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Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases. To

identify AD-related genes from transcriptomics and help to develop new drugs to treat

AD. In this study, firstly, we obtained differentially expressed genes (DEG)-enriched

coexpression networks between AD and normal samples in multiple transcriptomics

datasets by weighted gene co-expression network analysis (WGCNA). Then, a

convergent genomic approach (CFG) integrating multiple AD-related evidence was used

to prioritize potential genes from DEG-enriched modules. Subsequently, we identified

candidate genes in the potential genes list. Lastly, we combined deepDTnet and

SAveRUNNER to predict interaction among candidate genes, drug and AD. Experiments

on five datasets show that the CFG score ofGJA1 is the highest among all potential driver

genes of AD. Moreover, we found GJA1 interacts with AD from target-drugs-diseases

network prediction. Therefore, candidate gene GJA1 is the most likely to be target of

AD. In summary, identification of AD-related genes contributes to the understanding of

AD pathophysiology and the development of new drugs.

Keywords: Alzheimer’s disease, transcriptomics, drug repurposing, deep learning, drug-target interaction

INTRODUCTION

Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases, accounting for
the majority of dementia patients (Wood, 2018; Darby et al., 2019). AD is estimated to affect
in 13.8 million individuals in the United States (US), with 7.0 million being aged 85 years or
older by 2050 (Alzheimer’s Association, 2018; Cummings et al., 2019). Currently, genetic factor
are believed to be partially responsible for AD (Xu et al., 2018). Genome-wide association studies
(GWAS) have also revealed that some single nucleotide polymorphisms (SNPs) contribute to AD
disease onset (Hao et al., 2019; Andrews et al., 2020). These include common variants such as
amyloid protein precursor (APP), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and apolipoprotein
E (APOE). PSEN1, PSEN2 and APP genes are clear pathogenic genes of early-onset AD (Lanoiselée
et al., 2017). APOE, as the only identified risk gene for late-onset AD, can increase the rate of
cognitive decline (Wijsman et al., 2011). Different microRNAs (miRNAs) are also involved in
the pathophysiology of AD (Femminella et al., 2015). For example, miRNA-377 promotes cell
proliferation and inhibits cell apoptosis by regulating the expression level of cadherin 13 (CDH13),
thus participating in the occurrence and development of AD (Liu et al., 2018). Long non-coding
RNAs (lncRNAs) have been widely reported to be associated with a variety of physiological
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and pathological processes, such as AD. Brain cytoplasmic RNA
is a kind of lncRNA, and the overexpression of brain cytoplasmic
may lead to synaptic/dendritic degeneration in AD (Doxtater
et al., 2020). Despite the fact that remarkable advances have been
made in the understanding of the genetic basis of AD, there is no
disease modifying therapy for AD. Identification of AD-related
genes from transcriptomics becomes an attractive strategy for
finding potential targets for drug therapy.

Gene expression profiling of transcriptomic datasets of AD
and normal brain samples has identified potential genes and
contributed to the search for potential targets (Patel et al.,
2019). Correlation networks are often used to analyze gene
expression data and gather biologically-relevant information
from genes with similar co-expression patterns. At present,
the two most commonly used gene co-expression network
algorithms are SWItchMiner (SWIM) (Falcone et al., 2019)
and Weighted Gene Correlation Network Analysis (WGCNA)
(Nangraj et al., 2020; Ren et al., 2020). SWIM constructs an
unweighted correlation network using local and global graph
attributes to mine genes, known as switch genes, that have been
shown to be associated with drastic changes in cell phenotypes,
such as cancer development. WGCNA builds a correlation
network that can be weighted or unweighted, and identifies
related genes bymeasuring the centrality of a gene in the network.
However, SWIM does not consider scale-free networks. The
most notable characteristic of a scale-free network is the relative
commonness of vertices with a degree that greatly exceeds the
average. The highest-degree nodes are often referred to as "hubs"
and are considered to have a specific purpose in their network.
WGCNA is based solely on a scale-free network that is used to
determine the relationships between genes, thereby enabling the
identification of modules (clusters) of highly correlated genes,
and the hub gene in each module. WGCNA is ideal for the
identification of gene modules and key genes that contribute to
phenotypic traits. Here, we used WGCNA to mine AD-specific
modules from DEGs of AD and normal samples and identified
candidate genes of from AD-specific modules.

Studying target-drug-disease network has contributed to the
search for candidate genes of AD. In recent years, deep learning
has been applied in biomedical and artificial intelligence fields,
and many deep learning frameworks have been used to deal with
the prediction problem of drug-target interaction (DTIs) (Xia
et al., 2019). Öztürk et al. (2018) proposed a convolutional neural
network (CNN)-based method based on using only sequence
information and performing DTIs prediction on Davis and KIBA
dataset. Rayhan et al. developed the FRnet-DTI, which is using
autoenconder and CNN for feature extraction and classification,
respectively (Chu et al., 2021). Zeng et al. (2020a) utilized cascade
deep forest and arbitrary-order neighboring algorithms to predict
DTIs. Zeng et al. (2020b) developed deepDTnet, a deep learning
methodology for new target identification and drug repurposing
in a heterogeneous network embedding 15 types of chemical,
genomic, phenotypic, and cellular network profiles. Lots of works
has been proposed for drug repurposing. Zeng et al. (2019)
presented deepDR (deep learning-based drug repositioning), to
systematically infer new drug-disease relationships for in silico
drug repurposing. Fiscon et al. (2021) proposed SAveRUNNER,

which predicts drug-disease associations by quantifying the
interplay between the drug targets and the disease-specific
proteins in the human interactome via a novel network-based
similarity measure that prioritizes associations between drugs
and diseases locating in the same network neighborhoods.
Here, we combined deepDTnet and SAveRUNNER to predict
interaction among candidate genes, drug and AD.

In this paper, we aimed to search potential driver genes
for AD from DEGs based on multiple transcriptomics dataset.
We hypothesized that the DEGs might be regulated by
several candidate genes in the DEG-enriched coexpression
modules/networks by WGCNA. We used CFG score as a
measurement of the likelihood for candidate genes to be AD
targets. Further, we combined deepDTnet and SAveRUNNER to
predict interaction between candidate genes and AD based on
gene-drug-disease network in Figure 1.

MATERIALS AND METHODS

AD Expression Data Collection and
Preprocessing
Our dataset came from the AlzData and ADNI database. For
AlzData, Xu et al. constructed new database AlzData (http://
www.alzdata.org/) including, hippocampus (HP), entorhinal
cortex (EC), frontal cortex (FC), and temporal cortex (TC).
The original four microarray data come from Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo), by
searching with the keyword “Alzheimer.” Data retrieval has been
performed using the following series of criteria: 1) AD-related
expression profiles in the ArrayExpress database (https://
www.ebi.ac.uk/arrayexpress/) were checked to avoid potential
omissions; 2) Studies with no genome-wide probes or few probes
were filtered; 3) For those GSE series with possibly duplicated
samples or identical sample resource, we retained the one with
a larger sample size and excluded another; 4) Only expression
profiles of human postmortem brain tissues from HP, EC, FC,
and TC, which were main regions affected by AD, were included;
5) Data retrieval and quality control were double-checked by two
investigators. To ensure data quality, samples that were younger
than 50 years old, or were outliers in our principal component
analysis (PCA) of expression distribution, were excluded from
this study.

For ADNI data (http://adni.loni.usc.edu), Gene expression
profiling from peripheral blood samples collected using PAXgene
tubes for RNA analysis was performed on the Affymetrix Human
Genome U219 Array (www.affymetrix.com, Santa Clara, CA)
for ADNI and on the Illumina Whole-Genome DASL assay
(www.illumina.com, San Diego, CA) for AddNeuroMed and
MCSA. All probe sets were mapped and annotated with reference
to the human genome (hg19). Raw microarray expression
values were pre-processed followed by standard quality control
(QC) procedures on samples and probe sets. Briefly, raw
expression values were pre-processed using the robust multi-
chip average normalization method. We checked discrepancies
between the reported sex and sex determined from sex-specific
gene expression data including XIST and USP9Y and also

Frontiers in Aging Neuroscience | www.frontiersin.org 2 March 2022 | Volume 14 | Article 752858

http://www.alzdata.org/
http://www.alzdata.org/
https://www.ncbi.nlm.nih.gov/geo
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
http://adni.loni.usc.edu
https://www.affymetrix.com
https://www.illumina.com
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Xia et al. Potential Targets for Alzheimer’s Disease

FIGURE 1 | A flowchart of the whole study. (1) Data collection from AlzData and ADNI; (2) Data preprocessing (e.g., eliminating the samples with missing data); (3)

DEGs regarded with |logFC| > 0.1 and FDR < 0.05; (4) Enrichment of biological process analyzed by DAVID 6.8; (5) Use WGCNA to find AD-specific module; (6)

Prioritize driver genes of AD by CFG score; (7) candidate genes with CFG ≥ 5 are identified. (8) Collect the dataset of target, drug and disease; (9) Combine

deepDTnet and SAveRUNNER to predict association between candidate genes and AD.

evaluated whether SNP genotypes were matched with genotypes
predicted from gene expression data.

In this study, we only consider gene expression data and
binary classification problem (control vs. AD). After data
processing, e.g., eliminating the samples with missing data,
altogether, we have 467 controls and 309 AD from five dataset
for subsequent analyses in total, including EC (39 vs. 39), HP (67
vs. 74), FC (128 vs. 104), TC (39 vs. 52) and ADNI (194 vs. 40).
Detailed information of each dataset is shown in Table 1.

Statistical Analysis
Genes with log2 fold change greater than 0.1 (|logFC| > 0.1) and
FDR smaller than 0.05 (FDR < 0.05) were defined as DEGs in
AD patients in the each dataset. Functional enrichment of the
DEGs was produced from Database for DAVID 6.8, which now
provides a comprehensive set of functional annotation tools for
investigators to understand biological meaning behind large list
of genes. For obtained list of DEGs, DAVID 6.8 is able to identify
enriched biological themes, particularly KEGG pathway and GO
terms (Huang et al., 2007). Differential expression analysis was
conducted by R package limma and the Benjamini-Hochberg’s
method was used to correct for multiple comparisons (Xu et al.,
2018).

Weighted Gene Co-expression Network
Analysis
Weused R packageWGCNA to perform the weighted correlation
network analysis. For genes i and j, the correlation coefficient is

rij, we define the correlation intensity : aij = r
β
ij , which depends

on the choice of power β (the power value ranging from 1 to 20).
When the independence is more than 0.80, the scale-free network
is obtained by screening the appropriate power value. Finally,
the adjacency matrix was transformed into topological overlap
matrix (TOM). Once the network is built through the TOM, it is
converted to a distance matrix (1-TOM) to use it as the basis for
clustering. A dynamic tree-cutting algorithm is then applied to
the dendrogram to generate a partition of disjunct sets of genes.
In addition, we extracted the corresponding gene information of
each module for further analysis (Botía et al., 2017).

deepDTnet and SAveRUNNER
In this study, we combined deepDTnet and SAveRUNNER to
predict interaction between candidate genes and AD. deepDTnet
and SAveRUNNER were applied to predict the interactions of
candidate genes/targets and drugs and relationship drugs and
diseases, respectively.
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TABLE 1 | Brief descriptions for five datasets.

Dataset
AlzData

Alzheimer’s disease neuroimaging initiative
Entorhinal cortex Hippocampus Frontal cortex Temporal cortex

Abbreviation EC HP FC TC ADNI

No.of.gene 15361 16313 11779 15462 49387

Sample size(Control/AD) 78 (39/39) 141 (67/74) 232 (128/104) 91 (39/52) 234 (194/40)

Age 80 (29.6) 81.7 (9.6) 83 (9.4) 81 (8.7) 74.3 (6.5)

Male/Female/Unknown 35/43/0 68/73/0 99/111/22 32/41/18 116/118/0

Aβ NA NA NA NA 1142.9 (494.9)

Tau NA NA NA NA 25.4 (11.6)

These datasets come from AlzData and ADNI, respectively. Each dataset has multiple features. SDs are given in parentheses.

FIGURE 2 | Enhanced Volcano for illustrating DEGs in all datasets. The gene with |logFC| > 0.1 and FDR < 0.05 as DEGs shown in red node. (A) EC, (B) HP, (C) FC,

(D) TC and (E) ADNI. Note: in ADNI dataset, DEGs by counting the frequency of 3 or above out of 10 occurrences.
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FIGURE 3 | Venn diagram is used to represent relationships between EC

(blue), HP (red), FC (green), TC (yellow) and ADNI (brown).

Firstly, deepDTnet uses stacked denoising autoencoder
(SDAE) to obtain low-dimensional embedding for both drugs
and targets. A SDAE model minimizes the regularized problem
and tackles reconstruction error, defined as follows:

minwl ,bl ||x− x̂||2F + λ
∑

l

||Wl||
2
F (1)

where x is input sample x(a vector); L is the number of
layers, wl is weight matrix, and bl is bias vector of layer l ∈

{1, ., L}. λ is a regularization parameter and ||.||F denotes the
Frobenius norm. The middle layer is the key that enables SDAE
to reduce dimensionality and extract effective representations of
side information.

Subsequently, Positive Unlabeled-matrix completion is used
to predict unknown drug-target pairs. Assume the drug-target
interaction matrix is given as P ∈ RNd×Nt , where Nd is the
number of drugs and Nt is the number of targets. When Pij =

1, infers drug i is linked to target j while zero indicates the
relationship is unobserved. The optimization problem of our
model is parameterized as:

m
i,j
in

∑

(i,j)∈Ω+

(Pij − xiWHTyTj )
2 + α

∑

(i,j)∈Ω−

(Pij − xiWHTyTj )
2 + λ(||W||2F + ||H||2F ) (2)

where the set Ω ∈ Nd × Nt is the observed entries from the
true underlying matrix that includes both positive and negative
entries, such that Ω = Ω+ ∪ Ω−, let Ω+ denotes the observed
samples and Ω−denotes the missing entries chosen as negatives.
Under the assumption that the matrix is modeled to be low rank,
i.e., W ∈ Nd × k and H ∈ Nt × k, and these matrices share a
low dimensional latent space, satisfying k 6 Nd,Nt . For biased
inductivematrix completion, the value α is the key parameter, λ is
a regularization parameter. Next, we approximate the likelihood
of the pairwise interaction score between drug i and target j as:

Score(i, j) = xiWHTyTj (3)

where the higher score means a higher possibility that drug i is
correlated with target j.

FIGURE 4 | Venn diagram is used to represent relationships between multiple datasets. (A) KEGG pathway and (B) GO term.
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TABLE 2 | Significant KEGG pathways obtained from DAVID (P < 0.005).

ID Description ID Description

hsa00020 Citrate cycle (TCA cycle) hsa04966 Collecting duct acid secretion

hsa00190 Oxidative phosphorylation hsa05010 Alzheimer’s disease

hsa00260 Glycine, serine and threonine

metabolism

hsa05012 Parkinson’s disease

hsa00620 Pyruvate metabolism hsa05014 Amyotrophic lateral sclerosis

hsa01200 Carbon metabolism hsa05016 Huntington disease

hsa01210 2-Oxocarboxylic acid

metabolism

hsa05017 Spinocerebellar ataxia

hsa01230 Biosynthesis of amino acids hsa05020 Prion disease

hsa01522 Endocrine resistance hsa05022 Pathways of neurodegeneration

- multiple diseases

hsa03050 Proteasome hsa05032 Morphine addiction

hsa04010 MAPK signaling pathway hsa05033 Nicotine addiction

hsa04070 Phosphatidylinositol signaling

system

hsa05110 Vibrio cholerae infection

hsa04071 Sphingolipid signaling pathway hsa05120 Epithelial cell signaling in

Helicobacter pylori infection

hsa04110 Cell cycle hsa05131 Shigellosis

hsa04120 Ubiquitin mediated proteolysis hsa05132 Salmonella infection

hsa04137 Mitophagy - animal hsa05140 Leishmaniasis

hsa04140 Autophagy - animal hsa05145 Toxoplasmosis

hsa04144 Endocytosis hsa05152 Tuberculosis

hsa04145 Phagosome hsa05163 Human cytomegalovirus

infection

hsa04152 AMPK signaling pathway hsa05167 Kaposi sarcoma-associated

herpesvirus infection

hsa04211 Longevity regulating pathway hsa05169 Epstein-Barr virus infection

hsa04218 Cellular senescence hsa05202 Transcriptional misregulation in

cancer

hsa04260 Cardiac muscle contraction hsa05205 Proteoglycans in cancer

hsa04360 Axon guidance hsa05212 Pancreatic cancer

hsa04625 C-type lectin receptor signaling

pathway

hsa05214 Glioma

hsa04666 Fc gamma R-mediated

phagocytosis

hsa05215 Prostate cancer

hsa04721 Synaptic vesicle cycle hsa05219 Bladder cancer

hsa04722 Neurotrophin signaling pathway hsa05220 Chronic myeloid leukemia

hsa04723 Retrograde endocannabinoid

signaling

hsa05223 Non-small cell lung cancer

hsa04920 Adipocytokine signaling pathway hsa05225 Hepatocellular carcinoma

hsa04932 Non-alcoholic fatty liver disease hsa05235 PD-L1 expression and PD-1

checkpoint pathway in cancer

hsa04961 Endocrine and other

factor-regulated calcium

reabsorption

Then, to quantify the vicinity between drug and disease
modules, SAveRUNNER implements a novel network
similarity measure:

f (p) =
1

1+ e−c[ (1+QC)(m−p)
m d]

(4)

Where p is the network proximity measure defined: p(T, S) =
1

‖T‖

∑
t∈T mims∈Sd(t, s) that represents the average shortest path

length between drug targets t in the drug module T and the
nearest disease genes s in the disease module S; QC is the quality
cluster score; m is max(p); c and d are the steepness and the
midpoint of f (p), respectively.

Finally, via deepDTnet and SAveRUNNER, we identified
newly the relationship among candidate genes, drug and
neurodegenerative diseases, which is including AD.

More detail about deepDTnet and SAveRUNNER could be
found in previous study (Zeng et al., 2020b; Fiscon et al., 2021).

Convergent Functional Genomics
The potential driver genes was prioritized from AD-specific
modules by CFG method, which integrated various levels of AD-
related evidence (Ayalew et al., 2012; Xu et al., 2018). The range
of CFG score was from 0 to 5, with 5 indicating highest priority.
There were five AD-related evidence:1) Genetic association. If a
gene had at least one locus being significantly associated with
AD based on the summary statistics from the International
Genomics of Alzheimer’s Project [IGAP], 1 point was assigned;
otherwise zero point. 2) Genetic regulation of gene expression.
If a gene was associated with Expression Quantitative Trait Loci
(eQTLs) showing an AD-risk in IGAP data, 1 point was assigned;
otherwise zero point. 3) Protein-protein interaction. If a gene
was physically interacted with any AD core genes (APP, PSEN1,
PSEN2, APOE, or MAPT), 1 point was assigned; otherwise
zero point. 4) Expression correlation with AD pathology. If the
expression level of a gene was correlated with AD pathology in
AD mice, 1 point was assigned; otherwise zero point. 5) Early
alteration in AD mouse brain. If a gene showed differential
expression in hippocampus of 2-month-old AD mice compared
with age matched wild-type mice, 1 point was assigned; otherwise
zero point.

RESULTS

DEG Detection
A total of 776 samples and 108,302 genes from multiple
transcriptomic datasets were compiled for DEGs detection.
Besides, for ADNI dataset, we randomly chose 40 samples from
the control in 10 times and selected gene with frequency greater
than or equal to 3. Each red node represented DEG for five
datasets in Figure 2. We identified 7,567 DEG(2166 EC, 1952
HP, 949 FC, 3075 TC and 3204 ADNI) for subsequent analyses.
About 6 19% of the total genes could be identified as DEGs.
Among the DEG list in all five datasets, the expression patterns
of well-known AD risk genes, such as APP, PSEN1, PSEN2,
APOE and MAPT were only slightly altered or unchanged in
AD patients. In addition, 19 genes had a consistently differential
expression from EC, HP, FC, TC and ADNI (Figure 3). We
investigated functional enrichment of the AD-related DEGs. The
7,567 target genes in the network were enriched in 324 KEGG
pathway and 1,381 GO terms in Figure 4.We identified 61 KEGG
pathway and 324 GO terms (P < 0.005), respectively. As shown
in Table 2, we also found several pathways have been reported to
be associated with AD, including Alzheimer’s disease pathway,
MAPK signaling pathway and AMPK signaling pathway. Top
20 significantly KEGG pathway selected was exhibited for each
dataset in Figure 5. Besides, these GO terms are divided into
ontologies based on a hierarchical relations. Specifically, DEGs
related to the biological processes for synaptic-related functions
were significant enriched in Table 3, such as chemical synaptic
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FIGURE 5 | Top 20 pathway of KEGG for five datasets (P < 0.005). (A) EC, (B) HP, (C) FC, (D) TC, and (E) ADNI.

transmission, regulation of postsynaptic membrane potential,
synaptic vesicle exocytosis, synaptic transmission, GABAergic,
regulation of synaptic transmission, glutamatergic, synaptic
vesicle endocytosis and long-term synaptic potentiation. In
addition, they were associated with neuron-related processes,
including neurotransmitter secretion, neuron projection

morphogenesis, negative regulation of neuron apoptotic process
and negative regulation of neuron projection development.

We used WGCNA to divide the DEGs into several highly
related gene modules. As shown in Figure 6, a very significant
positive correlation was observed between five modules and AD
for five dataset. A modular size was ranged from 96 to 142 genes
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TABLE 3 | Significant GO terms obtained from DAVID (P < 0.005).

ID Term

GO:0002223 Stimulatory C-type lectin receptor signaling pathway

GO:0006888 ER to Golgi vesicle-mediated transport

GO:0048015 Phosphatidylinositol-mediated signaling

GO:0038128 ERBB2 signaling pathway

GO:0007249 I-kappaB kinase/NF-kappaB signaling

GO:0006672 ceramide metabolic process

GO:0000165 MAPK cascade

GO:0045944 Positive regulation of transcription from RNA polymerase

II promoter

GO:0007269 Neurotransmitter secretion

GO:0035329 Hippo signaling

GO:0006120 Mitochondrial electron transport, NADH to ubiquinone

GO:0042776 Mitochondrial ATP synthesis coupled proton transport

GO:0070125 Mitochondrial translational elongation

GO:0032981 Mitochondrial respiratory chain complex I assembly

GO:0007409 Axonogenesis

GO:0048812 Neuron projection morphogenesis

GO:0043524 Negative regulation of neuron apoptotic process

GO:0007268 Chemical synaptic transmission

GO:0060078 Regulation of postsynaptic membrane potential

GO:0016079 Synaptic vesicle exocytosis

GO:0048813 Dendrite morphogenesis

GO:0090263 Positive regulation of canonical Wnt signaling pathway

GO:0009967 Positive regulation of signal transduction

GO:0051932 Synaptic transmission, GABAergic

GO:0046034 ATP metabolic process

GO:0070933 Histone H4 deacetylation

GO:0007420 Brain development

GO:0007417 Central nervous system development

GO:0035357 Peroxisome proliferator activated receptor signaling

pathway

GO:0015986 ATP synthesis coupled proton transport

GO:0040029 Regulation of gene expression, epigenetic

GO:0007399 Nervous system development

GO:0051966 Regulation of synaptic transmission, glutamatergic

GO:0048488 Synaptic vesicle endocytosis

GO:0010977 Negative regulation of neuron projection development

GO:0060071 Wnt signaling pathway, planar cell polarity pathway

GO:0006521 Regulation of cellular amino acid metabolic process

GO:2000310 Regulation of N-methyl-D-aspartate selective glutamate

receptor activity

GO:0038061 NIK/NF-kappaB signaling

GO:0035418 Protein localization to synapse

GO:0060291 Long-term synaptic potentiation

The first column is GO terms ID; the second column is the name of GO terms.

that might reflect the different layers and complexity of gene
regulation in the AD brain. These five AD-specific modules were
used for identifying potential driver genes for AD etiology and
pathology. We obtained potential driver genes from each AD-
specific modules for every dataset. Finally, after removing the

overlap genes, we have 602 candidate genes from 5 AD-specific
modules in total, including EC (107), HP(140), FC(142), TC(136)
and ADNI(96). We hypothesized that the higher the CFG score
is, the more likely the candidate genes are to be AD targets. We
chose 40 genes with CFG ≥ 4 for subsequent analyses.

Identification and Prioritization of Potential
Driver Genes
The 40 potential driver genes are prioritized by the CFG method
based on AlzData database, which is integrated various levels
of AD-related data in Table 4. For each gene, we showed the
eQLT, GWAS, PPI, Early_DEG, Pathology correlation Aβ and
Tau (CFG ≥ 4), and CFG score. We found that several genes
were validated by previous studies from literatures. For example,
GJA1, also known as connexin 43, shows upregulated mRNA
and protein levels in AD (Ren et al., 2018). Specific reductions
of RPH3A immunoreactivity compared with aged controls.
RPH3A loss correlated with dementia severity, cholinergic
deafferentation, and increased Aβ concentrations. Furthermore,
RPH3A expression is selectively downregulated in cultured
neurons treated withAβ 25–35 peptides (Tan et al., 2014).CASP6
activity is intimately associated with the pathologies that define
AD, correlates well with lower cognitive performance in aged
individuals, and is involved in axonal degeneration in several
cellular and in vivo animal models (LeBlanc, 2013). The levels
of angiotensinogen (AGT) is increased in the cerebrospinal fluid
of patients with mild cognitive impairment and AD (Mateos
et al., 2011). The stromal cell-derived factor 1 (SDF1), known as
chemokine CXCL12, was a proinflammatory chemokine, highly
expressed in the central nervous system. They may regulate
synaptic transmission in excitability neurons and modulate
neuroglial communication. CXCL12 was detected in plasma
and hippocampus AD patients. Levels of this chemokine were
considerably decreased compared to the control group (Dulewicz
et al., 2020). In summary, combining WGCNA with CFG offer a
useful tool to prioritize potential genes for AD.

Candidate Genes GJA1
As shown in Table 4, the CFG score ofGJA1 is the highest among
all potential genes and regarded as candidate gene. We combined
deepDTnet and SAveRUNNER to search association between
candidate genes GJA1 and AD based on target-drug-disease
network. As shown in Figure 7, the network is constructed 13
drugs, a candidate genes GJA1 and neurodegenerative diseases.
11 newly drug-target interaction and 13 newly drug-disease
association are identified by deepDTnet and SAveRUNNER,
respectively. Especially, we found that dopamine were validated
by previous studies from literatures. Dopamine, a compound
of the catecholamine and phenethylamine families playing
important roles in the human brain, was predicted by deepDR to
be associated with AD. Such a prediction can be supported by a
previous study indicating that lack of dopamine in the brain may
cause some of the earliest symptoms of Alzheimer (Zeng et al.,
2019). In AD, the dysfunction of dopaminergic transmission has
been hypothesized as a new player in the pathophysiology of
AD. Dopamine acts through five different types of receptors,
generally distinct in two main subclasses: D1-like [comprising
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FIGURE 6 | Module-trait relationships for five datasets.Each row represents different gene co-expression modules, and each column represents different clinical

phenotypes. Number represent correlation coefficients and P-values are in parenthesis. Correlation strength is represented by continuous color, with red being

positive, blue being negative. (A) EC, (B) HP, (C) FC, (D) TC, and (E) ADNI.
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TABLE 4 | The 40 potential driver genes are prioritized by the CFG method based on AlzData database.

Gene

AD-related evidence

CFG
eQTL GWAS PPI Early_DEG

Pathology cor

(Aβ) (Tau)

GJA1 2 2 PSEN1, MAPT, APOE yes 0.388** 0.131ns 5

FOXO1 1 0 PSEN2 yes 0.270ns 0.526* 4

PRKX 3 NA PSEN1 yes 0.352* –0.023ns 4

RPH3A 5 2 - yes –0.199ns –0.738** 4

CASP6 5 0 APP, PSEN1, PSEN2, MAPT yes 0.482*** 0.738** 4

CRMP1 1 3 MAPT NA –0.304* –0.506ns 4

RGS4 1 32 - yes –0.419** –0.579* 4

NPTX2 1 1 - yes –0.688*** –0.783*** 4

RPS27 1 0 PSEN2 yes 0.503*** 0.662** 4

MEGF10 3 8 - yes 0.559*** 0.120ns 4

AP2A1 1 0 APP, PSEN2, MAPT yes –0.277ns –0.585* 4

PITPNC1 10 1 - yes –0.128ns –0.638* 4

AGT 1 0 APP, PSEN1, APOE yes –0.359* 0.002ns 4

AQP4 7 4 - yes 0.800*** 0.275ns 4

MYT1L 3 12 - yes –0.488*** –0.583* 4

IQGAP1 1 0 PSEN1 yes 0.310* 0.282ns 4

IGFBP7 8 0 MAPT, APOE yes 0.353* 0.510ns 4

CITED2 1 0 APP, PSEN1, APOE yes –0.433** –0.772*** 4

SMAD1 16 1 APP, APOE NA –0.332* –0.497ns 4

CDH7 0 1 PSEN1 yes –0.345* –0.691** 4

MSRB2 5 2 - yes 0.32* 0.609* 4

DBI 1 1 - yes 0.780*** 0.718** 4

PELI2 2 0 PSEN2 yes 0.591*** –0.107ns 4

AVEN 1 1 - yes 0.525*** 0.008ns 4

F13A1 7 3 APP, APOE NA 0.195ns 0.623* 4

SLA 1 0 PSEN1, MAPT yes 0.114ns 0.662** 4

ADAMTS20 2 17 - yes 0.085ns 0.587* 4

RARB 6 2 PSEN2 yes –0.064ns –0.387ns 4

SDC2 8 3 PSEN1, PSEN2, MAPT, APOE yes 0.041ns 0.086ns 4

DCN 8 0 APP, PSEN1, MAPT, APOE yes –0.416** 0.546* 4

CCR5 1 0 APP yes 0.769*** 0.616* 4

GPRC5B 2 41 - yes 0.307* –0.248ns 4

IRF5 1 0 APP, PSEN1, PSEN2, MAPT, APOE yes 0.879*** 0.839*** 4

IGFBP7 8 0 MAPT, APOE yes 0.353* 0.510ns 4

CXCL12 1 0 APP, PSEN2, MAPT, APOE yes 0.432** –0.069ns 4

CREM 1 0 PSEN1, MAPT, APOE yes –0.439** –0.396ns 4

EHHADH 14 0 MAPT, APOE yes 0.438** –0.022ns 4

SLC1A3 7 1 - yes 0.651*** 0.494ns 4

VAV3 0 5 MAPT yes 0.319* –0.284ns 4

IL15 2 18 - yes 0.623*** 0.685** 4

“NA,” not applicable due to missing related data for the target gene. AD, Alzheimer’s disease; CFG, convergent functional genomics score based on the total number of lines of AD-

related evidence; DEG, differentially expressed gene; eQTL, the total number of risk SNPs based on the IGAP data setthat were able to regulate expression of the target gene; GWAS,

the total number of risk SNPs within the target gene based on the IGAP data set; PPI, AD core genes (APP, PSEN1, PSEN2, MAPT, and APOE) that had a significant protein-protein

interaction with the target genes; Early_DEG: target gene is differentially expressed in AD mouse models before AD pathology emergence; Expression correlation of the target gene and

AD pathology in AD mice was performed for the Aβ line AD mice in Mouse (marked as Aβ) and the Tau line AD mice in Mouse (marked as Tau). *P < 0.05; **P < 0.01; ***P < 0.001.

the dopamine 1 receptor (D1R) and the dopamine 5 receptor
(D5R)]; andD2-like [comprising the dopamine 2 receptor (D2R),
dopamine 3 receptor (D3R) and the dopamine 4 receptor (D4R)].

Pan et al. found that dopamine, D1R and D2R concentration
levels were decreased in patients with AD compared with
controls. Moreover, decreased levels of dopamine and D2-like
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FIGURE 7 | Drug-GJA1-disease interaction network. The network contained candidate target GJA1 (green), Neurodegenerative Diseases (red) and 13 drugs

(yellow).Gray indicate known interaction. Green and red lines and newly predicted interactions using deepDTnet and SAveRUNNER, respectively.

receptors were linked with the pathophysiology of AD because of
their strong higher rank correlations with AD (Pan et al., 2020).
To conclude, candidate genesGJA1 is the most likely to be targets
of AD.

DISCUSSION

Pathway enrichment analysis was performed to interpret the
function of these DEGs. KEGG pathway analysis for the 7,567
DEGs were significantly enriched in one KEGG pathway “MAPK
signaling pathway,” which is composed of ERK, P38, and JNK.
In the adult nervous system, ERK activation is necessary for
synaptic plasticity and memory formation (Du et al., 2019).
In the brains of AD patients, P38 is highly expressed. Aβ-
induced P38 activation increases tau phosphorylation and
promotes the amyloidogenic processing of APP (Giraldo et al.,
2014; Gourmaud et al., 2015). In a mouse model of AD, the
JNK signaling pathway is overactivated in the spine before
cognitive decline (Sclip et al., 2014). These studies indicate
that the overactivation of MAPK signaling pathway could
cause the occurrence of AD. Therefore, preventing MAPK
overactivation is effective strategy in order to reduce Aβ

deposition, Tau hyperphosphorylation, neuronal apoptosis, and
memory impairment. MAPKs could be potential targets for novel
and effective therapeutics of AD (Yenki et al., 2013; Feld et al.,
2014).

GO term analysis indicated that the 7,567 DEGs were mainly
involved in chemical synaptic transmission, regulation of
postsynaptic membrane potential, synaptic vesicle exocytosis,
synaptic transmission, GABAergic synapses, regulation
of synaptic transmission, glutamatergic, synaptic vesicle
endocytosis, long-term synaptic potentiation, neurotransmitter

secretion, neuron projection morphogenesis, negative regulation
of neuron apoptotic process and negative regulation of neuron
projection development. Damage to neuronal and synaptic
function has always been considered an important pathological
feature of neurodegenerative diseases, and decreased synaptic
activity is also considered to be the most relevant pathological
feature of AD cognitive impairment (Wu et al., 2019). For
example, the downregulation of GABAergic synapses is closely
related to the loss of GABAergic inhibition (Kim et al., 2020).
Studies have found that GABAergic neurotransmission is closely
related to various aspects of AD pathology, including Aβ toxicity
and Tau hyperphosphorylation (Kadoyama et al., 2021). The
level of GABA inhibitory neurotransmitter in AD patients
was significantly reduced, suggesting that AD has insufficient
synaptic function and neuronal transmission (Schmitz et al.,
2017). In addition, In a mouse model of AD indicate that the
impairment of hippocampal neurogenesis may be mediated
by GABAergic signal dysfunction or the imbalance between
excitatory and inhibitory synapses (Sun et al., 2009). Therefore,
GABAergic synapses not only plays an important role in the
function of the hippocampus, but also in the pathogenesis of AD.

LIMITATIONS

There are some limitations in this study. First, although we
identified 23 potential driver genes of AD by the WGCNA and
CFG method, these approachs could be used to prioritize genes
rather than to identify true causal genes. Therefore, further
biological validation of the identified genes are necessary in
future studies. Second, 4 of 5 datasets were downloaded from
AlzData, which only retained the common genes from different
studies during the cross-platform normalization. Third, the
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sample size of EC, HP and TC available for analyze was still
limited, and the larger sample size of FC and ADNI might have
a greater influence on the results. Fourth, the rapid development
of various omics provide new opportunities for understanding of
AD. However, we only used transcriptomics dataset to identify
potential driver genes of AD. Finally, more potential genes of
AD were not considered. Deep learning has capacity to dig out
more hidden gene in data and is a machine learning algorithm
based on artificial neural network, which is a computational
model inspired by the structure of human brain. The main
difference between deep learning and traditional artificial neural
network lies in the scale and complexity of network structure.
The networks of deep learning have a larger number of hidden
layers, while traditional artificial neural networks usually have
only one hidden layer. This is due to the lack of big data and
GPU hardware technical support in the last century. Due to
the emergence of more powerful CPU and GPU hardware, deep
learning with more hidden layers is proposed on the basis of
artificial neural network, and more nodes can be used in each
hidden layer (Esteva et al., 2019; Zou et al., 2019).

CONCLUSIONS

In this study, we identified potential driver genes from AD-
specific modules using multiple transcriptomics datasets and
observed that DEGs were enriched with several pathways
significantly by DAVID 6.8, which are consistent with
observations from previous studies. Moreover, through
studying of WGCNA, CFG and drug-target-disease network

prediction, candidate gene GJA1 is the most likely to be
targets of AD, actually reported in previous study. In
summary, identification of AD-related genes contributes to the
understanding of AD pathophysiology and the development of
new drugs. In summary, Our results contribute to understanding
pathophysiology of AD and looking for candidates drug targets.
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