PubMed]

27. Preston, E.V.; Webster, T.F.; Oken, E.; Claus Henn, B.; McClean, M.D.; Rifas-Shiman, S.L.; Pearce, E.N.;
Braverman, L.E.; Calafat, A.M.; Ye, X.; et al. Maternal Plasma per- and Polyfluoroalkyl Substance
Concentrations in Early Pregnancy and Maternal and Neonatal Thyroid Function in a Prospective Birth
Cohort: Project Viva (USA). Environ. Health Perspect. 2018, 126, 027013. [CrossRef] [PubMed]

28. Kirk, M.; Smurthwaite, K.; Bräunig, J.; Trevenar, S.; D’Este, C.; Lucas, R.; Lal, A.; Korda, R.; Clements, A.;
Mueller, J.; et al. The PFAS Health Study: Systematic Literature Review; The Australian National University:
Canberra, ACT, Australia, 2018.

29. Olsen, J.; Melbye, M.; Olsen, S.F.; Sørensen, T.I.; Aaby, P.; Andersen, A.M.; Taxbøl, D.; Hansen, K.D.;
Juhl, M.; Schow, T.B.; et al. The Danish National Birth Cohort—Its background, structure and aim. Scand. J.
Public Health 2001, 29, 300–307. [CrossRef]

30. Houde, M.; Martin, J.W.; Letcher, R.J.; Solomon, K.R.; Muir, D.C.G. Biological monitoring of polyfluoroalkyl
substances: A review. Environ. Sci. Technol. 2006, 40, 3463–3473. [CrossRef]

31. Olsen, G.W.; Burris, J.M.; Ehresman, D.J.; Froehlich, J.W.; Seacat, A.M.; Butenhoff, J.L.; Zobel, L.R. Half-life of
serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired
fluorochemical production workers. Environ. Health Perspect. 2007, 115, 1298–1305. [CrossRef]

32. Alexander, E.K.; Pearce, E.N.; Brent, G.A.; Brown, R.S.; Chen, H.; Dosiou, C.; Grobman, W.A.; Laurberg, P.;
Lazarus, J.H.; Mandel, S.J.; et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis
and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid 2017, 27, 315–389.
[CrossRef]

33. Lin, C.-Y.; Chen, P.-C.; Lin, Y.-C.; Lin, L.-Y. Association among serum perfluoroalkyl chemicals, glucose
homeostasis, and metabolic syndrome in adolescents and adults. Diabetes Care 2009, 32, 702–707. [CrossRef]

34. CDC Obesity Is a Common, Serious, and Costly Disease. Available online: https://www.cdc.gov/obesity/

data/adult.html (accessed on 7 November 2020).
35. VanderWeele, T.J. Commentary: Resolutions of the birthweight paradox: Competing explanations and

analytical insights. Int. J. Epidemiol. 2014, 43, 1368–1373. [CrossRef]
36. Daniel, R.M.; Cousens, S.N.; Stavola, B.L.D.; Kenward, M.G.; Sterne, J.A.C. Methods for dealing with

time-dependent confounding. Stat. Med. 2013, 32, 1584–1618. [CrossRef] [PubMed]
37. VanderWeele, T.J. Mediation Analysis: A Practitioner’s Guide. Annu. Rev. Public Health 2016, 37, 17–32.

[CrossRef] [PubMed]
38. Inoue, K.; Yan, Q.; Paul, K.; Walker, D.; Jones, D.; Ritz, B. Air pollution and adverse pregnancy and birth

outcomes: Mediation analysis using metabolomic profiles. Curr. Environ. Health Rep. 2020, in press.
[CrossRef] [PubMed]

39. Rosen, M.B.; Lee, J.S.; Ren, H.; Vallanat, B.; Liu, J.; Waalkes, M.P.; Abbott, B.D.; Lau, C.; Corton, J.C.
Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: Evidence for the
involvement of nuclear receptors PPAR alpha and CAR. Toxicol. Sci. 2008, 103, 46–56. [CrossRef] [PubMed]

40. Heuvel, J.V.; Thompson, J.; Frame, S.; Gillies, P. Differential Activation of Nuclear Receptors by Perfluorinated
Fatty Acid Analogs and Natural Fatty Acids: A Comparison of Human, Mouse, and Rat Peroxisome
Proliferator-Activated Receptor-α, -β, and -γ, Liver X Receptor-β, and Retinoid X Receptor-α. Toxicol. Sci.
2006, 92, 476–489. [CrossRef] [PubMed]

41. Yu, N.; Wei, S.; Li, M.; Yang, J.; Li, K.; Jin, L.; Xie, Y.; Giesy, J.P.; Zhang, X.; Yu, H. Effects of Perfluorooctanoic
Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics
Approach. Sci. Rep. 2016, 6, 23963. [CrossRef]

42. Kirkley, A.G.; Sargis, R.M. Environmental Endocrine Disruption of Energy Metabolism and Cardiovascular
Risk. Curr. Diab. Rep. 2014, 14, 494. [CrossRef]

http://dx.doi.org/10.1007/s11356-013-1628-7
http://www.ncbi.nlm.nih.gov/pubmed/23539207
http://www.ncbi.nlm.nih.gov/pubmed/8090169
http://dx.doi.org/10.1038/nrendo.2017.93
http://www.ncbi.nlm.nih.gov/pubmed/28776582
http://dx.doi.org/10.1289/EHP2534
http://www.ncbi.nlm.nih.gov/pubmed/29488882
http://dx.doi.org/10.1177/14034948010290040201
http://dx.doi.org/10.1021/es052580b
http://dx.doi.org/10.1289/ehp.10009
http://dx.doi.org/10.1089/thy.2016.0457
http://dx.doi.org/10.2337/dc08-1816
https://www.cdc.gov/obesity/data/adult.html
https://www.cdc.gov/obesity/data/adult.html
http://dx.doi.org/10.1093/ije/dyu162
http://dx.doi.org/10.1002/sim.5686
http://www.ncbi.nlm.nih.gov/pubmed/23208861
http://dx.doi.org/10.1146/annurev-publhealth-032315-021402
http://www.ncbi.nlm.nih.gov/pubmed/26653405
http://dx.doi.org/10.1007/s40572-020-00284-3
http://www.ncbi.nlm.nih.gov/pubmed/32770318
http://dx.doi.org/10.1093/toxsci/kfn025
http://www.ncbi.nlm.nih.gov/pubmed/18281256
http://dx.doi.org/10.1093/toxsci/kfl014
http://www.ncbi.nlm.nih.gov/pubmed/16731579
http://dx.doi.org/10.1038/srep23963
http://dx.doi.org/10.1007/s11892-014-0494-0


Toxics 2020, 8, 125 11 of 11

43. Schaider, L.A.; Balan, S.A.; Blum, A.; Andrews, D.Q.; Strynar, M.J.; Dickinson, M.E.; Lunderberg, D.M.;
Lang, J.R.; Peaslee, G.F. Fluorinated Compounds in U.S. Fast Food Packaging. Environ. Sci. Technol. Lett.
2017, 4, 105–111. [CrossRef]

44. Susmann, H.P.; Schaider, L.A.; Rodgers, K.M.; Rudel, R.A. Dietary Habits Related to Food Packaging and
Population Exposure to PFASs. Environ. Health Perspect. 2019, 127, 107003. [CrossRef]

45. Liew, Z.; Olsen, J.; Cui, X.; Ritz, B.; Arah, O.A. Bias from conditioning on live birth in pregnancy cohorts:
An illustration based on neurodevelopment in children after prenatal exposure to organic pollutants. Int. J.
Epidemiol. 2015, 44, 345–354. [CrossRef]

46. VanderWeele, T.J.; Mumford, S.L.; Schisterman, E.F. Conditioning on intermediates in perinatal epidemiology.
Epidemiology 2012, 23, 1–9. [CrossRef] [PubMed]

47. Hernán, M.A.; VanderWeele, T.J. Compound Treatments and Transportability of Causal Inference.
Epidemiology 2011, 22, 368–377. [CrossRef] [PubMed]

48. Hernán, M.A.; Taubman, S.L. Does obesity shorten life? The importance of well-defined interventions to
answer causal questions. Int. J. Obes. 2008, 32 (Suppl. 3), S8–S14. [CrossRef]

49. Pearl, J. Does Obesity Shorten Life? Or is it the Soda? On Non-manipulable Causes. J. Causal Inference 2018,
6. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acs.estlett.6b00435
http://dx.doi.org/10.1289/EHP4092
http://dx.doi.org/10.1093/ije/dyu249
http://dx.doi.org/10.1097/EDE.0b013e31823aca5d
http://www.ncbi.nlm.nih.gov/pubmed/22157298
http://dx.doi.org/10.1097/EDE.0b013e3182109296
http://www.ncbi.nlm.nih.gov/pubmed/21399502
http://dx.doi.org/10.1038/ijo.2008.82
http://dx.doi.org/10.1515/jci-2018-2001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Confounder-Mediator Dilemma 
	Example Illustration I: The Association between PFAS and Thyroid Hormones during Pregnancy in the Danish National Birth Cohort 
	Example Illustration II: The Association between PFAS and Cardiovascular Disease Using the US National Health and Nutrition Examination Survey 
	Discussion 
	References

