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Abstract

Stereotypical locomotor movements can be made without input from the brain after a complete spinal transection.
However, the restoration of functional gait requires descending modulation of spinal circuits to independently control the
movement of each limb. To evaluate whether a brain-machine interface (BMI) could be used to regain conscious control
over the hindlimb, rats were trained to press a pedal and the encoding of hindlimb movement was assessed using a BMI
paradigm. Off-line, information encoded by neurons in the hindlimb sensorimotor cortex was assessed. Next neural
population functions, or weighted representations of the neuronal activity, were used to replace the hindlimb movement as
a trigger for reward in real-time (on-line decoding) in three conditions: while the animal could still press the pedal, after the
pedal was removed and after a complete spinal transection. A novel representation of the motor program was learned
when the animals used neural control to achieve water reward (e.g. more information was conveyed faster). After complete
spinal transection, the ability of these neurons to convey information was reduced by more than 40%. However, this BMI
representation was relearned over time despite a persistent reduction in the neuronal firing rate during the task. Therefore,
neural control is a general feature of the motor cortex, not restricted to forelimb movements, and can be regained after
spinal injury.
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Introduction

The brain machine interface (BMI) has great potential to restore

functional movement after severe injury including spinal cord

injury [1,2,3,4,5,6,7,8]. In this approach the modulations of

cortical neurons are used to decode movement related signals in

real-time which can then be used as a control signal to restore

movement of the affected limb [9,10] or replace the movement by

actuating an external device [4,11,12,13]. Moreover, studies using

the BMI experimental paradigms have greatly improved our

understanding of how neurons encode for forelimb movement

[4,12,14,15,16,17,18]. However, less is known about neural

encoding for hindlimb movements or the possibility of using

BMI to restore control of the hindlimbs for restoration of hindlimb

functions.

Studies examining the neural encoding of hindlimb movement

have focused mainly on changes in gait patterns during stereotypic

locomotion on a treadmill. Early work by Drew and colleagues

[19] showed that pyramidal cells in the hindlimb motor cortex of

the cat are involved in the extension and flexion of the limb as the

animal steps over an object. Moreover, hindlimb pyramidal cells

are involved in gait modifications [20,21], including the necessary

postural adjustments [22] and forelimb/hindlimb coordination

produced during changes in gait [23]. In the context of a BMI

application, the adaptation to a cortex controlled BMI has been

studied in rats during locomotion on the treadmill [24] and during

squatting and standing in monkeys [25]. However, control over

flexion and extension will be necessary to maintain balance,

navigate over varying terrain and avoid obstacles during real-

world applications after a spinal cord injury. Therefore, in the

work presented here, we examined neural signals that control

hindlimb movement, the impact of introducing a BMI on the

representation of that signal and the effect of a complete spinal

transection. Based on the work from forelimb/arm studies

[12,26,27,28], we hypothesized that the encoding of hindlimb

movement would be different when explicit behavioral control was

replaced by neural control using the brain machine interface.

Further changes in encoding were expected after spinal cord injury

(SCI).

To test this, we trained rats to press and release a pedal with

their hindlimb in response to an audible cue for a reward. We

simultaneously recorded populations of single neurons from arrays

of microwires chronically implanted in the hindlimb sensorimotor

cortex (HL SMC). First, using offline analysis, we measured the

information encoded by neurons about the kinematic parameters

of movement (offline decoding). Next we used neuronal population

functions, weighted representations of the neuronal activity, to

replace the hindlimb movement as a trigger for the water reward

in real-time (online decoding) and reassessed the ability of the

neurons to encode for the motor program when the animals could

still press the pedal, after the pedal was removed and after

a complete spinal transection. Our results show that during neural
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control, more information about the motor program is encoded

faster than during behavior control. After a complete spinal

transection that deafferents the motor cortex and damages the

axons of many of these cells, the information about the motor

program is initially lost but is eventually regained to levels

achieved during behavioral control.

Results

Single neuron activity was recorded from six animals trained to

press and release a pedal using their hindlimb in response to an

auditory conditioning stimulus for a water reward (Figure 1A).

During behaviour control mode (BC), when the animals were

rewarded for an appropriate press (see Methods), 14 recordings

were made from the 6 animals, with an average of 36619 cells

(mean 6 std) recorded per day, 495 cells total. During neural control

mode (NC), when the animals were rewarded based on their

neural activity during the task (see Methods) a total of 17

recordings were made with an average of 40613 cells (mean 6

std) per recording day, 689 cells total.

As expected [4,12,24], there were differences in the animal’s

press movements during BC mode compared to NC mode

(Figure 1F). There were no differences in the reaction time or peak

velocity of the animal’s behavior between BC and NC mode.

However, both the duration of press (Mann Whitney U test,

U=5.46105, z =28.615, p,0.001) and the amplitude of the

press (Mann Whitney U test, U= 4.936105, z =211.983,

p,0.001) were shorter during NC mode than BC mode,

suggesting differences between the behavior of the animal under

NC mode compared to BC mode (Figure 1F). Therefore, the

animals made smaller, quicker movements during NC mode than

during BC mode.

Despite these differences in movement during the task, there

were no differences in performance (ability to acquire a reward)

between BC mode and NC mode. Performance was measured by

the number of True Positives (TP) and the number of False

Positives (FP). TPs and FPs during BC mode were evaluated by the

position of the amplitude sensor while TPs and FPs during NC

mode were evaluated by the NPF (see Methods). When

performance under NC mode was compared to that during BC

mode (Student’s t-test, p.0.05 for both TP and FP) there were no

differences, demonstrating that neural activity can be used to

replace hindlimb behaviour for a water reward.

Neuronal Activity in the Hindlimb Sensorimotor Cortex is
Modulated during the Task
As expected, a majority of cells recorded from HL SMC

modulated their firing rate during the task in both BC and NC

mode. Because we expected that different cells would modulate

their firing in response to different aspects of the task [19], for each

cell, three peri-event time histograms (PETHs) were constructed,

each time-locked to one of three different events during the task:

the chime cue, the start of press, and the end of press (see

Methods). The total number of cells responding to any of the

events was 422 out of the total of 495 cells (85%) in the BC mode

and 509 out of the 689 cells (74%) recorded in the NC mode.

Although there were no differences in the firing rate across the

three different events, there were important differences depending

on whether the recordings were done during BC mode or NC

mode (Figure 2, two factor ANOVA). The average response

magnitude during NC mode was higher than that during BC

mode [F (1, 1100) = 4.5547, p,0.05]. In a similar manner, the

average peak of the response (5 ms bin), during NC mode was

significantly greater than during BC mode [F (1, 1100) = 5.7867,

p,0.05]. On the other hand, the latency of the responses did not

significantly change across the different experimental modes. The

responses of the cells during BC mode (3.3960.402 spikes/trial)

and NC mode (4.8860.406 spikes/trial) were greater than their

responses during passive cutaneous stimulation (0.255 spikes/trial)

or during treadmill locomotion (1.49 spikes/trial). This is

consistent with earlier work showing that flexion and extension

of the limbs to step over an object results in increased activity of

HL neurons compared to activity generated during stereotypic

treadmill locomotion [19].

Neural Activity is Correlated to the Parameters of
Movement
The firing rate of most cells was correlated to at least one of the

parameters of movement (Figure 3A). In BC mode, the firing rate

of 26% of the total 495 cells recorded was significantly correlated

to the amplitude of press, 35% to the reaction time, 23% to peak

velocity and 36% to the duration of press in at least one of the 3

windows. In NC mode, a similar pattern of activity was found; the

firing rate of 30% of the total 689 cells was correlated to

amplitude, 40% to reaction time, 18% to peak velocity and 39% to

the duration of press in at least one of the 3 windows.

However, firing rates were better correlated during NC mode

than BC mode (F(1,112) = 11.503,p,0.001). There was also

a significant main effect of the movement parameter

(F(3,112) = 3.278, p,0.05). This was due to the fact that the

neurons had a significantly higher correlation to duration

(R2
BC=0.309, R2

NC= 0.480, Tukey HSD post-hoc test, p,0.05)

than to amplitude, reaction time or speed of press (Figure 3B).

Therefore, different cells were tuned to a particular movement

parameter and they were better tuned during neural control than

behavioral control.

More Information is Generated Faster during Neural
Control than Behavioral Control
There is information in the activity of these cells about hindlimb

movements but this activity is substantially different during NC

mode compared to BC mode (Figure 4). The information about 3

of the parameters, amplitude, reaction time and duration of the

press were successfully decoded and the amount of information

was found to be influenced by the time window used to measure it.

In the BC mode, the maximum information that could be decoded

about the amplitude of press was 0.10560.03 bits and this was in

a window around the start of press. The maximum information

about reaction time was decoded from the window after the chime

and was equal to 0.42460.06 bits. The maximum information

about the duration of press was decoded from the window around

the start of press and was equal to 0.38460.059 bits. In the NC

mode, the maximum information that was decoded about

amplitude was 0.18560.05 bits, about reaction time was

0.53360.08 bits and about duration was 0.53860.073 bits, in

the same windows respectively.

Importantly, more information was encoded during NC mode

compared to BC mode, and the information was obtained faster

during NC mode than BC mode. There was a significant main

effect of the window length as well as the mode (two factor

repeated-measures ANOVA). The information was significantly

greater during NC than BC (F(1,91) = 9.0646, p = 0.00337). In the

BC mode, the information obtained using any window less than

900 ms was significantly less than the peak information obtained

using the entire 1500 ms window (Tukey HSD post hoc test,

p,0.001). In the NC mode any window less than 500 ms had

significantly less information than the peak value of the in-

Decoding Parameters of Hindlimb Movement in Rats

PLOS ONE | www.plosone.org 2 December 2012 | Volume 7 | Issue 12 | e52173



Figure 1. Pedal press task for skilled hindlimb movements. Rats were trained to press a floor-mounted pedal with their hindlimb. (A)
Schematic of the skilled hindlimb task. (1) After a randomized period of 3–5 seconds, the chime was sounded, cueing (2) the press and release, which,
if completed within three seconds of chime onset, led to (3) a water reward. (B) Trace of the position sensor indicating the position of the hindlimb
during a single trial of the task (black line). The events chime, start-press, and end-press are marked with circles and the arrows indicate the
preparation, initiation and movement windows, as defined in the text. (C) 16 channel stainless steel microwire array with wires of diameter 50 mm,
row/column spacing of 350 mm and insulated with Teflon except at the tip. (D) Left Panel: Adapted schematic of the rat cortex showing somatotopic
representations [56]. Oval indicates target for array implantation in the hindlimb sensorimotor region. Right Panel: Coronal view (schematic) of the rat
cortex from Paxinos and Watson 2005, arrows indicating the target for the microelectrodes (E) Four kinematic parameters were measured from the
position sensor to describe the behavior of the animal during the task: reaction time, amplitude, peak velocity and duration.
doi:10.1371/journal.pone.0052173.g001
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formation (Tukey HSD post hoc test, p,0.001). There was also

a significant interaction effect between the window length and the

mode (F(14,1274) = 2.6500, p = .00081), suggesting that the in-

crease in the information occurred differentially in the two modes,

and in this case was significantly faster in NC than BC mode.

Therefore, the modulation of neuronal firing patterns during NC

mode compared to BC mode, identified earlier, results in an

increase in the information conveyed by the neurons about the

motor program to press.

PCA for Dimension Reduction is More Efficient during
Neural than Behavioral Control
With an increase in the number of simultaneously recorded

neurons to control a brain machine interface or a neuroprosthetic,

there arises a need to reduce the high dimensionality of the dataset

in order to improve speed and computational efficiency. To test

the feasibility of reducing the dimension of neural data [29,30],

principal components (PCs) were used to replace the single neuron

spiking data and the information was assessed [29,30]. While there

was no difference in the number of components that account for

90% of the variance in either mode (Students t-test,

t(91) =21.1167, p = 0.25), there was a significant main effect of

the first factor, percentage of PCs used (two factor repeated-

measures ANOVA, see Methods). In the BC mode, at least 30% of

the PCs were required to get values similar to the maximum

amount of information (Tukey HSD post hoc test, p,0.001), but

in the NC mode only 10% of the PCs were required (p,0.001).

There was also a significant effect of the second factor, mode of

the experiment. The information (F (1, 91) = 9.6580, p = 0.00252)

conveyed by 10% of the PCs in NC mode was significantly greater

than that during BC mode using 30% of the PCs. There was

a significant interaction effect between the percentage of PCs used

and the mode (F (10,910) = 3.2819, p = .00035) confirming that

the increase in the information by adding more PCs was

significantly faster in NC than BC mode (Figure 5A).

Linear Decoding Algorithms can Decode the Movement
Trajectory
Notably, a simple linear filter was able to reconstruct the

trajectory of the hindlimb as it pressed the pedal (Figure 5B).

Moreover, the information was encoded equally well during NC

mode, when the animals is rewarded for its neural activity

compared to when the animal is rewarded for its behavior,

confirming that the neural activity is continuing to encode for the

trajectory of the movement during NC mode.

To test different potential approaches for a clinical application

of BMI, the prediction accuracy without feedback was compared

to the prediction accuracy with feedback. As expected, the

prediction accuracy (measured by the R2 value between the

actual and predicted signal, see Methods) was better when

feedback about the position of the limb from the previous moment

in time was incorporated compared to when it was not (One way

ANOVA; factor- Method (with feedback, without feedback);

F(1,58) = 55.529, p,0.001). Therefore, it is clear that using the

Figure 2. Single neuron activity during pedal press. (A) Peri-event time histograms (PETHs) and spike rasters for a representative neuron
aligned to different events (chime, start-press, end-press) during the task for BC (left panel) and NC (right panel) mode. The y-axis represents the
probability of a spike occurring in a bin of size 5 ms, x-axis represents the time from the event around which the PETH is centered in seconds. Trials
are sorted by the duration of the press as measured from the reference event. Open circles in the rasters mark the end of press. (B) Differences in
neurophysiological parameters (left panel-response magnitude, peak response; right panel- response latencies) between NC and BC mode. See
Methods for description of parameters. (C) Differences in the four kinematic parameters between modes: behavioral control (BC) and neural control
(NC). Asterisks indicate a significant difference.
doi:10.1371/journal.pone.0052173.g002

Figure 3. Correlations between the kinematic parameters of movement and the neural activity. (A) Magnitude of kinematic parameters
(y-axis) plotted as a function of spike count for representative single neurons from the BC mode (x-axis). Each data point corresponds to a single trial
and the line is a linear regression. (B) Coefficient of determination (R2) between the kinematic parameters and the numbers of spikes in the
response window were different across modes (BC, NC) (top panel) and across kinematic parameters (bottom panel).
doi:10.1371/journal.pone.0052173.g003
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position of the limb improves the prediction accuracy; however, it

also makes the implementation of a neuroprosthetic more

complicated.

Finally, due to the asymmetrical nature of the task, we

compared prediction of the limb trajectory using only the neurons

from the contralateral (brain hemisphere opposite to the limb that

was used to press the pedal) or ipsilateral hemisphere to the

prediction when combining neurons from both sides of the cortex

(Figure 5C). While there was clearly information about limb

trajectory encoded by the neurons ipsilateral to the limb, as

expected, the neurons contralateral to the limb encoded more

information. In fact, using the information from neurons on both

sides did not improve prediction compared to that provided by

contralateral neurons. (One-way ANOVA with factor side,

F(2,108) = 18.806, p,0.001; Tukey HSD post-hoc, contralateral

versus ipsilateral, p,0.001, contralateral versus combined,

p = 0.230).

Neural Activity in the Absence of Movement
To test the impact of removing the pedal on neural encoding,

we compared the neuronal responses after the pedal was removed

(6 animals, 46 recordings, average of 43615 cells per recording

day, 2014 cells total) to those during behavioural control and to

responses during neural control when the animal could still press

the pedal. The neural responses were sufficiently similar to those

generated during behavioral control to be used on a single trial to

trigger a reward to the animal (Figure 6A). In fact there were no

differences in the online performance during NC mode without

the pedal when compared to that with the pedal (Student’s t-test,

p.0.05).

However, there were significant differences in the responsive-

ness of the neurons across the different modes of recording

(Figure 6D top panel, Kruskal-Wallis Test, dependent variable -

response magnitude, H(3,5993) = 116.97, p,0.001). When the

pedal was removed, the neural activity after the tone increased

compared to the activity when the animal could still press (RMNC

without pedal.RMBC, Mann-Whitney U post-hoc, p,0.001).

Moreover, the signal-to-noise ratio (SNR) of the response when

the pedal was removed was greater than when the animal could

press the pedal (Figure 6B). This increase in SNR was due to

a reduction in the noise as well as the increase in the magnitude of

the signal.

After transection (TX), animals were retested in the task (4

animals were used to obtain 92 recordings, with an average of

4365 cells per recording day, 4000 cells total). The neuronal

activity during the task was reduced to levels originally seen during

BC mode (Figure 6D top panel) and was significantly less than

during NC mode without pedal (p,0.001). The average number

of neurons recorded remained stable but the firing rate of only

65% of the recorded cells were modulated during the task after

TX, significantly impacting on-line performance. In fact, on-line

performance was initially so low that the animal was given drops of

water to maintain its interest in the task despite the fact that its

neural activity would not have triggered a reward. This reduction

in response magnitude did not improve with time post TX

(Figure 6C, bottom left panel) and was initially accompanied by

a surprisingly high loss in information about the task during the

early TX stage (first 30% of recording days of each animal). The

information about the motor program was reduced, well below

behavioral control levels (0.7560.17 bits of information during BC

mode compared to 0.5160.05 bits immediately after SCI, t-test:

p,0.05), suggesting a disruption of the network ensemble that

encoded information about the press. However, over time, the

network re-learned the task and by the late TX stage (last 30% of

recording days) the amount of information decoded (0.7660.03)

was significantly increased to levels seen pre-TX (Figure 6C

bottom right panel). This increase in the amount of information

encoded was accompanied by an increase in on-line performance.

The rate of increase was independent of the time post-TX and

took approximately 10–15 days. (Figure 6C). This increase in

formation was not accompanied by any recovery in the firing rate

of the cells.

Discussion

While the idea of a brain-machine interface for restoration of

forelimb movement has been shown to be feasible, those studies

were conducted in healthy animals with aid of visual feedback. By

translating studies to the hindlimb, the data presented here show

for the first time that BMI to control limb function can be used in

the absence of visual feedback and after a complete spinal

transection. The complete spinal transection deafferents the

neurons used to control the BMI and severs the axons of many

of the neurons encoding the information. An advantage of this

model is that there are no spared fibers to confound the

interpretation and our result show that the neurons reorganize

to convey sufficient information about the motor program for the

animals to gain a reward.

Role of the Rat Model in Studies of BMI
An important question since the first study of BMI in rats was

repeated and extended to non-human primates is whether there is

a role for rats in the study of BMI. Despite the fact that the task

used here was relatively simple compared to some of the more

recent BMI studies in primates [10,12,14,16,31], the rat model has

an important role in BMI studies. First, the data presented here

and our earlier work on rat BMI [4], demonstrate remarkable

similarity of our results to a broad range of results from primate

studies on the upper limbs demonstrating that 1) the impact of

BMI in the rat model is similar to the impact of BMI in the

primate model and 2) the impact of BMI on the hindlimbs is

similar to that on the forelimbs. Studying BMI for restoration of

hindlimb function is important because more SCI patients have

their hindlimb affected than their forelimbs.

Second, it is well established that nonhuman primates do not

navigate complex terrains (uneven terrain, ramps, stairs, etc) in

a manner similar to humans and, therefore, it is unlikely, even for

studies of hindlimb function in monkeys, that the decoders would

be directly translatable to humans. Therefore, the goal of these

studies is not to develop decoders that can be directly translated,

but rather to understand the principles of BMI. The data

Figure 4. Information encoded by populations of neurons about the kinematics of hindlimb movement. The PETH based classification
method was used to quantify the information encoded by simultaneously recorded neurons about each of the movement parameters in two modes
of the experiment: BC (left panel) and NC (right panel). Starting from each event (chime, start-press or end press) the window size was incremented
by 100 ms. The information is corrected by subtracting the value of the information obtained by shuffling the trials (bootstrapped, see methods). For
events chime and end press the windows were incremented from the start and end of the previously used windows and incremented by 100 ms in
the forward and backward direction respectively. For the start press event, the window was incremented by 100 ms around the event. The y axis
represents the information value in bits, averaged across all recording days. The x axis represents the size of the time window in milliseconds.
doi:10.1371/journal.pone.0052173.g004
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presented here demonstrate that the principles of BMI established

in primates are also relevant for the rat, making them a good

model for the study of neural coding in BMI.

Finally, looking forward to future studies for the role of BMI

after injury, the rat model of SCI is one of the best studied animal

models of SCI and future work to combine therapies after SCI

with BMI would most likely be done in the rat model first.

Figure 5. (A) Dimension reduction using principal component analysis. The spike data from the single neurons was used to calculate the
principal components (PCs) which were then used to decode information about the press in terms of the behavioral parameters, amplitude, reaction
time and duration of press. The information that can be decoded is plotted as a function of the percentage of principal components used to find this
information in BC mode (left panel) and NC mode(right panel). Grey rectangle represents minimal percentage of PCs needed such that the amount of
information is not different when 100% of PCs are used. (B) Trajectory Reconstruction. An example of reconstruction of the trajectory of limb
movement using Wiener filter from the BC mode. Comparison of the position of the hindlimb (grey) and its prediction using a linear wiener filter
(black) without feedback (top panel) and with feedback of the position of the limb (bottom panel). (C) Comparing the prediction of trajectory using
only the neurons from the contralateral side (brain hemisphere opposite to the limb that was used to press the pedal) to that of the ipsilateral side
and when combining neurons from both sides of the cortex. The y-axis represents the R2 value between the predicted and actual trajectory for these
three conditions- ipsilateral, contralateral and combined.
doi:10.1371/journal.pone.0052173.g005
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Figure 6. Impact of pedal removal and complete spinal transection on information conveyed by the neurons abut the motor
program to press. (A) A single trial neural population function plotted as a function of time for BC mode, NC mode with the pedal, NC mode
without the pedal and post transection (TX). Thin line, over the population functions for BC and NC with pedal modes, is the output of the amplitude
sensor. (B) The average neural population functions during a single recording day for BC, NC, NC without pedal, early and late TX stages. Number in
each panel refers to the average signal-to-noise ratio (mean 6 std). (C) Information as a function of absolute time post-TX. Top panel: This is the data
from one of two animals that were returned to water restriction quickly and reintroduced into the task within 10 days post TX. Despite the quick
return to the task, the neurons from this animal also initially conveyed small amount of information about the task but were able to reorganize within
a similar time frame to convey information similar to that show during behavioural control (see dotted line). Bottom panel: This is the data from one of
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Although still an open question, we expect the impact of BMI and

SCI on the ability of neurons within the primary HL-SMC of rats

to encode for hindlimb extension and flexion to be a very good

indicator of the impact of SCI on encoding in human primary

motor cortex for control of a BMI. Of course, this will need to be

tested by continuing to make comparisons between the different

animal models available and human studies.

Impact of Neural Control on Single Neuron Responses
during Pedal Press
The information decoded about the kinematics of hindlimb

press is consistent with the earliest studies of neuronal activity in

the HL motor cortex confirming that these neurons are modulated

by hindlimb movement [19,32,33,34]. Here, we extend those

results to show that neural activity was correlated to the magnitude

of the movement parameters during the task. This correlation is

similar to previous studies of the modulation of cells recorded from

the forelimb motor cortex in response to skilled forelimb reaching

tasks [35,36]. Overall, we observed high correlation values for

reaction time and duration of press implying that the cortical

resources were largely utilized in encoding the temporal aspects of

the task; however, further studies are needed to confirm this. The

reason for this could be attributed to the nature of the task, where

the animal was trained to press within a certain time window (3

seconds) in order to be rewarded.

Neurons in the HL SMC were also correlated to more than one

movement parameter suggesting that cells in the hindlimb cortex

may be able to encode for multiple kinematic parameters

simultaneously, consistent with studies of encoding of both

forelimb/arm and hindlimb movements [12,23]. Furthermore,

certain parameters were better decoded from different windows of

time during the task, consistent with forelimb studies

[1,2,37,38,39]. This correlation between the magnitude of the

neural response and the magnitude of the movement parameter

was functionally relevant because the trajectory of hindlimb

movement was well modeled by a linear combination of neural

activity, extending the findings of studies on the kinematics of

walking patterns [22,23].

Decoding Information during Pedal Press
There was an increase in neuronal activity during NC mode

compared to BC mode and this increased activity contributed to

an increase in information conveyed by the neurons. This increase

is consistent with earlier studies using neural control to replace

forelimb movements but greater than what would have been

expected from those studies [12,40]. This is likely due to the fact

that in our study, the animal did not have independent feedback

(e.g. visual) regarding its performance during the task. This is

important because learning in the brain machine interface

paradigm without visual feedback is required for control of lower

limb function. In the forelimb studies, visual tracking during the

movements provided the animal with constant feedback about its

progress while our animals were required to wait 500 ms after task

completion to obtain their only feedback about the neural control,

a water reward. This may have made the task more challenging,

and hence produced greater cortical modification and the

significant increase in information. The degree of cortical

modulation has been shown to increase with increased complexity

of a learned task [41,42]. Therefore, our data support earlier

studies that increased functional plasticity in the cortex is

proportional to the skill required to successfully complete the task,

independent of the movement.

The fact that more information could be generated faster during

NC mode than BC mode is consistent with the formation of a novel

brain state. Practice in a BMI paradigm results in functional

reorganization [12,26] suggesting that the cortex is capable of

integrating an external interface into its own representational

layout [12,27,43,44]. These differences in neural coding between

NC and BC mode clarifies earlier reports and now establishes that

differences in the reward schedule alone between behavioral

control and neural control are sufficient to induce changes in

neuronal firing patterns in contrast to previous studies that relied

on visual feedback during the task [40,45].

Differences in the brain state during neural control compared to

behavioral control are further evidenced by the way the

information is encoded. The increased average contribution of

single neurons to decoding performance and the increased

correlation between pairs of neurons contributes to more efficient

encoding during neural control as evidenced by the reduction in

the number of Principal Components necessary to decode the

information. This was true for all of the parameters of kinematic

movement tested. Yet, the distribution of the information across

the components was still relatively complex during NC mode,

requiring at least 12 components to maximize decoding. As

a comparison, the sensory information related to whisker

stimulation in the rat is contained in the first 3–8 components

[30]. Therefore, this is not due to the animal substituting encoding

of the kinematics of movement with a simple increase in firing rate

for a reward.

It is important to note that during NC mode, when the animal

could still press the pedal, there were reductions in the movement,

including a smaller amplitude and shorter duration of press

compared to BC mode. Similar to studies in primates, this

behavioral manifestation suggests that the animal recognizes

something different about NC mode compared to BC mode and

is likely due to processing of execution-errors when the animal first

begins in NC mode (Zacksenhouse et al., 2007). Here, we extend

that idea to a task with no visual feedback and to the hindlimb

system. The relatively small reduction in movement with

concomitant increase in information about the parameters of

movement further supports a change in brain state during NC

mode compared to BC unrelated to visual feedback.

Decoding Information in the Absence of Movement
When the pedal is removed, the magnitude of the response and

the information about the motor program further increases. Given

the limitation of this study, it is not possible to know if the animal is

still engaging muscle groups and applying downward pressure

despite the removal of the pedal. We expect that, based on our

previous work (Chapin, Moxon et al., 1999), that this is unlikely,

because the animal learns fairly quickly that they do not have to

press to gain a reward. Moreover, the fact that there was a decrease

in the variance of the baseline activity (noise) during the post

auditory cue window suggests a lack of sensorimotor activity after

two animals that were slowly returned to water restriction schedules and introduced into the task 30 days post TX. It took approximately 10 days for
the neurons to reorganize to convey information similar to that shown during behaviour control (dotted line). (D) Top panel: Comparison of the
average response magnitudes of the single neurons during the task across the four modes. Bottom left panel: Comparison of the response magnitude
of the single neurons during the early (first 30%) recording days after complete spinal transection to the late (last 30%). Bottom right panel:
Comparison of the information about the motor program to press during the early recording days after TX to the late recording days.
doi:10.1371/journal.pone.0052173.g006
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the pedal was removed which suggests a decrease in muscle

activation, but cessation of all activity cannot be confirmed.

It is only after the complete spinal transection that we can be

sure that there is no motor output in response to the decoded

motor program. Initially, after the transection, the magnitude of

the response of neurons to the cue was reduced. This reduction

was accompanied by a reduction in information about the motor

program to press. The loss in information is likely due to the fact

that these neurons become deafferented and the axons of many of

these cells are severed. Importantly, despite the fact that the

reduction in response magnitude persisted for the duration of

recording, information about the motor program to press in-

creased over time, suggesting that the neurons reorganize to

convey information about the motor task - they do not simply

increase their firing rate to gain a reward. Therefore, neurons in

the deafferented HL SMC that have been cut-off from their

normal outputs can still organize to convey information about the

motor program to press the pedal despite a significant reduction in

neuronal activity.

The fact that the HL SMC reorganized to convey information

about the motor program to press after a complete TX is

consistent with the earliest findings of Fetz and colleagues [45,46]

demonstrating the ability to condition cortical cells to modulate

their firing in exchange for a reward, even if the conditioning

occurred outside any relevant behavioral context. Importantly, the

data presented here show that this can be accomplished even in

the injured brain and without simply increasing neuronal firing

rate. It is likely that our results are similar to the well established

work showing that the healthy motor cortex is capable of

modifying its own activation patterns to allow the acquisition

and practice of new motor skills [41,47,48,49,50,51]. Our data

extend this idea to show that this phenomenon is a general

property of the motor cortex, not restricted to the forelimb motor

cortex, occurs in the absence of visual feedback about the task and

after a complete spinal transection. These are important conclu-

sions that advance our understanding of neuroprosthetic control

for clinical applications.

Materials and Methods

Behavioral Training, Surgery and Electrophysiology
Six adult male Long Evans rats were trained in a hindlimb pedal

pressing task. All animal procedures were conducted in accor-

dance with Drexel University Institutional Animal Care and Use

Committee-approved protocols, and followed established National

Institutes of Health guidelines. Except during recovery from

surgery, animal were maintained on a water restriction schedule.

Animals were placed in a behavioral chamber consisting of an

861268 inch clear acrylic cube each day for training (Figure 1A).

Near the rear of the chamber, a pedal protrudes from a hole in the

floor. Animals were trained to depress and release this pedal with

one hindpaw within 3 seconds from the start of an audible chime

cue. Successful completion of this task activated a solenoid valve

which dispensed approximately 0.1 mL of water after a 500 ms

delay. Incorrect trials, either false negative (failure to respond to

audible cue within the allotted time) or false positive (incorrectly

depressing the pedal in the absence of the audible cue) result in

dimming of the house lights for 3 seconds (time-out). Every animal

in the study had its own preference of using a particular limb

consistently throughout the study. 4 rats used their right limb and

2 used their left. Animals were considered to have achieved

proficiency at the task when they completed at least 50 responses

per session with a greater than 90% ratio of correct responses to

total trials (true positives), together with a less than 10% ratio of

inappropriate spontaneous presses to total number of presses (false

positives).

Animals that reached proficiency were implanted bilaterally

with arrays of 16 microwires into the hindlimb sensorimotor

cortex using standard methods in our lab [52] (Figure 1C,D). The

electrodes were lowered until they reached the infragranular layer

of the cortex, 1.2–1.3 mm from the surface of the brain.

Penetration depth was corroborated by the sampled neural

activity, when the characteristic large amplitude layer V–VI

neurons were present on the majority of electrodes, the array was

cemented in place. Throughout the study the activity of neurons

from the bilateral arrays were analyzed together.

The experiments were carried out in two distinct control modes

based on the factor controlling reward delivery. In the behavior

control (BC) mode, the animal was rewarded if the appropriate

pedal press behavior was performed in response to the chime cue.

In the neural control (NC) mode, the animal was rewarded based

on its neural activity during the press. Initially, during NC mode,

the animal was still free to press the pedal but eventually, during

subsequent recording sessions, the pedal was removed and, finally,

the animal was transected and retested in the task. It is important

to note that in this task, the animals did not have access to visual

feedback indicating their progress towards reward in contrast to

studies of forelimb BMI [11,12,13,40] that relied on the animal

having some knowledge about its progress during the task under

neural control. This is a distinct advantage for the hindlimb task in

this study because, presumably, one would not have visual

verification of neural control of hindlimb.

Animals were first recorded under BC mode for approximately

4 weeks. Off-line analysis was performed daily to assess the neural

performance. In order to do this a neural population function

(NPF) was generated by binning the spike times (100 ms bins), and

calculated a weighted sum of bin values for all the neurons in the

ensemble. The weights used in the NPF were generated using

a combined principle component/independent component anal-

ysis algorithm [29]. Pedal press/release behavior was typically

represented by a peak, either preceded by or followed by a trough,

in the smoothed NPF. Therefore, after each chime cue, the NPF

value was required to exceed the higher of a set of two thresholds,

as well as drop below the lower threshold. This was considered

a true positive. During baseline, when the animal was typically

sitting quietly, the NPF crossed neither of these thresholds. The

thresholds were set such that the true and false positive rates

matched the behavioral performance of the animal. If off-line

neural performance reached our criteria (90% TP and ,10% FP)

the animals continued to be tested in BC mode to acquire

sufficient baseline data and were then moved to NC mode.

After completion of recordings in BC mode, the animals were

run in the NC mode on all subsequent recording days. To get

weights for the NPF and to obtain the thresholds, the activity from

the previous recording day was used. The data from the previous

NC mode recording session were analyzed off-line in a manner

similar to that described for off-line analysis during BC mode.

During NC mode, the animal was rewarded if the NPF crossed the

thresholds derived from the previous day within a time period of 3

seconds after the chime. This process continued regardless of

whether there was a pedal. During NC mode and after spinal

transection, the weights were derived from off-line analysis of the

previous days recording and the thresholds were initially set to the

value of the previous day. Because the number of cells recorded

could change across days, thresholds were changed to scale them

to the peak amplitude of the population function. Since the

number of neurons recorded was quite stable, this occurred rarely

(on 6.1+/27.9% of days for the upper threshold and 4.0+/24.4%
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for the lower threshold). Once an animal progressed to the next

stage (i.e. having the pedal removed) it was not returned to

a previous stage.

During both modes, a Multichannel Acquisition Processor

(MAP, Plexon Inc., Dallas, TX) was used to simultaneously record

from multiple single neurons during each recording session. These

signals were high pass filtered with a 400 Hz cut off frequency to

extract the action potentials and then digitized at 40 KHz.

Discrimination of multiple single units on a single electrode was

carried out online before each recording session (Sort Client,

Plexon Inc). Pedal pressing activity was transduced using a linear

position sensor (P112, Positek, Cheltenham, UK) and sampled at

a rate of 200 Hz. The output of this sensor allowed us to

continuously track the end-point position of the limb during the

task, from which four movement parameters were derived on each

trial: reaction time, as well as the amplitude, peak velocity and

duration of the press.

The transection procedure was similar to our method in

a previous study [53] except here, the animals survived the

surgery. Animals were anesthetized with 4% isoflurane, main-

tained with approximately 1.5% isoflurane, given prophylactic

antibiotics (ampicillin 100 mg/Kg) and analgesic (buprenorphine

0.05 mg/Kg) after the surgery. A laminectomy was performed at

thoracic level (T8–T9) and the dura was removed with micro-

dissecting scissors. The cord was transected with iridectomy

scissors followed by aspiration. A collagen matrix, Vitrogen

(Cohesion Technology, Encinitas, CA), was injected into the site

of the transection. The lesion was confirmed visually with 20X

magnification. The muscle and skin were sutured in layers with 4–

0 silk. Animals were given 10 ml of lactated ringer’s solution,

placed on a heating pad until they recovered from anesthesia and

then returned to their home cage. Animals were given 10 ml of

lactated ringers and antibiotics daily for one week post surgery.

The animal’s cage was kept on a heating pad and their bladders

were expressed 3 times daily until the onset of spontaneous bladder

evacuation (7–10 days). Once the animals recovered from surgery

(7 days max), they returned to the pre-transection (pre-TX) water

restriction levels for the next 5–7 days and then retested.

Data Analysis
Behavioral events. In order to examine the neuronal firing

patterns, correlations and information encoded during the task,

three behaviorally relevant events were defined, 1) chime defined

from the time of the auditory cue, 2) start press defined by the initial

deviation of the amplitude sensor from its baseline position, 3) end

press defined as the completion of the task when the amplitude

sensor registered a return to baseline after the press (Figure 1B).

Movement parameters. One of the goals in this study was

to determine if the motor program of the animals to move the

hindlimb could be decoded on a single trial, in real-time.

Therefore, as a first approximation, we examined our ability to

decode hindlimb movement by defining four movement param-

eters based on the behavioral events defined above: the amplitude of

press which is the distance from the baseline position of the pedal

to the point of maximum deflection, reaction time to press is the time

between chime and start-press, peak velocity of the press is the peak

instantaneous downward velocity and duration of press is the time

between start-press and end-press. Because we were only decoding

gross hindlimb movement, which would be useful for many

hindlimb BMI applications, we did not utilize EMGs at this stage

of experimentation.

In Order to Look at How Individual Neurons in the
Ensemble Modulated their Activity in Relation to the
Task, We Measured their Activity Across Different Modes

Peri-event windows. The behavioral events, defined above,

were used as reference points to align the neural activity in three

windows to allow the identification of the behavioral event that

best modulated the neuron’s activity. The preparation window started

from the chime event and extended 1.5 seconds after chime. The

initiation window was referenced to the start of press event and

extended in 0.75 seconds before and after the event. The movement

window was referenced to the end press event and started from 1.5

seconds before the end press event. These windows were used to

analyze the neuronal firing patterns, correlations and information

encoded during the task (Figure 1B). While there is considerable

overlap in these time windows, the important consideration is not

the length of the window but the reference point used to align the

neural activity. This has the greatest impact on the peak and the

latency of the neuronal response, as well as how the information is

generated.

Peri-event time histograms (PETH) were obtained in the

windows relative to the three events as defined above in a manner

similar to our previous work for identifying neuronal activity

around footfalls on a treadmill (Kao et al., 2011). The average

background firing rate for each neuron was calculated using a pre-

chime window of length 1.5 s. The response region was defined by

smoothing the PETHs using a zero-phase distortion moving

average filter of length 5 bins (25 ms) and noting when the

response exceeded the 99% confidence bound of a random

Poisson process with the same overall mean as the cell’s mean

firing rate. The response of the neuron to a particular event was

considered significant if at least three bins in the unsmoothed

response window crossed the upper limit of the 99% confidence

interval of the background average. Only cells with a significant

response were further analyzed, using the window that generated

the largest response. The following parameters were extracted

from the unsmoothed PETHs: (a) Response Magnitude (RM): sum

of the spikes in all the bins in the response window, divided by the

total number of trials after subtracting the average background

activity. (b) Peak Response (PR): the bin with the maximum

number of spikes divided by the total number of trials after

subtracting the average background activity. (c) First bin latency

(FBL): The latency of the first bin that crosses the upper bound of

the 99% confidence interval described above. (d) Last bin latency

(LBL): The latency of the last bin that exceeds the confidence

interval. (e) Peak latency (PL): The latency of the peak bin.

Differences in these parameters were assessed using a two-way

analysis of variance (ANOVA) with two factors; event (levels:

chime, start press and end press) and experimental mode (levels:

BC mode and NC mode). Post-hoc analysis was done using

a Tukey HSD post-hoc test. Passive sensory responses were evaluated

by lightly anesthetizing the animal and touching the cutaneous

surface with a probe identical to the methods outlined in previous

studies in our lab [52].

Responses to footfalls on the treadmill were calculated by having the

animal walk on a motorized treadmill, and evaluating the time of

footfalls on the treadmill using videotape. The response of neurons

around the time of footfalls was found using methods identical to

those outlined in our previous experiments [54].

Correlations between neuronal firing and kinematic parameters of

behavior (amplitude, reaction time, peak velocity and duration)

were measured in a 1500 ms window. Pearson’s linear correlation

coefficient between each of the four kinematic parameters and the

spike count in the response window was found for each neuron. All

the neurons which were recorded simultaneously in an ensemble
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on a particular recording day having a significant linear

correlation with any parameter were then used to fit a multiple

linear regression model. The coefficient of determination R2 was

used to evaluate the model fit and differences were assessed using

a two way ANOVA. The first factor was mode with two levels: BC

and NC and the second factor kinematic parameter with four

levels: amplitude, reaction time, peak velocity and duration.

The PETH-based classification method was used to quantify the

amount of information about the movement that can be decoded

from the activity of the population of neurons. For each movement

parameter, the trials were sorted based on the magnitude of

parameter, and then partitioned into two groups containing the

upper 30% and lower 30% trials. This was optimally chosen for

the current range of movements to classify between movements of

higher and lower magnitude. The PETH based classifier was used to

classify between the upper and lower values of each kinematic

parameter. The information encoded by the neuronal ensemble

about the movement was evaluated by applying Shannon’s

information formula to the classification performance. The

PETHs were aligned to the three events during the task. The

length of the time windows were increased in increments of

100 ms until the window length was 1500 ms as described below:

1. Starting from chime going forward upto 1500 ms after

chime.

2. Starting from 1500 ms after chime going backward upto

chime.

3. Starting from end-press going backward upto 1500 ms

before end-press.

4. Starting from 1500 ms before end-press going forward
upto end-press.

5. Starting from start press, the window was incremented by

50 ms in both directions till the window length was 1500 ms.

Bootstrapping the information. The final value of in-

formation reported was obtained after subtracting the value of the

bootstrapped information obtained by randomly pairing trials and

responses and using the same classification method to obtain the

bootstrapped information [55].

Dimension reduction using principal component

analysis. The spikes in the bins of the PETHs described above

were transformed using Principal Component Analysis and the

minimum number of principal components sufficient to get the

peak value of information obtained using all the PCs was

determined by applying the PETH based method repeatedly as

the number of PCs used was decreased.

Decoding the trajectory using Wiener filter. In order to

decode the position of the hindlimb from the neural activity

a Wiener filter was used. The position and velocity of the hindlimb

was modeled as a weighted sum of the spiking activity of all the

neurons recorded simultaneously from the hindlimb sensory motor

cortex. The basic form of the equation describing this is

y(t)~bz
Xn

u~{m

a(u)x(t{u)ze(t)

where y(t) is the vector of the movement parameters decoded at

time t, x(t-u) is a vector with the neuronal firing rates at time t with

a lag u, a(u) is the vector of weights required to fit x(t) to y(t) as

a function of the lag, b is the y intercept in this regression and is

a constant, e(t) is the residual error term. Neuronal firing rates

were sampled using 50 ms bins, a lag of 5 bins was introduced

between the neuronal firing and predicted kinematic parameter.

Models were trained with approximately 50% of the data and

tested on the remaining 50% in cross validation procedure.

Pearson’s correlation coefficient, R, between the tested signal

(hindlimb position) and the predicted output was calculated. One

way ANOVA with factor, method used for reconstruction (with

and without feedback of the actual position from one lag back) was

used to determine if there were any differences in the decoding

ability based on which method was employed.

Supporting Information

Figure S1 Data showing absolute time for recovery of in-

formation after TX. The value of the information decoded about

the motor program to press is reported on days 10 (two animals),

30 (four animals), 60 (two animals) and 150 (1 animal) days after

TX for 4 animals that were recorded post TX. Two animals were

re-introduced into the task 30 days after TX (WB013 and WB020).

One of these animals was recorded until day 60 after TX; the

other animal was recorded until day 150 after TX. The remaining

two animals (WB009) and WB010) were re-introduced into the

task and recorded until performance reached behavioral control.

The time course for recovery of the information was 10–15 days

regardless of when the animals were reintroduced into the task.

(TIF)
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