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Human ACE (angiotensin-I-converting enzyme) has long been
regarded as an excellent target for the treatment of hypertension
and related cardiovascular diseases. Highly potent inhibitors have
been developed and are extensively used in the clinic. To develop
inhibitors with higher therapeutic efficacy and reduced side
effects, recent efforts have been directed towards the discovery
of compounds able to simultaneously block more than one zinc
metallopeptidase (apart from ACE) involved in blood pressure
regulation in humans, such as neprilysin and ECE-1 (endothelin-
converting enzyme-1). In the present paper, we show the first
structures of testis ACE [C-ACE, which is identical with the
C-domain of somatic ACE and the dominant domain responsible
for blood pressure regulation, at 1.97Å (1 Å = 0.1 nm)] and the
N-domain of somatic ACE (N-ACE, at 2.15Å) in complex with
a highly potent and selective dual ACE/ECE-1 inhibitor. The

structural determinants revealed unique features of the binding
of two molecules of the dual inhibitor in the active site of C-ACE.
In both structures, the first molecule is positioned in the obligatory
binding site and has a bulky bicyclic P1

′ residue with the unusual R
configuration which, surprisingly, is accommodated by the large
S2

′ pocket. In the C-ACE complex, the isoxazole phenyl group
of the second molecule makes strong pi–pi stacking interactions
with the amino benzoyl group of the first molecule locking them
in a ‘hand-shake’ conformation. These features, for the first time,
highlight the unusual architecture and flexibility of the active site
of C-ACE, which could be further utilized for structure-based
design of new C-ACE or vasopeptidase inhibitors.

Key words: angiotensin-1-converting enzyme (ACE), cardivascu-
lar disease, crystal structure, inhibitor design, metalloprotease.

INTRODUCTION

Membrane-bound zinc metallopeptidases such as ACE
(angiotensin-I-converting enzyme, EC 3.4.15.1), NEP (neutral
endopeptidase, also known as neprilysin, EC 3.4.24.11)
and ECE-1 (endothelin-converting enzyme-1, EC 3.4.24.71)
exert vasoconstrictive and vasodilatory activities [via Ang-II
(angiotensin-II), and ET-1 (endothelin-1), and natriuretic peptides
and BK (bradykinin) respectively] and are well-established targets
for the treatment of cardiovascular disease [1–6]. Despite the
success of ACE inhibitor therapy in the treatment of hypertensive
patients, it has been established that chronic use of these inhibitors
causes undesirable side effects, such as persistent dry cough,
loss of taste and angiooedema, which are most likely due to
elevated levels of BK [7,8]. Moreover, ACE inhibition can
induce an increase in chymase activity in cardiac interstitial
fluid, providing an alternative pathway for the formation of
Ang-II [9]. Hence, blood pressure control remains suboptimal
in a significant proportion of patients on this therapy, as
well as those on other antihypertensive drug treatments [10].
This provides a compelling case for the development of new
improved strategies for the treatment of patients with high blood
pressure, a major risk factor for cardiovascular complications.
To address this concern, potent vasopeptidase inhibitors able
to target ACE and NEP were first developed [11,12], followed
by dual NEP/ECE-1 inhibitors and ultimately triple inhibitors

blocking ACE/NEP/ECE-1 simultaneously [13]. Even though
the dual ACE/NEP inhibitor omapatrilat was more clinically
efficacious than a single ACE inhibitor, the higher incidence of
angiooedema observed in patients treated with omapatrilat halted
the development of omapatrilat and raised concerns about the
risk/benefit ratio of dual ACE/NEP inhibitors for therapeutic
applications [14]. Although the incidence of angiooedema
associated with triple ACE/NEP/ECE-1 inhibitor treatment is yet
to be evaluated, it has been suggested that NEP inhibition (in
the context of either dual or triple inhibitor treatment) might be
responsible for the increase in adverse effects [13]. Indeed it
has been established that inhibition of NEP results in increased
levels of BK and ET-1. These data initiated the development
of novel inhibitors that interact with the C-domain of ACE
(C-ACE) and ECE-1 [15] (Figure 1). The discovery of the first
potent and selective dual C-ACE/ECE-1 inhibitors revealed that
the configuration of the P1

′ residue was a key factor in the
control of inhibitor selectivity (Figure 1). Instead of the classical S
configuration in the P1

′ position of the inhibitor (corresponding to
an L amino acid, as observed in all ACE inhibitors reported to date)
(compound FI in Figure 1), we discovered that an R configuration
in compounds (compound FII in Figure 1) containing long and
bulky P1

′ side chains was well accommodated by ACE, as well
as by ECE-1, but much less so by NEP (for details see [15]).
Furthermore, in a spontaneous hypertensive rat model, an
intravenous administration of a C-ACE/ECE-1 dual inhibitor (FII)
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Figure 1 Chemical structures of ACE/ECE-1 dual inhibitors FI and FII and their potency

Compound FI adopts the S configuration and compound FII adopts the R configuration.

(10 mg/kg of body weight) lowered the mean arterial blood
pressure by 24+−2 mmHg (1 mmHg = 0.133 kPa) as compared
with controls [15].

In humans there are two ACE isoforms: somatic ACE, which
comprises two homologous enzymatic domains (N- and C- with
∼60% amino acid sequence identity) [16] and testis ACE,
which is a single domain protein identical with the C-domain
of somatic ACE [17]. Although both cleave angiotensin-I, it has
been shown that C-ACE is sufficient to maintain the regulation
of blood pressure in vivo [18] and hence viewed as the dominant
site of Ang-II generation. On the other hand the N-domain (N-
ACE) contributes to the regulation of haemopoietic stem cell
differentiation and proliferation through its hydrolysis of the
anti-fibrotic haemoregulatory peptide AcSDKP (AZ-acetyl-seryl-
aspartyl-lysyl-proline, a biological substrate of ACE) [19,20]. In
addition, these domains have their own distinctive physiochemical
properties, such as thermostability [21], resistance to proteolysis
[22], chloride-ion dependence [23,24] and substrate preference
[19,25,26]. Subtle differences in the crystal structures of the apo
and bound forms of the two domains have been exploited for the
development of domain-selective ACE inhibitors [27–33].

In order to gain structural insight into the dual ACE/ECE-1
inhibitor (FII) binding to ACE we have determined the crystal
structure of FII in complex with C-ACE and N-ACE at high
resolution. In the present paper we describe the novel and
unexpected binding features of a highly specific and unusual dual
inhibitor FII.

EXPERIMENTAL

Synthesis of the phosphinic tripeptide (FII) [(2S)-2-({3-
[hydroxyl(2-phenyl-(1R)-1-{[(benzyloxy)carbonyl]-amino}eth-
yl)phosphinyl]-2-[(3-phenylisoxazol-5-yl)methyl]-1-oxo-propyl}
amino)-3-(4-hydroxy-phenyl) propanoic acid] was performed as
described by Jullien et al. [15]. Potency of inhibitors towards
C-ACE and N-ACE, as well as potency towards NEP and ECE-1,
were determined as described by Jullien et al. [15,34]. K i values

were determined at 25 ◦C in 50 mM Hepes (pH 6.8), 200 mM
NaCl, 10 μM ZnCl2 and 0.02% Brij-35.

Protein purification and crystallization of ACE/ECE-1 dual inhibitor
(FII) complex

C-ACE

A variant of human testis ACE (tACE�36-g13, underglycosylated
protein) was purified to homogeneity from CHO (Chinese-
hamster ovary) cells, as described previously [35]. The crystals of
the C-ACE complex with the dual inhibitor were grown at 16 ◦C
by the hanging-drop vapour diffusion method. C-ACE protein
(11.5 mg/ml in 50 mM Hepes, pH 7.5) was pre-incubated with FII
(1 mM) on ice for 5 h before crystallization. The pre-incubated
sample (2 μl) was mixed with the reservoir solution consisting
of 13.5% PEG [poly(ethylene glycol)] 4000, 50 mM sodium
acetate (pH 4.7) and 10 μM ZnSO4, and suspended above the
well. Diffraction quality co-crystals appeared after approximately
1 week.

N-ACE

The minimally glycosylated construct of the N-domain of somatic
ACE, N-ACE389, was generated by site-directed mutagenesis, as
described previously [33]. The recombinant protein was expressed
in CHO cells and purified to homogeneity by lisinopril affinity
chromatography. The crystals of N-ACE in complex with FII
were grown at 16 ◦C by the hanging-drop method. An initial hit
was obtained in the presence of 0.06 M divalent cations, 0.1 M
Tris/Bicine (pH 8.5) and 30% PEG 550MME/PEG 20000, and
was refined using the Hampton Research silver bullets additive
screen. Briefly, the N-ACE protein (4 mg/ml) was pre-incubated
with FII (at a molar ratio of 1:5) on ice before crystallization, 2 μl
of pre-incubated sample was mixed with 1 μl of reservoir solution
and 1 μl of G3 of silver bullet condition No 3 and suspended above
the well. Diffraction quality crystals appeared after approximately
1 week.
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Figure 2 Overall topology of C-ACE and N-ACE molecules

(A) A cartoon representation of the C-ACE structure with bound dual-inhibitor molecules at sites A and B (FII-A and FII-B) and the observed N-glycosylated sugars (green sticks) at the N-glycosylation
sites (Asn72 and Asn109). The bound inhibitor molecules at the two sites, FII-A and F II-B, are shown in stick representation, coloured in yellow and cyan respectively. The active-site Zn2+ ion and
the location of the two Cl− ions are shown in green and skyblue spheres respectively. (B) A cartoon representation of N-ACE in complex with the dual inhibitor. The bound dual inhibitor (FII) and
the N-glycosylated sugars are shown as yellow and green sticks respectively. The Zn2+ ion and the bound Cl− ion are also shown and coloured as in C-ACE.

Data collection and structure determination

Two datasets were collected on stations IO3 and IO4 at Diamond
Light Source. No cryoprotectant was used to keep the crystal at
constant temperature (100K) under the liquid nitrogen jet during
data collection. Raw data images were indexed and scaled with
the HKL2000 software package [36]. Data reduction was carried
out using the CCP4 program TRUNCATE [37]. The structures
were solved by molecular replacement using PHASER [38] with
the aid of the native C-ACE (PDB code 1O86) [27] and N-
ACE (PDB code 2C6F) [29] structures as search models. The
resultant structures were refined for stereochemically restrained
positional and temperature factors using REFMAC5 [39]. In total
5% of reflections were separated as the Rfree set and used for
cross validation [40]. Manual adjustments of the models were
carried out using COOT [41]. Water molecules were added
at positions where Fo−Fc electron density peaks exceeded 3σ
and potential hydrogen bonds could be made. On the basis of
clear electron density interpretation, two FII molecules in the
C-ACE complex structure and one FII molecule in the N-ACE
structure were added and further refinement was carried out.
The co-ordinate and parameter files for FII were generated using
the PRODRG server [42]. Structure validation was conducted
with the aid of programs PROCHECK [43] and MOLPROBITY
[44]. There were no residues in the disallowed region of the
Ramachandran plot. Figures 2 and 3 were drawn with PyMOL
(http://www.pymol.org). Hydrogen bonds were verified with the
program HBPLUS [45]. Details of crystallographic data are given
in Table 1.

RESULTS AND DISCUSSION

Overall structures

For the crystal structure determination an underglycosylated form
of C-ACE was used that only had two of the potential seven

N-linked glycans. Although it is possible that introducing
mutations to disrupt glycosylation sites may affect the structure
of a protein, previous work has shown that enzymatically
deglycosylated C-ACE, as well as various glycosylation mutants
of N- and C-ACE, have comparable enzymatic activities to the WT
(wild-type) forms [33,35,46]. These findings imply that the crystal
structures of minimally glycosylated N- and C-ACE are likely to
be highly informative of the WT structures. Furthermore, aligning
the X-ray structures of minimally glycosylated N- and C-ACE to
the structures of their WT forms revealed RMSDs (root mean
square deviations) for all atoms of 0.70 Å (1 Å = 0.1 nm) and
0.51 Å for the N- and C-ACE comparisons respectively. Thus
the minimally glycosylated structures of the N- and C-domains
are essentially identical with their glycosylated counterparts, and
mutation of the glycan sequons does not seem to affect the
structure or function of the enzyme.

The C-ACE structure in complex with FII (one molecule
per asymmetric unit) was refined to 1.97 Å resolution. No
noticeable conformational change was observed in the structure
upon inhibitor binding (RMSDs of 0.38 and 0.51 Å for Cα
atoms and all atoms respectively). This is consistent with the
previously determined structures of C-ACE inhibitor complexes
[27,28,30–32]. The overall protein structure (Figure 2A) contains
a Zn2+ ion, two Cl− ions, two molecules of FII (for details
see below), one Hepes molecule (from the crystallization
medium), partially visible N-linked glycans at two potential
glycosylation sites (Asn72 and Asn109) and 563 water molecules
(Table 1).

The N-ACE structure in complex with FII (two molecules per
asymmetric unit) was refined to 2.15Å resolution. As in the
case of previously determined N-ACE complexes [29,33], no
noticeable conformational change was observed in the structure
upon inhibitor binding (RMSDs of 0.56 and 0.70 Å for Cα
atoms and all atoms respectively). The overall protein structure
(Figure 2B) contains a Zn2+ ion, one Cl− ion per molecule, one
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Figure 3 Details of FII binding in C-ACE and N-ACE active sites

(A–C) Close-up views of the active site showing bound inhibitors. (A) Interaction for C-ACE with the dual inhibitor at the primary site FII-A. (B) Interaction for N-ACE with the dual inhibitor at
the primary site FII-A. (C) Interaction of C-ACE with the dual inhibitor at the secondary binding site FII-B. The interacting residues in the active site are labelled. The electron density map shown
is the Fo−Fc map contoured at 3σ level. The Zn2+ ion and water molecules are in green and sky-blue spheres, and the inhibitor molecules are shown in stick representation. (D and E) Surface
diagram with inhibitors showing their potential arrangement in C-ACE and N-ACE. (D) C-ACE with two FII molecules (sites A and B) bound at the active-site cavity. The isoxazole phenyl group
of the second molecule makes a strong pi–pi stacking interaction with the amino benzoyl group of the first molecule locking them in a ‘hand-shake’ conformation. (E) N-ACE with a single dual
inhibitor in the active site at (site FII-A). (F) The orientation of dual inhibitor (FII) in comparison with other known inhibitors. Comparison of the orientation of FII binding (the present study) against
previously reported lisinopril [27] and RXPA380 [30] in the active site of the C-ACE. FII (green sticks), lisinopril (PDB code 1O86; cyan sticks) and RXPA380 (PDB code 2CO2; magenta sticks)
bound in the active site of co-crystal structures of C-ACE are superimposed. The Zn2+ ion and water molecules are shown as green and sky-blue spheres. Active-site residues of C-ACE interacting
with FII are labelled and their hydrogen-bond interactions are shown as magenta dotted lines. (G). Comparison of the orientation of the dual inhibitor (S configuration; FI, yellow sticks) compared
with lisinopril (cyan sticks) [27] and RXPA380 (green sticks) [30] from their respective complexes with C-ACE. (H and I) Comparison of dual-inhibitor-binding sites in C-ACE with N-ACE. (H)
Superimposition of dual-inhibitor binding FII-A in C-ACE (magenta) with dual-inhibitor binding in N-ACE (cyan). The dual inhibitors are shown in stick representation, and differences in residues
near the dual-inhibitor-binding site in both structures are labelled (magenta, C-ACE; cyan, N-ACE). (I) Superimposition of dual-inhibitor binding FII-B in C-ACE with N-ACE (purple). Residues from
C-ACE and N-ACE are labelled in magenta and cyan respectively. The dual inhibitor FII-B is shown in yellow stick representation.

molecule of FII (for details see below) each monomer, five PEG
molecules of different lengths (from the crystallization medium),
partially visible N-linked glycans at three potential glycosylation
sites (Asn45, Asn416 and Asn480) and a total of 663 water molecules
(Table 1).

Novel inhibitor-binding mode

C-ACE–FII complex

Two bound inhibitor molecules were identified unambiguously
in the C-ACE active site in close proximity to one another,
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Table 1 Crystallographic statistics for the ACE/ECE-1 dual inhibitor FII
complex

Values in parentheses are for last resolution shell.

Statistic C-ACE N-ACE

Resolution (Å) 1.97 2.15
Space group P212121 P1
Number of molecules/ASU 1 2
Cell dimensions

a,b,c 58.7, 86.1, 134.8Å 89.1, 64.4, 75.8Å
α,β ,γ 90, 90, 90◦ 78.8, 76.4, 82.9◦

Total number of observations 526714 718177
Number of unique reflections 49449 84896
Completeness (%) 97.8 (93.4) 97.0 (95.0)
I/σ (I) 15.6 (3.3) 14.1 (2.4)
Rsymm* 7.4 (31.4) 7.3 (48.1)
Rcryst†/R free‡ 19.8/23.2 21.9/25.5
Deviation from ideality

Bond lengths (Å) 0.007 0.008
Bond angles (◦) 1.204 1.16

B-factor analysis (Å2)
Protein atoms (chain A/B) 20.8 33.7/39.2
Solvent atoms 28.2 33.1
Inhibitor atoms 17.4 32.3/34.1
Zn2+ ion (chain A/B) 14.5 25.1/23.6
Glycosylated sugars 47.4 58.6/71.5
Hepes atoms 64
Cl− ions (2) (chain A/B) 14.6 23.8/31.6
PEG atoms (chain A/B) 57.0/55.8

*Rsymm = �h� i [|Ii(h)−<I(h)>|/�h� i Ii (h)], where Ii is the ith measurement and <I(h)>
is the weighted mean of all the measurements of I(h).

†Rcryst = �h|Fo−Fc|/�hFo,where F o and F c are observed and calculated structure factor
amplitudes of reflection h respectively.

‡Rfree is equal to Rcryst for a randomly selected 5 % subset of reflections.

by inspection of the Fourier difference electron density map
(Figures 3A and 3C). One molecule (hereafter called FII-A,
the primary site) occupies the expected S1, S2,, S1

′ and S2
′

subsites of the C-ACE active site, whereas the unexpected
second molecule (hereafter called FII-B, the secondary site)
forms intermolecular aromatic (pi–pi) interactions with FII-A
through a ‘hand-shake’ conformation and extends towards the
non-primed region of the active site involving some 46 contacts
(Figure 3D).

FII-A binding

The phosphoryl zinc-binding group of FII-A interacts with the
catalytic Zn2+ ion through its two oxygen atoms (distances of
2.04 Å and 2.74 Å respectively). However, the accommodation
of the unusual P1

′ side chain with the R configuration of FII-A in
the active site of C-ACE has resulted in a significantly different
positioning of the inhibitor. This can be seen by comparing the
superimposition of the binding modes of lisinopril (a well-known
clinically used ACE inhibitor with a K i values of 44 and 2.4 nM for
N-ACE and C-ACE of human somatic ACE respectively [23,27]),
RXPA380 [a C-ACE-specific phosphinic inhibitor with a K i value
of 3 nM (2500 nM for N-ACE)] [30,47] and FII-A (Figure 3F).

Despite different chemical structures and the zinc-binding
groups, the backbone of lisinopril and RXPA380 inhibitors, as
well as the orientation of their respective side chains, superimpose
well [30] (Figure 3F). In contrast, comparing the binding mode of
FII-A to either that of lisinopril or RXPA380 reveals a different
picture. There is a marked difference in the positioning of FII-A

in the C-ACE active site and, more specifically, the positioning
of its phosphoryl zinc-binding group and the orientation of the
inhibitor molecule at the P1, P1

′ and P2
′ positions. In the P1

′

position, the nitrogen atom of the isoxazole ring is held by a
water-mediated interaction with Asp415. The oxygen atom of the
isoxazole ring appears to make a direct interaction with the active-
site residue His383. Surprisingly, the bulky side chain of FII at
the P1

′ position points in an unusual orientation and extends
towards the S2

′ pocket. This particular orientation is probably
stabilized by hydrophobic interactions provided by Val380 and
the P1

′ aromatic ring of the inhibitor molecule (Figure 3F),
but it is also rendered possible by the unique topology of the
S1

′ and S2
′ subsites of ACE, which form a single and very

large cavity, sufficiently wide enough to accept the bulky P1
′

side chain in the S or R configuration (Figure 3G). In the S
configuration, the P1

′ side chain would probably assume an
orientation similar to that observed for the lysine residue in
lisinopril. In addition to these points, several polar and van der
Waals interactions observed between FII and ACE, as compared
with more ‘classical ACE inhibitors’ (see below), are probable
reasons why inhibitors FI and FII exhibit similar potency towards
ACE.

The C-terminal tyrosine side chain at the P2
′ position of the

inhibitor is held by hydrophobic interactions mediated through
aromatic residues Phe527 and Phe457, an orientation slightly
different to that adopted by the tryptophan side chain of RXPA380
(Figure 3F). Furthermore, the hydroxy group of the tyrosine
moiety of the inhibitor is anchored via water-mediated hydrogen
bonds with Asp415, His383 and Lys454. The phenyl side chain at the
P1 position is held by hydrophobic interactions provided by
the side chains of Phe512 and Val518. Finally, the phenyl group
at the P2 position of the dual inhibitor makes aromatic contact
with Phe391, as observed for RXPA380 [30]. Despite this unusual
binding mode, FII-A is involved in strong interactions with
the protein atoms: 16 hydrogen bonds, which include seven
water-mediated hydrogen bonds, as calculated by HBPLUS
(Figure 3A and Table 2); and several atoms of FII-A are
in close proximity to ten protein side chains (Ser355, Glu376,
Val379, Val380, Phe391, His410, Phe457, Phe512, Val518 and Phe527),
most of them making extensive van der Waals contacts. This
network of interactions provides an excellent structural basis
for the sub-nanomolar affinity of this dual inhibitor towards
ACE.

FII-B binding

For the first time, an inhibitor molecule is observed at a secondary
binding site (FII-B) in the ACE structure. The inhibitor is
held by nine water-mediated hydrogen bonds and two direct
interactions with Asn66 and Arg522, as calculated by HBPLUS
(Table 2). In addition, Glu123, Glu403 and Arg124 also mediate direct
interactions with the inhibitor (Figure 3C). The isoxazole phenyl
of FII-B makes strong aromatic (pi–pi) stacking interactions
with the amino benzoyl group of inhibitor FII-A at the primary
site (Figure 3D). The P1 phenyl group of the dual inhibitor
participates in an aromatic interaction with Trp220 of the protein
molecule. The isoxazole phenyl group of FII-B makes an
aromatic interaction with Trp357 and the tyrosine group at the
P2

′ position of FII-B appears to make a hydrophobic interaction
with Tyr62. The phosphinic oxygen atoms appear to make direct
interactions with Glu123 and Glu403, and a weak interaction with
Lys118. In the native C-ACE structure, and in all previously
studied C-ACE inhibitor-bound complexes [27,28,30,31], this
binding site of FII-B is occupied by a string of bound water
molecules.
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Table 2 Comparison of hydrogen-bond interactions with the dual inhibitor
FII in C-ACE and N-ACE complexes

Domain Site Inhibitor atoms Interacting protein atoms Distance (Å)

C-ACE Primary (FII-A) O Q281NE2 3.02
OAC H353NE2 2.61
OAB A356N 2.87
OAG H383NE2 3.15
OAG H387NE2 3.06
O K511NZ 2.69
OAC H513NE2 2.83
O Y520OH 2.59
OAD Y523OH 2.59
NBI Wat 3.10
OXT Wat 2.69
O Wat 3.45
OH Wat 2.80
OH Wat 2.76
OBK Wat 3.36
NBG Wat 2.81

Secondary (FII-B) OH N66ND2 3.13
OAB R522NH2 3.05
OAD Wat 2.46
OAC Wat 2.61
N Wat 3.28
OXT Wat 2.81
OXT Wat 2.86
O Wat 2.54
OH Wat 2.72
OBK Wat 3.22
NBG Wat 2.66

N-ACE Primary O Q259NE2 3.00
OAC H331NE2 2.64
OAB A334N 2.76
NBG T358OG1 3.45
OAG H365NE2 2.90
O K489NZ 2.62
OAC H491NE2 2.98
O Y498OH 2.58
OAD Y501OH 2.53
* * *
NBI Wat 2.99
OXT Wat 2.67
OH Wat 2.44

*Additional contacts identified for the second molecule in the asymmetric unit at the primary-
binding site.

N-ACE–FII complex

One bound inhibitor molecule per monomer of FII was found in
the primary site (FII-A, occupying all four substrate binding sites:
S2, S1, S1

′ and S2
′) and was identified unambiguously in the active

site of N-ACE (Figures 3B and 3E). No secondary FII-binding
site was observed. As in the case of the C-ACE–FII complex
(described above), the binding pocket retains the full complement
of conserved hydrogen-bond interactions in the N-ACE active site
(Figure 3B and Table 2). The phenyl group at the P2 position of FII
is held by hydrophobic interactions mediated through His388 and
Tyr369. The second phenyl group at the P1 position of FII appears to
make aromatic interactions with Phe490. The oxygen of the bulky
isoxazole ring at the P1

′ position makes a direct interaction with the
ND1 atom of His361, whereas the nitrogen atom of the isoxazole
ring appears to participate in a weak hydrogen-bond interaction
with the OG1 atom of Thr358. The hydroxy group of the tyrosine
moiety at the P2

′ position of FII is held by direct interactions with
the OD2 atom of Asp393, and by weak interactions with the NZ
atom of Lys432. In addition, Ser333, His388, Phe435, Phe490, Thr496

and Phe505 also make hydrophobic interactions with the inhibitor.

However, a structure-based alignment of residues from the two
complexes revealed some significant differences in residues at the
periphery of this primary site (Figure 3H).

A comparison of the N-ACE active site with the FII-B-binding
site of C-ACE clearly showed the presence of several key residues
occluding the binding of FII. Specifically, Leu32, Ser35, Val36,
Trp203 and Arg381 in the N-ACE active site are replaced by
Trp59, Tyr62, Ala63, Met223 and Glu403 in the C-ACE respectively
(Figure 3I). These observations provide a structural basis for the
lower specificity of FII for N-ACE as compared with C-ACE.

Conclusion

The S1
′ pocket of ACE can accommodate a variety of P1

′ residues
including alanine, histidine, phenylalanine and lysine with its
more extended conformation. However, our structural data did
not reveal any direct interactions between the bulky bicyclic P1

′

group of FII-A and the S1
′ pocket but, unexpectedly, this side

chain was oriented more towards the S2
′ pocket, rationalizing

the accommodation of a bulky P1
′ group in the R configuration

by the active site. It should be noted that an S configuration of
the P1

′ residue was reported to be an absolute requirement in
all clinical ACE inhibitors [15]. As shown in the present study,
the accommodation of an R configuration not only concerns the
orientation of the phenyl-isoxazole side chain, but also implies a
striking shift in positioning of FII-A in the C-ACE and N-ACE
active site, compared with the binding modes of other known ACE
inhibitors. Despite this particular binding mode, FII-A has been
shown to be engaged in multiple polar and non-polar interactions,
an observation that expands the current ‘dogma’ regarding the
chemical space defined by the ACE active sites.

In addition, the unexpected observation of the binding of the
dual inhibitor at the secondary site of C-ACE, FII-B, (involving
displacement of conserved water molecules), provides further
leads to be explored with regard to subtle modifications of
the chemical space at the active site. It also demonstrates the
active-site plasticity in accommodating potent inhibitors. Thus
the present study for the first time has provided a wealth of
fundamental knowledge about ACE/ECE-1 dual-inhibitor (FII)
specificity which will no doubt prove useful in understanding the
selectivity profiles of different vasoactive hormones.
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32 Watermeyer, J. M., Kröger, W. L., O’Neill, H. G., Sewell, B. T. and Sturrock, E. D. (2010)
Characterization of domain-selective inhibitor binding in angiotensin-converting enzyme
using a novel derivative of lisinopril. Biochem. J. 428, 67–74

33 Anthony, C. S., Corradi, H. R., Schwager, S. L. U., Redelinghuys, P., Georgiadis, D.,
Dive, V., Acharya, K. R. and Sturrock, E. D. (2010) The N domain of human angiotensin-I
converting enzyme: the role of N-glycosylation and the crystal structure in complex with
an N domain specific phosphinic inhibitor RXP407. J. Biol. Chem. 285, 35685–35693

34 Jullien, N. D., Cuniasse, P., Georgiadis, D., Yiotakis, A. and Dive, V. (2006) Combined use
of selective inhibitors and fluorogenic substrates to study the specificity of somatic
wild-type angiotensin-converting enzyme. FEBS J. 273, 1772–1781

35 Gordon, K., Redelinghuys, P., Schwager, S. L. U., Ehlers, M. R. W., Papageorgiou, A. C.,
Natesh, R., Acharya, K. R. and Sturrock, E. D. (2003) Deglycosylation, processing and
crystallization of human testis angiotensin-converting enzyme. Biochem. J. 371, 437–442

36 Otwinoswski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in
oscillation mode. Methods Enzymol. 276, 307–326

37 Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for
protein crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 50, 760–763

38 McCoy, A. J., Grosse-Kunstleve, R. W. P., Adams, P. D., Winn, M. D., Storoni, L. C. and
Read, R. J. (2007) PHASER crystallographic software. J. Appl. Crystallogr. 40, 658–674

39 Murshudov, G. N., Vagin, A. A. and Dodson, E. J. (1997) Refinement of macromolecular
structures by the maximum-likelihood method. Acta Crystallogr. Sect. D Biol. Crystallogr.
D53, 240–255
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