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Abstract
COVID-19, initially regarded as specific lung disease, exhibits an extremely broad spectrum of symptoms. Extrapulmonary 
manifestations of the disease also include important neuropsychiatric symptoms with atypical characteristics. Are these 
disturbances linked to stress accompanying every systemic infection, or are due to specific neurobiological changes associ-
ated with COVID-19? Evidence accumulated so far indicates that the pathophysiology of COVID-19 is characterized by 
systemic inflammation, hypoxia resulting from respiratory failure, and neuroinflammation (either due to viral neurotropism 
or in response to cytokine storm), all affecting the brain. It is reasonable to hypothesize that all these events may initiate 
or worsen psychiatric and cognitive disorders. Damage to the brain triggers a specific type of reactive response mounted 
by neuroglia cells, in particular by astrocytes which are the homeostatic cell par excellence. Astrocytes undergo complex 
morphological, biochemical, and functional remodeling aimed at mobilizing the regenerative potential of the central nerv-
ous system. If the brain is not directly damaged, resolution of systemic pathology usually results in restoration of the physi-
ological homeostatic status of neuroglial cells. The completeness and dynamics of this process in pathological conditions 
remain largely unknown. In a subset of patients, glial cells could fail to recover after infection thus promoting the onset and 
progression of COVID-19-related neuropsychiatric diseases. There is evidence from post-mortem examinations of the brains 
of COVID-19 patients of alterations in both astrocytes and microglia. In conclusion, COVID-19 activates a huge reactive 
response of glial cells, that physiologically act as the main controller of the inflammatory, protective and regenerative events. 
However, in some patients the restoration of glial physiological state does not occur, thus compromising glial function and 
ultimately resulting in homeostatic failure underlying a set of specific neuropsychiatric symptoms related to COVID-19.
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The Role of Astrocytes in the Brain: May 
the Homeostatic Cells Par Excellence Become 
SARS CoV‑2 Damage Effectors?

Astroglia control such a huge number of functions that they 
can be considered to take part in any circumstance in which 
there is a disturbance of cerebral homeostasis. In fact, fol-
lowing any brain insults, these cells become reactive by 

profoundly modifying their morphology and functions. This 
complex response is part of the homeostatic tasks that glial 
cells perform physiologically and has as its objective the 
containment of the damage and the return to a homeostatic 
condition. However, glia changes are not always restored in 
a timely manner thus causing brain damage. At the begin-
ning of 2021, we hypothesized that the neuropsychiatric con-
sequences of COVID-19 are maladaptive glial recovery to 
blame [1, 2]. This hypothesis is now reinforced by growing 
evidence which is summarized in the following paragraphs.

Glial cells are heterogeneous neural cells exerting a 
plethora of functions mainly aimed at preserving the cen-
tral nervous system (CNS) homeostasis. Glial cells are 
usually classified into microglia and macroglia. This latter 
includes astrocytes, oligodendrocytes, and oligodendrocyte 
precursors, also known as NG-2 glia or synantocytes [3, 4]. 
Microglia are of myeloid origin; their precursors migrate 
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into the neural tube early in development. Microglial cells 
undergo profound metamorphosis acquiring specific 'neu-
ral'-like morphology and expressing numerous receptors 
for neurotransmitters and neurohormones [5]. Microglial 
cells contribute to CNS physiology and are mounting CNS 
defence in pathology being the main immunocompetent cells 
of the nervous tissue. Microglia scan the tissue and modify 
their morphology and functions if and when necessary [6]. 
Microglia are crucial for the formation, shaping, and func-
tioning of synapses [7, 8], fundamental for brain develop-
ment during pre- and post-natal periods. Erratic execution 
of synaptic elimination by microglia during early post-natal 
life is associated with anomalous functional connectivity, 
hippocampal long-term potentiation impairment, and aber-
rant behaviours [9, 10]. Microglia activate phagocytosis to 
incorporate waste products, cellular debris, and pathogens. 
They could react to pro-inflammatory stimuli by releasing 
cytokines, chemokines, and reactive oxygen and nitrogen 
species [11].

Oligodendrocytes are macroglial cells chiefly responsible 
for the formation of the myelin sheath around axons, thus 
being a fundamental element of the brain connectome [12]. 
Oligodendrocytes also support axons through cytoplasmic-
rich myelinic channels that allow bidirectional movement of 
macromolecules under the myelin sheath [12–14]. Oligoden-
drocytes originate from precursor cells mainly localized in 
the ventricular zones of the brain, from which they migrate 
to colonise the developing CNS and became mature cells. 
This process starts shortly before birth and continues life-
long. The maturation of oligodendrocytes is usually acceler-
ated in case of CSN injury, aging, or brain diseases, in order 
to replace the lost myelin [15]. Functions of oligodendro-
cyte precursors, also known as NG-2 glia, remain to be fully 
characterised. These cells express several receptors and ion 
channels, their receive synaptic contacts and may contribute 
to homeostatic control of the nervous tissue. Since NG-2 glia 
can differentiate into oligodendrocytes, they play a role in 
myelination and brain plasticity [16, 17].

Astroglia are fundamental for the maintenance of CNS 
homeostasis at molecular, cellular, organ, and system levels 
of organization [18, 19]. Several morphologically and func-
tionally distinct subtypes of astroglial cells have been iden-
tified (e.g., protoplasmic and fibrous astrocytes of the grey 
matter, velate astrocytes of the cerebellum and olfactory 
bulb, radial astrocytes, perivascular and marginal astrocytes, 
ependymocytes, and many others) [19]. Astrocytes form the 
parenchymal part of the blood–brain barrier (BBB), which 
controls the exchanges of molecules and fluids between the 
brain and the periphery as well as restricts pathogens and 
cells brain invasion [18, 20–22]. Astrocytes regulate inter-
stitial pH, control the concentration of extracellular ions, 
and scavenge reactive oxygen species [19]. Astrocytes are 
the central part of neuro-vascular unit, and they are involved 

in the regulation of local hyperaemia through the release of 
vasoactive molecules [23, 24]. Astrocytes are a part of the 
gliocrine system secreting about 200 molecules, including 
neurotrophic and synaptogenic factors as well as providing 
energy support to other neural cells [25]. Finally, astrocytes 
are fundamental components of the glymphatic system 
responsible for cleansing the nervous tissue [26]. Through 
morphological contact with synapses, astrocytes form the 
'synaptic cradle', regulating all aspects of synaptic functions 
from synaptogenesis to synaptic maintenance and extinc-
tion [27]. In particular, astrocytes are indispensable for the 
control of neurotransmitter homeostasis in the brain [18, 28]. 
Astrocytes control so many cerebral functions that they are 
considered the homeostatic cells par excellence. As a con-
sequence, any changes in the physiological performance of 
astrocytes may have a role in the etiology or progression of 
neurological pathologies.

Any insult to the CNS, including invasion of pathogens, 
triggers glial response, known as reactive astrogliosis [29]. 
Reactive glia play a fundamental defensive role, starting a 
series of responses aimed at restoring the lost homeostasis. 
Peripheral proinflammatory cytokines may induce micro-
gliosis and astrogliosis whenever a CNS insult occurs, 
including viral infections [30]. Whenever glial cells lose 
their homeostatic activities, neuronal cells suffer. If the 
alteration of glial cells persists the irreversible damage to 
the nervous tissue may occur [3, 31–34].

The Neurotropism of SARS‑CoV‑2 
and the Neurological Manifestations 
of COVID‑19

SARS-CoV-2 which causes COVID-19 emerged from 
China in 2019. The virus spread rapidly through the world 
triggering the pandemic. SARS-CoV-2 is a positive-sense 
single-stranded β-coronavirus belonging to the family of 
Coronaviridae, the largest group of viruses causing respira-
tory and gastrointestinal infections [35, 36]. Historically, 
coronaviruses received little attention due to their scant 
effects on humans. This changed in 2002 when atypical 
pneumonia spread from the Guangdong province to more 
than twenty countries. This illness was named severe acute 
respiratory syndrome (SARS) and the identified etiologi-
cal β-coronavirus was named SARS-CoV [37]. Although 
COVID-19 seems to have a lower case-fatality rate than 
SARS (about 2.3% versus about 6.4%, respectively [38]), 
the massive spread of the infection has claimed over 6.3 
million casualties worldwide (WHO web-dashboard data 
updated on June 29th, 2022). The majority of the infected 
people appear to have eliminated the coronavirus from their 
bodies after a few weeks and resume normal activity. How-
ever, about the 40% of infected people experience a variety 
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of symptoms (loss of smell and/or taste, fatigue, cough, 
aching pain, "brain fog," insomnia, shortness of breath, and 
tachycardia) after several weeks and are diagnosed with the 
so-called long COVID syndrome.

To invade cells the SARS-CoV-2 spike protein binds 
to the angiotensin-converting enzyme 2 (ACE2) receptor 
which undergoes proteolytic processing by the transmem-
brane protease serine 2 [39–41]. In addition, both basigin 
(also known as CD147) and neuropilin-1 were identified 
as docking receptors for the SARS-CoV-2 virus [42–44]. 
After the first signs of the illness, the patient experiences 
a short recovery time, in which symptoms attenuate, usu-
ally followed by a more severe symptomatic. The human 
immune response induced by SARS-CoV-2 should develop 
in two phases. The constitutive adaptive immune response 
is activated at the beginning of the disease fighting the virus 
that actively replicates to colonise and damage the cells of 
the affected tissues, mostly lungs [38, 45]. A second phase, 
that take place in severe cases of COVID-19, defined as a 
severe acute respiratory distress syndrome (ARDS), is char-
acterised by the so-called “cytokine storm” that is due to the 
hyperactivation of the immune system, accompanied by a 
massive release of proinflammatory mediators, cytokines, 
and chemokines [46, 47]. The hyperactive immune response 
impacts upon many organs and systems, underlying the 
multi-organ pathology observed in COVID-19 patients [48]. 
Thus, the cytokine load has also become the major hallmark 
in COVID-19 patients [49]. Growing clinical data suggest 
that patients having pre-existing conditions, such as obesity, 
cardiovascular diseases, hypertension, dyslipidemia, have a 
higher risk of developing severe or fatal COVID-19 [50–52].

Extrapulmonary manifestations of COVID-19 including 
neurological symptomatology, primarily anosmia and ageu-
sia, are frequently reported [53–55]. Neurological symptoms 
in COVID-19 patients are grossly underestimated, especially 
because many severely ill patients are sedated and on venti-
lators [56]. However, cases of encephalitis, strokes, confu-
sion, seizures, and brain inflammation have been reported 
[57–59]. A retrospective clinical study has provided evi-
dence for substantial incidence of neurological and psychi-
atric events in patients during the first 6 months after get-
ting COVID-19. The risk for neurological and psychiatric 
sequelae seems to be greatest in patients who had severe 
COVID-19 [60]. Cognitive deficits and depression have been 
seen in patients that recovered from mild COVID-19 [61].

The capability of SARS-CoV-2 to enter the CNS has 
been suggested by analogy with the neurotropism of other 
members of group 2 of the β-coronavirus family [62–67], 
to which SARS-CoV-2 belongs. Among several suggested 
routes of entry, the most studied and acknowledged is bind-
ing to ACE2 which is expressed in the CNS, mostly by 
endothelial cells [68] but also by both neurones and glial 
cells [69–71]. SARS-CoV-2 engages ACE2 as the entry 

receptor and employs the cellular serine protease TMPRSS2 
for spike protein S cleavage [41]. This activates virus endo-
cytosis controlled by endosomal proton pump and NAADP-
sensitive intracellular two-pore channel 2 [72]. The ACE2 
is expressed in the brain stem [69, 70], populating highly 
vascularised brain structures lacking the BBB like the cir-
cumventricular organs, the nucleus of the tractus solitarius, 
paraventricular nucleus, and rostral ventrolateral medulla 
[73]. Such distribution makes these regions more vulner-
able to peripheral neurotoxic molecules or invasive agents, 
like SARS-CoV-2.

Another proposed route for viral entry to the brain is 
the invasion and consequent lesion of the olfactory system, 
which is consistent with the clinical data reporting that 
infection with SARS-CoV-2 is associated with high rates of 
disturbances in smell and taste perception, including anos-
mia [74–78]. Recently the cell types in the olfactory epithe-
lium and olfactory bulb that express the SARS-CoV-2 cell 
entry molecules have been identified. Single-cell sequencing 
revealed that ACE2 is expressed in support cells, stem cells, 
and perivascular cells, rather than in neurons [79]. Through 
the olfactory system, the virus could spread into the brain 
stem, possibly compromising the respiratory centres [80]. 
Magnetic resonance imaging (MRI) investigations seem to 
corroborate that virus may enter the brain through the trans-
nasal route [81–84], however, further studies are needed to 
better define their neuroradiologic interpretation.

Alternatively, the SARS-CoV-2 could penetrate through 
the median eminence, whose capillaries and tanycytes are 
thought to express ACE2, reaching the hypothalamus [85], 
and from there it could spread to the entire brain.

Brain infiltration of immune cells carrying the virus (a 
viral reservoir [86]) may represent another route of the virus 
entry. Vessels, meninges, and the choroid plexus have been 
proposed as entry points for infected monocytes, neutro-
phils, and T cells. However, conclusive evidence of infec-
tion through these routes has yet to be provided [87]. As 
suggested by some authors, some neurological symptoms 
and damage are the result of the body’s own immune sys-
tem overreacting after encountering the virus. Some subjects 
inadvertently make ‘autoantibodies’ that attack their own 
tissue [88]. These autoantibodies can pass via the BBB, and 
contribute to both short- and long-term conditions, including 
neurological disorders ranging from brain fog to psychosis.

Evidence has also accumulated that the virus SARS-
CoV-2 can affect the brain by reducing blood flow to it. In 
this way, SARS-CoV-2 infection impairs neurons function 
and ultimately killing them. Lastly, a leaky or dysfunctional 
BBB could facilitate the entry of the virus, as in other kinds 
of infections. For instance, the human immunodeficiency 
virus (HIV)-1 downregulates the expression of tight junc-
tion proteins, compromising BBB integrity [89]. Numerous 
studies highlight that systemic inflammation could damage 
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glia limitans and damage the BBB [90]. Thus, the hyper-
reactive immune response triggered by SARS-CoV-2 may 
compromise the integrity of the BBB. Severe COVID-19 is 
often associated with comorbidities, such as CNS hypoxia 
due to respiratory failure, thrombotic microangiopathy, or 
pre-existing neurological diseases, which all may increase 
BBB permeability facilitating the entry of the virus into 
the brain [91]. The reported presence of SARS-CoV-2 in 
patients cerebrospinal fluid (CSF) and brain tissue suggests 
that once in the body the virus can reach the brain [92–94]. 
This is also true for SARS-CoV-1 [65, 66].Finally, the obser-
vation in post-mortem brain tissues of SARS-CoV-2 signal 
not coinciding with immune cell infiltration suggests that 
virus-related neurological complications could be the direct 
consequence of the neurotropism of SARS-CoV-2 [95, 96].

The astrocyte response to viruses, 
including SARS‑CoV‑2

Typically, whenever any virus enters the CNS, the innate 
immune response activates. Both immune and neural cells 
participate in this process, cooperating in removing the 
pathogen. Astrocytes control the communication between 
resident and infiltrating immune cells and regulate the effec-
tor functions of antiviral T and B cells in the CNS compart-
ments [97, 98]. Astrocytes respond quickly to brain insults, 
viruses including, by virtue of their functions of monitor-
ing and preserving the brain homeostasis. In response to 
brain insults, astrocytes initiate the programme of reactive 
astrogliosis generally characterised by increased levels of the 
intermediate filament proteins glial fibrillary acidic protein 
(GFAP), vimentin, and nestin, as well as by hypertrophy of 
astrocytic processes, although in some cases atrophy has 
been documented too. In specific conditions, such as acute 
trauma, astrocytes may proliferate, regulate scar formation 
by fibroblasts and form new barriers around lesioned foci 
[29, 31, 99]. Reactive astrocytes are generally neuroprotec-
tive because they amplify homoeostatic cascades, detect and 
remove toxic substances and promote regeneration. At the 
same time, during viral infections, astrocytes and microglia 
may also become long-term virus reservoirs in the absence 
of efficient innate immune-mediated clearing mechanisms 
[100]. Viruses-induced rise in interleukin(IL)-1β and tumor 
necrosis factor(TNF)-α may cause changes in the metabolic 
phenotype of astrocytes, resulting in reduced glycogen stor-
age and lactate transport, fundamental for energy support 
for neurons [97, 101]. In HIV-1 infection, astroglia release 
cytokines and chemokines able to reduce viral replication. 
Concurrently, when HIV infects astrocytes, it impairs their 
functions by forcing them to produce viral proteins, thus 
causing neuronal damage [102–105]. Furthermore, HIV-1 
infected astrocytes release membrane HIV-1 Tat protein 

triggering mitochondrial dysfunction and neuronal death 
[106]. Proinflammatory cytokines secreted by microglial 
cells may promote astrogliosis whenever a CNS insult 
occurs, including viral infections [30, 107]. Astrogliosis 
and microgliosis could lead both of the cell types to gain 
aberrant functions or lose fundamental ones, resulting in 
neuronal damage [29, 108].

Murine coronavirus, MHV-A59, could infect the brain 
and its CNS effects were mediated by the cytokine release 
from reactive microglia and astrocytes. The authors doc-
umented that the cytokines released from both cell types 
were complementary, resulting in elevated levels of IL-1β, 
IL-6, interferon(INF)s, and TNF-α. Of note, they did not 
detect the release of the anti-inflammatory cytokines IL-4 
and IL-10 [109]. In a SARS-CoV-1 patient, necrosis of neu-
rons, broad hyperplasia of glial cells, and encephalic oedema 
have been reported. High plasma level of the chemokine 
Mig, a monokine induced by the INF-γ, that promotes the 
host defence by attracting activated T cells, natural killer 
(NK) cells, and CXCR3 expressing monocytes [66] has also 
been detected. Several studies indicated that SARS-CoV-2 
affects astrocytes. A recent post-mortem investigation dem-
onstrated that astrocytes are the main sites of viral infection 
within the CNS and that SARS-CoV-2-infected cells exhibit 
marked metabolic changes [110]. These authors suggest that 
astrocyte functions are impaired since they detected a reduc-
tion of the metabolites used to fuel neurons and produce 
neurotransmitters. In cortical tissue cultures and cortical 
organoids exposed to SARS-CoV-2, it has recently been 
demonstrated significant infection and viral replication in 
astrocytes, but minimal infection in other cell types [111].
The same group reported that infected astrocytes had a cor-
responding increase in reactivity characteristics, growth 
factor signaling, and cellular stress. Signs of astrocyte 
reactivity have long been proposed in COVID-19 patients. 
For instance, elevated GFAP was found in the white mat-
ter of a COVID-19 patient, with encephalomyelitis-like 
brain damage, oligodendrocytic apoptosis and axonal inju-
ries [112]. Plasma levels of both GFAP and neurofilament 
light chain protein (NfL), a biomarker predictive of intra-
axonal neuronal injury, were measured in 47 patients with 
mild, moderate, or severe COVID-19 and matched controls. 
GFAP was found elevated in moderate/severe stages of the 
disease. This suggests that astrogliosis could be an early 
response after SARS-CoV-2 infection of the CNS [113]. In 
COVID-19-related acute necrotising encephalopathy virus 
was detected in the CSF, together with extremely high levels 
of NfL and GFAP, 19 days after the onset of the symptoms 
and even after testing negative twice [94]. These clinical 
studies indicate that astrocytes could be in a reactive state 
in COVID-19 patients. Consistently, the damage of the BBB 
and the strong lymphopenia observed during COVID-19 
could promote the persistence of the virus, thus sustaining 
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neuroinflammation and reactive gliosis. The resulting brain 
tissue alteration could explain some of the clinical features 
observed in COVID-19 patients who, despite overcome 
pneumonia, present cognitive impairment associated with 
behavioural changes [2, 114–117].

Neuropsychiatric Consequences of COVID‑19

CNS viral infections induce cognitive, mood, and motor def-
icits that may persist beyond the acute phase of the disease. 
In many cases, CNS sequelae may be provoked by irrevers-
ible damage to both neurons and glia triggered by pathogens 
[118]. Otherwise, infection-driven neuroinflammation can 
disturb brain homeostasis and circuit functioning inducing 
long-term deficits resulting in behavior alterations [119]. In 
this context, focusing on the neuropsychiatric sequelae that 
emerged following the SARS -COV 2 infection, longitudi-
nal epidemiology research has revealed a broad spectrum 
of long-term consequences in patients who survived to 
COVID-19 pandemic, providing evidence that almost 80% 
of subjects discharged from hospital complained at least one 
of the following symptoms including fatigue, muscle weak-
ness, myalgia, dizziness, headache sleep disturbances, brain 
fog, cognitive impairment, depression or anxiety in addition 
to cardiopulmonary manifestations [120–122]. Inevitably, 
the frequent persistence of this condition up to six months 
and beyond together with the failure of any effective treat-
ment has a considerable impact on the quality of life of the 
affected subjects, keeping them out of work and social life 
[123]. Evidence that COVID-19 is followed by a significant 
rate of neuropsychiatric diagnoses over the subsequent six 
months has been further confirmed by a robust retrospec-
tive cohort study [117]. On the basis of this data, particular 
interest was drawn from the persistence of neuropsychiatric 
symptoms in convalescent patients or from their late appear-
ance in subjects completely restored by the viral infection 
[60, 124, 125]. This should not be surprising, as similar fea-
tures with significant neurological and mental complains 
were already reported in acute or post-disease phases during 
other previous coronavirus outbreaks. The experience gained 
with neurological and psychiatric manifestations of MERS 
and SARS would provide the right framework for better 
exploring CNS complications occurring during SARS-
CoV-2 infection [126]. Post-COVID-19 psychiatric pathol-
ogy frequently begins with a fatiguing feeling of asthenia, 
with a sense of apathy resulting in a condition of reduced 
interest in interpersonal relationships, and a decreased pleas-
ure in carrying out those occupations that were previously a 
source of satisfaction. The appearance of sleep–wake rhythm 
disturbances and a progressive decrease in mood testify to 
the onset of an overt depression [127]. Depression following 
pandemics is considered one of the most significant public 

health concerns. A recent study reported a long-term preva-
lence beyond twelve months of 18.3% [120], while another 
investigation on the same topic suggested an overall depres-
sion prevalence of 27.9% [128]. According to some authors, 
the depression observed in the condition defined as long 
COVID appears to be characterized by manifestations that 
distinguish it from the canonical major depressive disorder 
[119]. Highlights of post-COVID-19 depression include a 
higher incidence of psychotic traits, marked motor agita-
tion, evident neurocognitive deterioration, and profound 
changes in the sleep–wake rhythm. Psychotic anomalies, 
consisting in delusions, hallucinations, thoughts, disorgan-
ized may initially appear at the height of the COVID-19 
pathology, and may also persist when the delirium is over 
and the infection is resolved. Psychotic manifestations many 
times emerge weeks or months after healing from the infec-
tion, not accompanied by delirium or confusion, mimicking 
the onset of a primary psychotic episode. Sleep disorders 
frequently complicate the clinical picture of long COVID-19 
and are characterized by marked difficulty in initiating sleep 
rather than keeping it uninterrupted [129]. These sleep dis-
turbances frequently occur in the younger population experi-
encing COVID-19 if even asymptomatic, without significant 
anxiety levels about the outcome and consequences of the 
infection. Sometimes insomnia remains even beyond the 
disappearance of the other disorders that had characterized 
the long COVID-19, in the absence of a manifest anxiety 
and an overt decline in mood, therefore leaving insomnia 
without a clear explanation [2, 129, 130]. A recent report 
by Jahrami et al. assessing the impact of the COVID-19 
pandemic on the prevalence and severity of sleep problems 
among patients with COVID-19 indicated a high frequency 
of disturbed sleep, with an average rate of 74.8% [131]. Such 
an important incidence of sleep disturbances in patients who 
recovered from the acute SARS-CoV-2 infection could be 
explained by the interaction between sleep impairment and 
immune system dysfunction [132]. In fact, sleep and the 
immune system, according to researchers, interact bidirec-
tionally. This hypothesis is supported by altered sleep pat-
terns during viral infections with the release of inflammatory 
molecules, particularly in the acute phase of the immune 
response and the development of recovery during sickness 
[133]. The response of the immune system to infection, with 
the subsequent release of these immunological mediators, 
results in the activation of glial cells which consequently 
lose their modulatory role in the sleep homeostasis [134]. 
Moreover, at the level of mental disorders, there is a priori 
reason to expect that at least a substantial proportion of 
patients with obsessive–compulsive disorder (OCD) would 
experience a worsening of their disturbances due to the 
pandemic, with contamination/washing symptoms being 
the most susceptible [135]. Indeed, stressful life events may 
precipitate or predispose individuals to the development of 
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OCD symptoms. The intense focus on the potential danger 
of contamination, as well as the COVID 19 infection, may 
induce the onset of OCD manifestations in vulnerable sub-
jects, even after months of healing from the disease [136]. 
Currently, except for epidemiological findings, there are no 
studies specifically aimed at establishing whether and how 
COVID-19 infection itself could lead to de novo OCD symp-
toms or exacerbation of symptoms in people with OCD. In 
this regard, it is important to take into account the stressful 
effects of the pandemic, but also it is crucial to consider that 
infective and/or inflammatory processes have been impli-
cated in some cases of OCD-like symptoms [137], with the 
evidence of a glial activation occurring in the neurocircuits 
of OCD [138]. Similarly, de novo appearance of post-trau-
matic stress disorder (PTSD) spectrum symptoms or their 
worsening in people who experienced COVID 19 infec-
tion is not surprising since the links between inflammation, 
immune system alterations, and stress-related diseases have 
been widely demonstrated [139].

Therefore, the risk of increased prevalence of PTSD has 
also been observed in previous coronavirus pandemics, mak-
ing its occurrence during this COVID-19 pandemic highly 
explainable. Some severe cases of COVID-19 result in mor-
tality. The fear of death might be among the many reasons 
responsible for PTSD amongst these patients. It has been 
demonstrated that 16% of the severe COVID-19 patients 
globally had PTSD [140].

A meta-analysis of the survivors among emergency-
admitted patients with SARS and MERS infection has 
revealed that about 39% of them had suffered from PTSD. 
A history of psychiatric disorders, especially anxiety and 

depressive disorders, was found as a risk factor for PTSD 
in intensive care unit survivors. Twelve months after infec-
tion, psychiatric symptoms among COVID-19 recovered 
survivors were reported as 18.3% for depression, 17.9% 
for PTSD, 16.2% for anxiety, and 13.5% for sleep distur-
bance [120].

Based on the above reported findings it is possible to 
state that psychiatric involvement is not uncommon and 
can lead to severe problems if not detected and managed 
early. It is recommended that clinicians should be vigi-
lant regarding psychiatric involvement in post COVID-19 
patients. Neuroinflammation, blood–brain barrier disrup-
tion, thrombotic events, peripheral immune cell invasion 
into the CNS, glial activation, brain homeostasis impair-
ment, all represent interaction pathways between immune 
systems and psychopathological mechanisms underpinning 
such disorders (Fig. 1). In support of this, a recent analy-
sis of brain images taken before and after infection with 
SARS-CoV-2 demonstrated that even mild COVID-19 is 
associated with brain structure alterations and brain func-
tioning impairments, suggesting that the effects of SARS-
CoV-2 on the CNS need to be very seriously considered 
[141].

Although evidence suggests that the virus can enter the 
brain, it seems, however, to predominantly infect vascular 
and immune cells. In response to immune over activation 
(and/or virus direct invasion) astrocytes and microglia 
become reactive. Also, hemorrhages, microvascular infarcts, 
and thrombotic events are probably critical in the develop-
ment of the neurological manifestations of SARS-CoV-2 
infection.

Fig. 1  Putative mechanisms 
implicated in the neurological 
manifestations of COVID-19
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Conclusions

COVID-19, initially regarded as specific lung disease, 
impacts many other organs, affecting their function. Sev-
eral underlying medical conditions that increase the risk 
of severe COVID-19 have been identified [142]. Evi-
dence accumulated in the past two years indicates that 
the brain functions and structure are also damaged by the 
virus. SARS-CoV-2 infection can indeed cause confusion, 
memory loss, strokes, psychosis, seizures, and other neu-
rological manifestations. There is also evidence of brain-
related abnormalities in COVID-19 patients [141] that may 
explain the neurological manifestations observed. A study 
revealed that neurological symptoms appeared in 80% of 
the people hospitalized with COVID-19 who were sur-
veyed [143]. This depicts a dramatic scenario.

How COVID-19 injuries the brain is becoming clearer. 
New evidence indicates that the SARS-CoV-2 assault on 
the brain could be multipronged. The coronavirus might 
target specific brain cells directly, reduce cerebral blood 
flow, or trigger the production of immune molecules that 
can harm brain cells. Astrocytes, tanycytes, infiltrating 
immune cells, and autoantibodies are probably not the only 
players in the brain response to the coronavirus leading to 
the observed neuropsychiatric consequences. Researchers 
are trying to understand how many brain cells (and what 
kind of cells) need to be either infected or damaged to 
cause neurological symptoms. Unfortunately, there isn’t a 
simple answer. Cerebral cells, including neurons, in some 
regions of the brain will cause more dysfunction than oth-
ers, if damaged. This opens a new and never explored field 
of research. Lastly, whether cerebral effects can be par-
tially reversed, or whether these effects will persist in the 
long term, remains to be investigated.
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