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Screening of Obstructive Sleep 
Apnea Syndrome by Electronic-
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Compounds
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Obstructive Sleep Apnea Syndrome (OSAS) carries important social and economic implications. Once 
the suspicion of OSAS has arisen, Polysomnography (PSG) represents the diagnostic gold standard. 
However, about 45% of people who have undergone PSG are free from OSAS. Thus, efforts should 
be made to improve the selection of subjects. We verified whether the pattern of Volatile Organic 
Compounds (VOCs) helps to select patients amenable to PSG. We studied 136 subjects (20 obese non-
OSAS, 20 hypoxic OSAS, 20 non-hypoxic OSAS, and 20 non-hypoxic Chronic Obstructive Pulmonary 
Disease (COPD) vs 56 healthy controls) without any criteria of exclusion for comorbidity to deal with 
a real-life population. VOCs patterns were analyzed using electronic-nose (e-nose) technology. A 
Discriminant Analysis (Partial Least Square-Discriminant Analysis) was performed to predict respiratory 
functions and PSG parameters. E-nose distinguished controls (100% correct classification) from others 
and identified 60% of hypoxic, and 35% of non-hypoxic OSAS patients. Similarly, it identified 60% of 
COPD patients. One-by-one group comparison yielded optimal discrimination of OSAS vs controls and 
of COPD vs controls (100% correct classification). In conclusion, e-nose technology applied to breath-
analysis can discriminate non-respiratory from respiratory diseased populations in real-life multimorbid 
populations and exclude OSAS. If confirmed, this evidence may become pivotal for screening purposes.

Obstructive Sleep Apnea Syndrome (OSAS) is a highly prevalent condition with important social and economic 
implications1. In fact, OSAS is associated with cardiovascular, neurological and metabolic problems as well as 
with car accidents2–6. Most of these problems are fully or largely preventable with nocturnal ventilation through 
Continuous Positive Airway Pressure (C-PAP)7, at least in the symptomatic patient, since the benefit of treatment 
in the absence of symptoms is currently debated8. Thus, it is mandatory to recognize and treat OSAS patients in a 
timely manner. Once clinical suspicion of OSAS has arisen, Polysomnography (PSG) represents the gold standard 
diagnostic test, but it is cost and time consuming and requires dedicated personnel and setting. Furthermore, up 
to 45% of people who have undergone PSG are actually free from OSAS9. Thus, efforts should be made to improve 
the selection of subjects for PSG. Unfortunately, dedicated questionnaires and existing screening instruments 
could meet this goal only to some extent10–12. Furthermore, aging accounts for changing phenotype and symp-
toms of OSAS patients: in aged patients, obesity is less prevalent than in young and adult OSAS patients, and 
the same is true for snoring, whereas nocturia, an important effect of OSAS, may be misattributed to urological 
problems13,14. This makes the selection for PSG more and more difficult as the average age of the screened pop-
ulation increases. OSAS prevalence is strictly age-related, reaching 15–20% after the age of 7015, although some 
authors indicate that it may slightly decrease in the oldest patients16. Thus, in this population, the development 
of a reliable, inexpensive and simple screening instrument would be highly desirable. E-nose technology seems 
promising in this regard. It is a non-invasive and inexpensive technique oriented to Volatile Organic Compounds 
(VOCs) profiling in the exhaled breath for diagnostic and prognostic purposes. Indeed, profiling the composition 
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of the exhaled breath, i.e. the pattern of VOCs, through e-nose is a simple, non invasive, rapid and inexpensive 
procedure. E-nose has been proved to have notable discriminative properties among different respiratory dis-
eases, such as lung tumors, Chronic Obstructive Pulmonary Disease (COPD) and asthma17–19. Breath print (BP) 
analysis might complement or substitute for the questionnaire in the screening with the aim of improving PSG 
cost/effectiveness11. Furthermore, at least in people free from important comorbidity, BP might be used to mon-
itor the response to and the compliance with CPAP. Finally, analysis of BP might shed light on the heterogeneity 
of OSAS phenotypes19.

To our knowledge, it has been tested in OSAS patients only on few occasions19–24. In all these studies, VOC 
patterns very reliably distinguished OSAS from normal subjects, and in two studies, the patterns dramatically 
changed in OSAS patients either after a single night or after three months of C-PAP therapy19–22. Interestingly, 
findings from Greulich et al. in 2013 suggested that e-nose might be used to screen subjects more likely to be 
diagnosed to have OSAS by PSG22; however, the study compares OSAS patients with healthy subjects, whereas 
in real life the differential diagnosis could vary depending on the clinical context20. Dragonieri et al. found that 
VOCs of OSAS and non-OSAS obese subjects largely overlap, and hypothesized that the systemic inflammation 
accounts for these analogies23. OSAS patients studied by Greulich had a very low prevalence of comorbidity 
known to influence BP22. Indeed, highly prevalent comorbidities, especially those characterized by a remarkable 
systemic inflammation, such as COPD and diabetes, frequently coexist with OSAS25 and their impact on VOCs 
profile is not completely ascertained.

Both COPD and diabetes are known to promote tissue oxidative stress, bloodstream inflammatory cytokine 
release and systemic inflammation. It is therefore likely that this may impact the VOCs composition26,27 and make 
the interpretation of VOCs profiles in OSAS more challenging.

The aim of this study is to verify to which extent e-nose technology can effectively distinguish OSAS people from 
healthy controls, as well as from non-OSAS obese and COPD patients. Assessing the discriminatory power of e-nose 
in real life conditions would allow for testing the potential usefulness of e-nose as a pre-PSG screening procedure.

Methods
The study was approved by the Campus Bio Medico University Ethical Committee (Protocol no. 47/11 ComEt 
CBM, Rome, 12/05/2011). All patients signed an informed consent form in order to participate in the study. All 
methods were performed in accordance with the relevant guidelines and regulations.

Participants.  Eighty subjects (20 severely obese non-OSAS; 20 hypoxemic and severely obese OSAS; 20 non 
hypoxemic, mildly obese, OSAS; and 20 non hypoxemic, non obese COPD in stage A according to the Global 
initiative for COPD recommendations, GOLD) attending the outpatient clinic for respiratory diseases at Campus 
Bio-Medico Teaching Hospital were recruited (see Table 1).

The COPD group consisted of non-obese subjects. The fifty-six healthy, non-obese controls, free from both 
COPD and OSAS, were recruited among people attending the outpatient surgical department of the same hospital 
for minor surgical procedures. The group of obese, non-OSAS subjects included subjects with clinical features con-
sistent with OSAS, but with a negative PSG. The clinical suspicion of OSAS was based on the presence of any of the 
following known clinically predictive symptoms and signs: snoring, abnormal sleep duration and schedule, daytime 
nap habits, excessive daytime sleepiness, increased neck circumference, morbid obesity (BMI > 36), facial or oro-
pharyngeal dysmorphisms (macroglossia, micrognathism, uvulopalatal hypertrophy, or velopharinx collapse), oth-
erwise unexplained nocturia, sleep apneas referred by patients or their partners28,29. COPD diagnosis was oriented 
by the existence of known risk factors (tobacco smoking, environmental exposure, recurrent acute airways infections 
in childhood, alpha 1 anti-trypsin deficiency) and of clinical symptoms and signs such as chronic, productive cough, 
wheezing, dyspnea, chest x-rays supporting the diagnosis. and it was confirmed by pulmonary function tests accord-
ing to current guidelines30. Comorbid diseases were recorded through a systematic and detailed clinical history 
report. Similarly, data related to tobacco smoking habits were also recorded. All patients were in stable conditions, 
and free from any acute exacerbations of chronic diseases at the time of the study recruitment.

Controls 
(n = 56)

Obese non-
OSAS (n = 20)

Non-hypoxic 
OSAS (n = 20)

Hypoxic OSAS 
(n = 20)

COPD 
(n = 20) p-value

Age mean (SD) 66.8 (11.0) 59.7 (13.2) 62.7 (13.0) 64.0 (12.9) 64.5 (9.4) 0.55

Males n° (%) 35 (62.5) 12 (60.0) 12 (60.0) 14 (70.0) 14 (70.0) 0.77

BMI mean (SD) 25.6 (3.4) 35.0 (3.7) 30.3 (5.1) 36.7 (6.0) 25.1 (3.3) 0.003

T90 mean (SD) 1.2 (0.5) 3.4 (4.0) 4.8 (3.8) 48.8 (19.7) 14.3 (6.7) <0.001

Current Smokers n° (%) 8 (14.0) 5 (25) 3 (15) 8 (40) 0 0.038

Number of Comorbidities mean (SD) 0.62 (0.6) 1.8 (1.7) 1.9 (1.7) 1.5 (1.5) 1.0 (1.2) 0.61

Hypertension n° (%) 31 (55.1) 10 (50) 14 (70) 13 (65) 5 (25) 0.048

Diabetes Mellitus n° (%) 4 (7.0) 6 (30) 5 (25) 7 (35) 1 (5) 0.73

Chronic Heart Failure n° (%) 0 2 (10) 0 3 (15) 3 (15) 0.07

Renal Failure n° (%) 0 1 (5) 0 1 (5) 0 0.56

Atrial Fibrillation n° (%) 0 3 (15) 2 (10) 3 (15) 1 (5) 0.67

Table 1.  Anthropometric and demographic characteristics of the study groups. Abbreviations: 
OSAS = Obstructive Sleep Apnea Syndrome; COPD = Chronic Obstructive Pulmonary Disease; BMI = Body 
Mass Index; T90 = Time with Oxygen Saturation below 90%.
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Sleep Evaluation.  The suspected diagnosis of OSAS was tested through hospital full unattended type 2 
PSG (>7 channels) according to current international guidelines31,32, using a dedicated device (produced by 
SOMNOmedics GmbH of Randersacker, Germany).

‘Sleep apnea’ was defined as a complete or almost complete cessation of airflow, indicated by a reduction to 
25% or less of baseline amplitude for 10 seconds or more, and ‘hypopnea’ was defined as a clear decrease in air-
flow to 50% of baseline amplitude for at least 10 seconds. OSAS severity was rated by the frequency of apneic and 
hypopneic events per hour of sleep (Apnea-Hypopnea Index [AHI]: mild (AHI ≥ 10/h and < 20/h), moderate 
(AHI ≥ 20/h and < 30/h) and severe (AHI ≥ 30/h)). Hypoxemia in OSAS was defined as an oxygen reduction of 
over 30% of the total sleep time, with oxy-haemoglobin saturation below 90%33.

Pulmonary Function Tests.  Respiratory function tests and blood gas analyses were performed in the 
morning, participants were fasted and smoke free for at least 12 hours30.

Forced expiratory volumes were measured using a water-sealed bell spirometer (Biomedin of Padua, 
Italy) following acceptability and reproducibility criteria proposed by the American Thoracic Society and by 
the European Respiratory Society (ATS/ERS)34. The maneuver was repeated after salbutamol inhalation and 
post-bronchodilator data were used to characterize COPD patients34. Total Lung Capacity (TLC) and Residual 
Volume (RV) were obtained using the Helium-rebreathing technique35. Values were expressed as a percentage of 
the predicted value calculated using standardized reference equations36. ‘Hypoxia’ constituted an exclusion crite-
rion and was defined as a blood gas analysis with an oxygen partial pressure under 80 mmHg.

Breath Collection.  Since many environmental and metabolic circadian variables may affect exhaled air com-
position37, breath collection was obtained in the morning. Patients were fasted and tobacco smoke free for at 
least 12 hours. All patients were requested to wash their mouth, without using toothpaste, before the procedure. 
Similarly, they were not allowed to receive alcoholic or sweetened beverages, or sleep medications before the 
breath sampling.

A three minute, tidal volume breathing into a dedicated storage device for direct sampling of exhaled breath 
on adsorbing cartridge (Pneumopipe®, European patent no. 12425057.2, Rome, Italy), was the simple contribu-
tion asked of each patient undergone the e-nose test. A detailed description of the study materials and procedure 
is available elsewhere38.

The mouthpieces used for the sampling apparatus were disposable.

Sensors.  The transducers used for the gas sensor array were seven quartz crystals with a resonance frequency 
of 20 MHz in thickness shear mode, covered with a combination of anthocyanins extracted from three different 
plant tissues: red rose, red cabbage, blue hortensia. The sensors composing the array were: sensor 1, RR (Red 
Rose extract 65 mM); sensor 2, BH (Blue Hortensia extract 65 mM); sensor, 3 RC (Red Cabbage extract 65 mM); 
sensor 4, RRS (Red Rose extract 65 mM + Sucrose 10 mM); sensor 5, RCS (Red Cabbage extract 65 mM + Sucrose 
10 mM); sensor 6, BHS (Blue Hortensia extract 65 mM + Sucrose 10 mM); sensor 7, S (Sucrose 10 mM). The elec-
tronic board controlling the whole system was based on a STM 32 F303VC, fabricated by ST Microelectronics 
(Geneva, Switzerland).

A calibration study on this array of biosensors is reported elsewhere38. This multisensorial system is able to 
analyse the volatile and liquid parts of a sample, but for the scope of this work, only the gas sensor array was used. 
The final dataset is composed of 28 responses resulting from the registration of the 7 sensors behaviour with a 
sample at four different temperatures (procedure dependent on the exhaled breath sampling on the adsorbent 
cartridge, explained in detail in the section regarding breath collection and delivery).

Breath Delivery.  The following desorption of the cartridge into the sensors chamber was obtained thanks 
to an interfacing device able to evenly heat the tube from 50 °C to 200 °C, and finally clean the cartridge keeping 
the temperature at 300 °C for five minutes. The final fingerprint of the exhaled breath (BreathPrint: BP) was a 
sequence of four n-dimensional patterns, composed of n responses of n-dimensional gas sensors array at four 
given temperatures (50–100–150–200 °C).

Individual BPs were graphically represented by radar plots. Each radar plot is made of equi-angular radii, with 
each radius representing one of the 28 sensor responses. The magnitude of each sensor response is given by the 
radius length. The radar plot “profile” consists of a line connecting the data values of each radius.

Analytical Approach.  Data are described as mean (and 95% Confidence Intervals, CI) for continuous vari-
ables, and as percentage for categorical variables.

A Partial Least Square Discriminant Analysis (PLS-DA) was performed on the 7-dimensional data array, 
in order to build a model to predict respiratory function parameters. The PLS-DA model was cross-validated 
through the leave-one-out criterion and then, the Root Mean Square Error in Cross-Validation (RMSECV) of the 
model in the prediction of respiratory function indexes was computed. The RMSECV provides a measure for the 
robustness of the PLS-DA model39.

In the attempt to exclude the confounding role of tobacco smoking, we repeated the analysis limited to never 
smokers.

A summary flow chart of the study design is displayed in Fig. 1.

Data availability.  The datasets generated and analyzed during the current study are available from the cor-
responding author on reasonable request.
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Results
Anthropometric and Demographic characteristics, as well as mean numbers and a list of major comorbidities, 
are included in Table 1. Patients were predominantly males, with a mean age slightly above 60. Groups did not 
differ in age, sex distribution, number and prevalence of major comorbidities, except for a lower prevalence of 
hypertension in the COPD group versus the control, obesity and OSAS groups. However, the control and COPD 
groups had a significantly lower BMI. Moreover, as a consequence of the study design, the mean time with an 
oxygen saturation below 90% was also higher in the group of hypoxic OSAS.

Finally, the prevalence of current smokers ranged from null in COPD group to 40% in hypoxic OSAS, with 
figures of 14–15% in controls and hypoxic OSAS and 25% in obese non OSAS groups.

Data displaying e-nose discriminative ability is reported in Table 2. The discriminant analysis substantially 
failed to correctly differentiate the groups with the only exception of the control group where a 100% correct 
classification rate was achieved (Table 2). The graphical analysis of radar plots representing the groups BP profiles, 
clearly confirms the absence of relevant differences in sensor by sensor measures among the groups, except for the 
distinctive pattern of the control group (Fig. 2).

In the analysis limited to non-smokers (Table 2) the correct classification rate for COPD and obese non-OSAS 
patients improved, but the correct classification rate for OSAS patients worsened further.

The confounding role of tobacco smoking emerges in the set of multiple comparisons among OSAS, COPD 
and controls (Table 3), and between OSAS and COPD alone (Table 4), where the rate of correct classification 
increased after smokers were excluded (Table 4). Interestingly, as already observed in the overall comparison 
(Table 2), the COPD group showed the largest improvement in classification rating (raising from 40% to 80%), 
whereas the discrimination of OSAS patients from COPD was excellent even when smokers were considered 
(92.5% and 92.8%, with and without smokers, respectively) (Table 4).

Table 5 shows the results obtained by a discriminant analysis limiting the number of groups undergoing com-
parison to two. A very high classificatory capacity is observed, both between the whole OSAS group and the con-
trol group (correct classification rate of 100% and 98%, respectively) (Table 5) and within the OSAS group itself 
(hypoxic vs non-hypoxic) (correct classification rate of 80% and 60%, respectively) (Table 5). A 100% correct clas-
sification was finally obtained when control and COPD groups were compared (Table 5). Interestingly, the classi-
fication of COPD patients worsened if hypoxemic and non-hypoxemic OSAS groups were merged (Table 4). This 
suggests that the discriminatory capacity of VOCs vs COPD is enhanced by the variety of potential allocations.

Discussion
The main finding of this study is that the electronic nose can optimally identify healthy subjects and distinguish 
them from both OSAS and COPD patients. On the contrary, it substantially failed to discriminate OSAS patients 
from other groups, but resulted fairly able to discriminate COPD patients and hypoxemic OSAS patients. Thus, 
the e-nose can identify people unlikely to benefit from PSG, but it cannot distinguish OSAS from obese and 
COPD patients. Accordingly, it might limit the access to PSG only to some extent. However, even a small prese-
lection is likely to improve the resource allocation, given that OSAS is highly prevalent and PSG is requested more 
and more frequently. In fact, excluding healthy subjects from PSG screening would improve the cost/efficacy of 
PSG. Finally, as requested of an ideal screening test, breath analysis is inexpensive, non-invasive, and easy and 
quick to use.

The great heterogeneity of OSAS likely explains the partly negative conclusions of this study. OSAS hetero-
geneity was related to multiple aspects, i.e. anatomical or non-anatomical predisposing conditions, pathogenetic 
mechanisms40 and age-dependent phenotypic variability41. Several phenotypes may in fact be inferred from PSG 

Figure 1.  Study design.
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features in mild to moderate OSAS42,43. Finally, Vavougios and co-workers recently established a clustering among 
six different comorbidities and OSAS44 and, in another recent paper, the cause-effect relationship between comor-
bidities and BP heterogeneity in OSAS was clearly shown20. However, the fact that in our patients the e-nose 
could better discriminate hypoxemic than non-hypoxemic OSAS patients suggests that the metabolic impact of 
hypoxemia increases BP specificity.

Our study confirms that COPD represents a promising model for the e-nose analysis45,46. Previous VOCs 
studies could effectively distinguish COPD from normal subjects either through e nose or gas characterizing 
methods47–49. The fact that COPD patient classification worsened if hypoxemic and non hypoxemic OSAS groups 
were merged, supports the dominant view of COPD as a highly heterogeneous condition (Table 3). In fact, COPD 
is characterized by systemic and metabolic effects, such as systemic inflammation and oxidative stress, and asso-
ciated with cardiovascular and metabolic disorders50–53. Interestingly, the level of “systemic” inflammation in 
COPD strictly parallels that of “local” bronchial inflammation and obstruction (FEV1)51. Furthermore, pul-
monary oxidative stress markers spilling over into mainstream, such as the excretion of F2-isoprostanes, stable 
products of peroxidation of arachidonic acid54, increase in COPD regardless of smoking habits and peak during 

Obese non-
OSAS Non-hypoxic OSAS Hypoxic OSAS COPD Controls

% of correct 
classification

Obese non-OSAS (n = 20) 9 2 1 5 3 45

Non-hypoxic OSAS (n = 20) 1 12 1 4 3 60

Hypoxic OSAS (n = 20) 5 5 7 6 2 35

COPD (n = 20) 0 4 1 12 3 60

Controls (n = 56) 0 0 0 0 56 100

Sample w/o smokers = 119 Controls Non-hypoxic OSAS Hypoxic OSAS Obese non-OSAS COPD % of correct 
discrimination

Controls (n = 56) 56 0 0 0 0 100

Non-hypoxic OSAS (n = 11) 2 3 1 3 2 27

Hypoxic OSAS (n = 17) 4 1 4 4 4 23

Obese non-OSAS (n = 15) 2 0 1 11 1 73

COPD (n = 20) 3 0 0 4 13 65

Table 2.  Partial least square discriminant analysis of the whole sample with (upper panel) and without smokers 
(lower panel). Abbreviations: OSAS = Obstructive Sleep Apnea Syndrome; COPD = Chronic Obstructive 
Pulmonary Disease.

Figure 2.  Radar plot comparing profiles of individual groups.
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exacerbations54. Thus, a vast array of VOCs variously contributes to shape the BP of COPD and likely make it 
quite heterogeneous.

To our knowledge, this is the first study testing the discriminative properties of BP obtained through e-nose 
analysis in a multiple comparison study (Hypoxic and non-Hypoxic OSAS, Non-Hypoxic COPD, Obese 
non-OSAS) on respiratory patients and healthy controls. Previously published studies, in fact, compared a single 
pathologic group with controls (i.e. Asthma, COPD, Sarcoidosis, Lung Cancer, OSAS alone vs controls)41,42,44–46 
or two, rarely three, distinct respiratory disease groups versus each other (i.e, Asthma vs COPD, Malignant 
Mesothelioma vs Benign Pleural Disease vs Controls)55,56. Only Dragonieri et al. compared the BP of OSAS, 
obese non-OSAS and non-obese, non-OSAS subjects24. Our findings confirm, through a larger and more artic-
ulated comparative analysis, that BP of OSAS and obese patients overlap considerably. Furthermore, in previous 
studies, the effects of age, gender, tobacco smoking habits and comorbidities were rarely taken into account20, and 
the few existing evidences are limited to exhaled nitric oxide only57,58. In our study, groups showed comparable 
demographic characteristics and comorbidities, and this allowed explore the effects of current smoking habits 

COPD Non-hypoxic OSAS Hypoxic OSAS Controls
% of correct 
discrimination

COPD (n = 20) 12 4 1 3 60

Non-hypoxic OSAS (n = 20) 4 12 1 3 60

Hypoxic OSAS (n = 20) 6 5 7 2 35

Controls (n = 56) 0 0 0 56 100

Without Smokers

COPD (n = 20) 17 0 1 2 85

Non-hypoxic OSAS (n = 11) 2 6 2 1 30

Hypoxic OSAS (n = 17) 6 1 6 4 30

Controls (n = 56) 0 0 0 56 100

Table 3.  Partial least square discriminant analysis among COPD, hypoxic OSAS, non-hypoxic OSAS, 
and control subgroups in the study sample including (upper panel) and excluding (lower panel) smokers. 
Abbreviations: OSAS = Obstructive Sleep Apnea Syndrome; COPD = Chronic Obstructive Pulmonary Disease.

Total sample All OSAS COPD
% of correct 
classification

Without 
smokers

All 
OSAS COPD

% of correct 
classification

All OSAS (n = 40) 37 3 92 All OSAS 
(n = 28) 26 2 93

COPD (n = 20) 12 8 40 COPD (n = 20) 4 16 80

*w/o smokers Hypoxic OSAS Non-hypoxic OSAS COPD % of correct 
classification

Hypoxic OSAS (n = 11) 6 4 1 54

Non-hypoxic OSAS (n = 17) 0 13 4 76

COPD (n = 20) 3 6 11 55

Table 4.  Partial least square discriminant analysis among OSAS and COPD with and without smokers (upper 
panels), and after separating OSAS according to the occurrence of hypoxemia (lower panel). Abbreviations: 
OSAS = Obstructive Sleep Apnea Syndrome; COPD = Chronic Obstructive Pulmonary Disease. *In this 
comparison, the original PLS-DA model was not solid enough to univocally classify all the patients belonging 
to the Hypoxic, Non-hypoxic OSAS and COPD groups. The reported model was therefore generated after 
excluding smokers.

All OSAS Controls % of correct classification

All OSAS (n = 40) 40 0 100

Controls (n = 56) 1 55 98

Non-hypoxic OSAS Hypoxic OSAS % of correct classification

Non-hypoxic OSAS (n = 20) 16 4 80

Hypoxic OSAS (n = 20) 8 12 60

Controls COPD % of correct classification

Controls (n = 56) 56 0 100

COPD (n = 20) 0 20 100

Table 5.  Partial least square discriminant analysis among OSAS and Controls (upper panel), between Hypoxic 
and Non-hypoxic OSAS (middle panel), and between Controls and COPD (lower panel). Abbreviations: 
OSAS = Obstructive Sleep Apnea Syndrome; COPD = Chronic Obstructive Pulmonary Disease.
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on BP. Indeed, cigarette smoking qualified as an important confounder, and this likely explains why, at variance 
with findings recently reported by Dragonieri et al.23 which pertain to a non smoking population, COPD was 
frequently misdiagnosed in the OSAS vs COPD comparison (40% correct classification rate only - Table 4).

Limitations of this study deserve consideration. Firstly, we had no direct measure of relevant potential cor-
relates for VOCs prints, such as bronchial inflammation, nitric oxide concentration, etc. Secondly, we recorded 
VOCs fingerprints, but we could not identify their components through dedicated analyses, such as gas chroma-
tography or mass spectrography. Thus, we can conceivably conclude that VOCs significantly distinguish healthy 
subjects from a pool of people with chronic respiratory conditions, but we ignore which exhaled molecules 
account for this distinction. However, the objective of the study was to assess the whole breath pattern and not to 
characterize it analytically. Finally, our data need confirmation by an external validation set59.

In conclusion, our e-nose technology applied to breath analysis allows identify healthy subjects and subse-
quently to exclude them very reliably from PSG screening, but it cannot recognize OSAS-specific BP. On the other 
hand, its classificatory and discriminatory properties seem worthy of further testing on people with hypoxemic 
OSAS and on people with COPD.
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