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Abstract

Gene expression and immune status in human tissues are changed with aging. There is a need to develop a comprehensive
platform to explore the dynamics of age-related gene expression and immune profiles across tissues in genome-wide
studies. Here, we collected RNA-Seq datasets from GTEx project, containing 16 704 samples from 30 major tissues in six age
groups ranging from 20 to 79 years old. Dynamic gene expression along with aging were depicted and gene set enrichment
analysis was performed among those age groups. Genes from 34 known immune function categories and immune cell
compositions were investigated and compared among different age groups. Finally, we integrated all the results and
developed a platform named ADEIP (http://gb.whu.edu.cn/ADEIP or http://geneyun.net/ADEIP), integrating the
age-dependent gene expression and immune profiles across tissues. To demonstrate the usage of ADEIP, we applied two
datasets: severe acute respiratory syndrome coronavirus 2 and human mesenchymal stem cells-assoicated genes. We also
included the expression and immune dynamics of these genes in the platform. Collectively, ADEIP is a powerful platform for
studying age-related immune regulation in organogenesis and other infectious or genetic diseases.

https://academic.oup.com/
https://doi.org/10.1093/bib/bbab274
http://orcid.org/0000-0002-4868-331X
http://gb.whu.edu.cn/ADEIP
http://geneyun.net/ADEIP


2 Liu et al.

Key words: aging; tissue; expression; immune; SARS-CoV-2; human mesenchymal stem cells (hMSC)

Introduction
Age has been reported to play critical roles in gene expression
in organogenesis and diseases and causes the diverse responses
to the virus infection or efficacy of drugs, bringing challenges
to clinical therapy [1, 2]. Identification of genes associated with
age and defining the function of these genes have important sig-
nificance in the study of age-related diseases [3]. Previous work
based on high-throughput transcriptome sequencing datasets
has revealed the association of gene expression and tissue speci-
ficity, quantitative trait locus (QTLs) and sex [4, 5]. Some studies
have analyzed age-related expression profiles based on a small
number of samples in specific conditions or diseases but not
across the life span of individuals [3, 6–8]. In addition, the innate
immune cell functions, such as cell migration and pattern recog-
nition receptors signaling, are impaired in aged individuals [9].
Aging is known to be associated with the lower frequency of
naive T cells [10]. In addition, in the pandemic of coronavirus
disease 2019 (COVID-19), different organs and ages exhibited dif-
ferent responses to infections and treatment [11–13]. Therefore,
there is a need to develop a comprehensive platform to explore
the age-dependent immune alterations across human tissues.

To explore expression and immune profiles in tissues along
with aging, we developed an integrated platform named ADEIP
(age-dependent expression and immune profile) based on all
available datasets of The Genotype-Tissue Expression (GTEx)
project (v8) [14]. ADEIP includes gene expression data from
>16 000 samples from 30 major human tissues, from donors
within the age range of 20–80. Differential expressed genes and
enriched pathways were inspected among age groups. Genes
belonging to classic immune categories were also compared.
Immune cell composition was inferred and compared among
age groups. To demonstrate the usage of ADEIP, we demonstrated
two examples by using two gene sets including severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and human
mesenchymal stem cells (hMSC)-associated genes. To our
knowledge, ADEIP is the first integrated platform displaying
a large-scale view of age-related expression and immune
dynamics. ADEIP provides a powerful platform to investigate
aging-related expressions and immune trajectory across tissues,
which can contribute to understand the mechanisms of
infectious or genetic diseases associated with ages, allowing
the development of therapy procedures accrodingly.

Materials and methods
Datasets collection

The quantitative data included raw counts and TPM (Transcripts
Per Kilobase of exon model per million mapped reads) of 54 592
genes in 30 human tissues were downloaded from the GTEx
project (v8, https://gtexportal.org/) [14]. According to GTEx doc-
uments, the sequencing reads were aligned to the human refer-
ence genome GRCH38/hg38 using STAR v2.5.3a [15]. Gene-level
expression quantification was based on the GENCODE v26 gene
annotation, and read counts and TPM values were produced
with RNA-SeQC v1.1.9. Currently, ADEIP includes 16 704 samples
derived from 948 donors, which are from different age groups.
The age groups were 20–29, 30–39, 40–49, 50–59, 60–69 and 70–79.

Differential analysis of aging-associated genes

DESeq2 [16] was used to perform differential expression analysis
between any two groups in six age groups. At least two repli-
cates were needed in at least one of the two compared groups.
Genes with a fold-change >2 and P-value <0.05 (correction by
Benjamini and Hochberg method) were treated as significant
differential expressed genes.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was implemented using
GSEA [17] command line tool (https://www.gsea-msigdb.org).
A total of 7481 biological process terms of Gene Ontology
[18] (http://geneontology.org/) were acquired from molecular
signatures database (MSigDB) [19] (https://www.gsea-msigdb.
org/) and used as the reference gene sets. Age groups with less
than three samples in one tissue were discarded in the analysis
according to GSEA instructions.

Classification of immune function categories

A total of 34 known immune function categories including gene
annotation were collected from four public databases: ImmPort
[20] (https://www.immport.org/), InnateDB [21] (https://www.
innatedb.ca/), HisgAtlas [22] (http://biokb.ncpsb.org/HisgAtlas/)
and Gene Ontology [18] (GO:0002376, http://geneontology.org/).
Gene official symbols and Ensemble ID are used to match the
associated genes in the platform.

Definition of subcellular location

The subcellular localization annotation of genes was collected
from Hum-mPLoc [23] (v3.0) (http://www.csbio.sjtu.edu.cn/bioi
nf/Hum-mPLoc3/) and Euk-mPLoc [24] (http://www.csbio.sjtu.
edu.cn/bioinf/euk-multi/). Genes annotated in extracellu-
lar localization were excluded and 12 types of subcellular
localization including 17 645 genes were retained.

Inference of immune cell composition

CIBERSORT [25] (https://cibersort.stanford.edu/) was used to
infer the composition of immune cells from RNA-Seq quanti-
tative data. CIBERSORT R source code was downloaded from
the original site, and R package Immunedeconv [26] was used
to invoke CIBERSORT to calculate the composition of immune
cells in each tissue based on gene TPM. A total of 22 immune
cell types were inferred. The two-tailed Mann–Whitney U-test
was used to compare the relative ratios of cell types between
samples through the Python package SciPy [27].

Correlation analysis of gene expression
and cell composition

Pearson correlation between gene expression and relative ratios
of cell types was performed by R package psych (https://cran.r-
project.org). Only those genes or cell types detected (with TPM
or ratio >0) in >75% of samples were retained in the analysis.
Adjusted P-value <0.05 corrected by Benjamini and Hochberg
method was used to infer the significance.

https://gtexportal.org/
https://www.gsea-msigdb.org
http://geneontology.org/
https://www.gsea-msigdb.org/
https://www.immport.org/
https://www.innatedb.ca/
http://biokb.ncpsb.org/HisgAtlas/
http://geneontology.org/
http://www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/
http://www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/
http://www.csbio.sjtu.edu.cn/bioinf/euk-multi/
https://cibersort.stanford.edu/
https://cran.r-project.org
https://cran.r-project.org
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Figure 1. Overview and content of ADEIP. (A) Number of samples distributed in six age groups. (B) Number of samples distributed in 30 tissues and six age groups.

(C) Distribution of genes in 12 subcellular locations. (D) Average ratio of 22 cell types in six age groups. (E) Distribution of genes in 34 immunological categories collected

in the analysis. (F) Distribution of genes binding to 27 antigens of SARS-CoV-2.

Collection of gene set example

Two gene sets were collected to demonstrate the usage of our
platform. A list of human genes interacting with SARS-CoV-
2 proteins was collected from previous research [28], which
revealed these genes are potentially involved in the invasion
of SARS-CoV-2. Target genes corresponding to drugs used in
COVID-19 treatment were also collected. Furthermore, human
multipotent mesenchymal stem cells (hMSC)-associated genes
were extracted from previous work [29], which is identified by
comparing gene expression from multipotent mesenchymal
stem cells of elderly osteoporosis patients (hMSC-OP), elderly
wounds of non-osteoporotic (hMSC-old) and middle-aged
healthy wounds (hMSC-C). Target genes corresponding to the
drugs used in osteoporosis treatment were also collected [30,
31].

Statistical analysis

Differential expression analysis among age groups was per-
formed by two-sample t-test (∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001).
Images were plotted by R packages (ggplot2, pheatmap, igraph
and corplot) and Graphpad Prism.

Platform implementation

The web application of ADEIP was developed using MySQL
(v.5.6, https://www.mysql.com) and ThinkPHP (v5.0, https://gi
thub.com/top-think). The interface of the website was designed
and implemented using Bootstrap (https://getbootstrap.com),
Echarts (http://echarts.apache.org), and Highcharts (https://
www.highcharts.com.cn) were used to generate the images.
The website has been tested in several popular web browsers,

https://www.mysql.com
https://github.com/top-think
https://github.com/top-think
https://getbootstrap.com
http://echarts.apache.org
https://www.highcharts.com.cn
https://www.highcharts.com.cn
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Figure 2. Interface and exhibition of ADEIP. (A) Pipeline of ADEIP contruction. All the datasets were collected and subsequent analysis including differential expression

analysis, immune categories annotation, GSEA, cell ratio inference and correlation analysis were performed. All the results were included and integrated in the database.

(B) Browse interface. Two panels including expression and cell type were established and available for query. (C) Search interface. User can select different parameters

or thresholds to filter the results. (D) Chart of boxplot illustrates the detailed expression of genes in six age groups.

including Google Chrome and Firefox. The entire content of
the ADEIP is freely available and can be downloaded from the
website.

Results
Platform content

ADEIP utilized RNA-Seq datasets from GTEx project, including
16 704 samples of 30 major tissues (adipose, adrenal, bladder,
blood, blood vessel, brain, breast, cervix uteri, colon, esophagus,
fallopian tube, heart, kidney, liver, lung, muscle, nerve, ovary,
pancreas, pituitary, prostate, salivary gland, skin, small intestine,
spleen, stomach, testis, thyroid, uterus, vagina) from 948 human
donors in six age groups: 20–29, 30–39, 40–49, 50–59, 60–69 and
70–79 (Figure 1A). Each tissue has a different number of samples
(Figure 1B). The RNA-Seq reads are aligned to the human genome
and annotated into 54 592 genes. Differential expression analysis
was performed between any two of six age groups and signifi-
cantly differential results (Fold-change >2 and adjusted P-value
<0.05) were selected and imported into ADEIP. GSEA was also
performed between age groups and pathways with the absolute
value of normalized enrichment score (NES) >1 and the P-value
<0.05 were considered as significant.

A total of 17 645 genes with 12 subcellular locations were
extracted and included (Figure 1C). A total of 22 types of immune
cells in all 16 704 samples were predicted. The proportion of each
immune cell in each sample belonging to each age group was
presented (Figure 1D). In addition, differential ratios of those
immune cells in different age groups were performed. The
correlation between the proportion of immune cells and gene

expression was also inspected. A total of 4636 genes attributed
to 34 immune-related functional categories were classified and
established in the database (Figure 1E).

We also collected two examples to illustrate the aging-related
expression dynamics. A total of 333 genes binding to 27 antigens
of SARS-CoV-2 (Figure 1F) and 44 target genes corresponding
to 55 drugs used in COVID-19 treatment were included (Sup-
plementary Tables S1 and S2). Another 3915 hMSC-associated
genes and nine target genes corresponding to 27 drugs used
in osteoporosis treatment were also included (Supplementary
Tables S3 and S4).

Platfom access

All these contents are included and integrated into an integrated
platform named ADEIP (Figure 2A). We developed a user-friendly
interface to allow user browse, search and download. Users can
browse the ADEIP database through various options (Figure 2B).
The ‘Expression’ option allows users to browse and filter the
gene information. Users can also select ‘TPM’, ‘Differential anal-
ysis’ and ‘Annotation’ panels for more results. The ‘TPM’ panel
includes expression level (the average TPM) in each of the six
age groups and 30 tissues, details of the expression curve can
be viewed by clicking the ‘chart’ button (Figure 2D). ‘Differential
analysis’ panel exhibits the differential expressed genes among
six age groups. ‘Annotation’ panel presents the gene annotations
including Ensembl ID, chromosome type, gene type, subcellular
location, immunesource function category, etc.

Furthermore, users can visualize the relative ratios, differen-
tial results among age groups and correlated genes of immune

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab274#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab274#supplementary-data
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Figure 3. Exhibition of cell ratios in six age groups in ADEIP. Ratios of six cell types including CD4+ T cell, Macrophage M2, CD8+ T cell, activated NK cell, activated

mast cell and memory B cell in blood, thyroid, adipose, lung, adrenal gland and spleen separately, in six age groups.

cells by selecting the ‘Cell type’ option. The percentage of cell
ratio in six age groups in each tissue is presented in ‘Cell ratio’
panel. By clicking ‘chart’, users can view the distribution curves
(Figure 3). The results of differential cell ratio among six age
groups are presented in the ‘differential analysis’ panel. ‘Correla-
tion analysis’ panel includes the potential genes correlated with
the cell types.

Users can query the details of gene expression in the platform
by selecting multiple thresholds including tissue type, age
groups, P-values/adjusted P-value, log2 fold-change or immune
function categories through the ‘Expressoin’ panel in the search
page (Figure 2C). Gene symbol can also be searched in the
detailed tables. Gene set enrichment results among those age
groups in each tissue can be viewed by clicking the ‘GSEA’
button (Figure 2D). Details of immune cell composition can also
be searched by selecting tissue type, age groups and P-value
through the ‘Cell type’ panel. Users can also select cell type or
gene symbol in the detailed tables.

All the original and result files including sample information,
gene expression, cell composition in all samples, and lists of
associated genes and drugs of example gene sets in ADEIP can be
downloaded through the download page. Gene annotation used
in ADEIP can also be downloaded through the download page.

Example illustration

Two gene sets were used as examples to illustrate the
usage of ADEIP. Users can view the detailed information of
SARS-CoV-2 or hMSC-associated genes through the example

page (Figure 4A). Clicking ‘gene symbol’ links to the browse
page to establish the detailed information. For example, the
expression of SARS-CoV-2-associated gene CEP250 in adipose is
increased along with aging. Reversely, the expression of another
associated gene HDAC2 in testis is decreased along with aging
(Figure 4B). The ‘drug’ tab includes the detailed information of
SARS-CoV-2 or hMSC-associated drugs and target genes. The
statistics of samples with differential expression among six age
groups can be viewed by clicking ‘chart’.

Discussion
Many diseases, including idiopathic pulmonary fibrosis, car-
diovascular disease, type-2 diabetes, primary osteoporosis and
COVID-19, exhibited the association of age and raised challenges
for clinical treatment and prognosis [29, 32–36]. Thus, genome-
wide investigation of gene expression change along with aging
could benefit therapy. In this work, we developed ADEIP, an
integrated platform to visualize the age-dependent expression
and immune profiles across human tissues. Through ADEIP,
we observed that the gene expression in different tissues was
changed along with aging. Differential expresseion and pathway
analysis revealed different functional enrichment among age
groups. Furthermore, an inspection of the subcellular location
of genes could contribute to decipher how aging influences
gene expression inside cells. Enrichment of known immune
functional categories also revealed the age-dependent patterns,
which could help to understand the immune status dynamics in
different ages.
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Figure 4. Application of ADEIP in SARS-CoV-2-associated genes. (A) Platform collection of SARS-CoV-2-associated genes. (B) Expression distribution of two SARS-CoV-

2-associted genes CEP250 and HDAC2 in adipose and testis separately, in six age groups.

Based on the popular deconvolution method, CIBERSORT
[25], which was been developed to estimate the immune cell
abundance from gene expression profiles, we explored the corre-
lation between cell composition and aging globally. We observed
various specific immune cells established different abundance
in different ages such as neutrophils, CD8+ T cells and other
subtypes, revealing the aging phenotype was involved in the
development of immune cells. We also explored the correlation
between the proportion of immune cells in each tissue and
the level of gene expression. Results exhibited many genes are
significantly correlated with the proportion of immune cells in

different tissues and age groups, which could be used as poten-
tial new cell markers. By integrating these results into ADEIP,
researchers can easily compare the different immune profiles
along with aging.

Overall, we present the integrated platform, ADEIP, to inspect
the age-dependent expression and immune profiles in tissues,
which can be applied to various diseases such as cancer or
infectious diseases, and decipher the different responses and
outcomes of therapy among ages. As functions of more genes
are revealed in specific diseases, ADEIP will become a useful
platform to study aging and diseases.
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Key Points
• A comprehensive platform of age-dependent gene and

immune profiles based on large-scale analysis.
• Characterize the involvement of age on expression

and immune regulation across tissues.
• Explore the effects of age on SARS-CoV-2-associated

genes and treatment.

Supplementary Data

Supplementary data are available online at Briefings in
Bioinformatics.
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